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A surprising similarity is found between the distribution of hydrodynamic stress on the wall of an
irregular channel and the distribution of flux from a purely Laplacian field on the same geometry. This
finding is a direct outcome of numerical simulations of the Navier-Stokes equations for flow at low
Reynolds numbers in two-dimensional channels with rough walls presenting either deterministic or
random self-similar geometries. For high Reynolds numbers, the distribution of wall stresses on
deterministic and random fractal rough channels becomes substantially dependent on the microscopic
details of the walls geometry. Finally, the effects on the flow behavior of the channel symmetry and aspect
ratio are also investigated.
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Partial differential equations are basic in the mathemati-
cal formulation of physical problems. The Laplace equa-
tion, for example, is known for its relevance in many fields,
namely, electrostatics, heat transport, heterogeneous ca-
talysis, and electrochemistry. The aim of the present
work is first to reveal a surprising analogy between the
properties of the solutions of 2D Laplace and Navier-
Stokes equations when flow at low Reynolds and proper
boundary conditions are imposed on the same geometry. In
a second step, we present results obtained at higher
Reynolds numbers and for distinct types of surface
geometry.

The situations we compare and find to be quantitatively
similar are displayed in Fig. 1. Figure 1(a) pictures the
simplest Laplacian problem, namely, that of a capacitor
with a prefractal electrode. The complex feature here is the
distribution of charge on the irregular electrode or, in
mathematical terms, the distribution of the harmonic mea-
sure. The recent research on this field has been dedicated
mainly to the application of Laplacian transport towards
and across irregular interfaces [1–5]. The system depicted
in Fig. 1(b) corresponds to Stokes flow in a symmetric
rough channel with the same geometry as in Fig. 1(a). The
hydrodynamic quantity which is found to be distributed
similarly to the harmonic measure in Fig. 1(a) is the
viscous stress along the channel boundary. To obtain the
potential field for the problem in Fig. 1(a), one must
compute the solution of the Laplace equation with a po-
tential V � 1 on the counterelectrode and zero potential on
the irregular electrode (Dirichlet boundary condition).
From that, it is then possible to calculate the charge �iL
on each elementary unit i of the wall and its corresponding
normalized counterpart �i

L � �iL=
P
�jL. As previously

shown [6], the distribution of �L along the irregular elec-
trode is strongly nonuniform as a consequence of screening
effects. This is a typical situation where the deep regions of

the irregular surface support only a very small fraction of
the total charge, as opposed to the more exposed parts [4].

The hydrodynamic question posed here has been trig-
gered by the idea that the design of flowing systems should
also include the influence of the surface geometry as a
possibility for optimal performance. For this, we investi-
gate the flow in a duct of length L and width h whose
delimiting walls are identical prefractal interfaces with the
geometry of a deterministic square Koch curve (SKC) [6].
The mathematical description for the fluid mechanics in
this channel is based on the Navier-Stokes and continuity
equations for flow under steady state conditions [7]. The
Reynolds number is defined here as Re � �Vh=�, where
� and � are the density and the viscosity of the fluid,
respectively, and V is the average velocity at the inlet. In

 

FIG. 1. The two different problems with similar solutions. In
(a), we show a two-dimensional capacitor with an irregular
electrode. The local charge is obtained from the numerical
solution of the Laplace equation with Dirichlet boundary con-
ditions. In (b), we see the analogous problem of flow at low
Reynolds numbers. The rough channel is considered to be sym-
metrical with respect to the dotted-dashed line at the bottom. We
consider nonslip boundary conditions at the entire solid-fluid
interface, whereas a parabolic velocity profile is imposed at the
inlet of the channel (the dashed curve). Here the stress parallel to
the wall channel is calculated from the numerical solution of the
continuity and Stokes (Re � 0) equations [7].
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Fig. 2(a), we show the velocity vector field at low Re
located at the self-similar reentrant zones that constitute
the roughness of the irregular channel. Indeed, as depicted
in Fig. 2(b), by rescaling the magnitude of the velocity
vectors at the details of the roughness wall, we can observe
fluid layers in the form of consecutive eddies. Although
much less intense than the mainstream flow, these recircu-
lating structures are located deeper in the system, being
therefore strongly dependent on the landscape of the solid-
fluid interface. More precisely, viscous momentum is
transmitted laterally from the mainstream flow and across
successive laminae of fluid to induce vortices inside the
fractal cavity. These vortices will then generate other vor-
tices of smaller sizes whose intensities fall off in geometric
progression [8,9].

Once the velocity and pressure fields are obtained for the
flow in the rough channel, we can compute the normalized
stress �i

S at each elementary unit i of the wall �i
S �

�iS=
P
�jS, where the sum is over the total number Lp of

perimeter elements, the magnitude of the local stress is
given by �S � j@vk=@nj, the derivative is calculated at the
wall element, vk is the local component of the velocity that
is parallel to the wall element, and n is the local normal
coordinate. The semilog plot in Fig. 3(a) shows that the
spatial distribution of normalized stresses at the interface is
highly heterogeneous, with numerical values in a range
that covers more than 5 orders of magnitude. Also shown in
Fig. 3(a) is the variation along the interface of the normal-
ized Laplacian fluxes �L crossing the wall elements of a

Laplacian cell with Dirichlet boundary conditions. The
astonishing similarity between these two distributions
clearly suggests that the screening effect in flow could be
reminiscent of the behavior of purely Laplacian systems.
This is not totally unexpected, however, if we consider that
the stream function of a Stokesian flow obeys the bihar-
monic equation. As shown in Fig. 3(b), this analogy is
numerically confirmed through the very strong correlation
between local stresses and Laplacian fluxes. These mea-
sures follow an approximately linear relationship, namely,
�S / �L.

A further analogy can be drawn from the notion of active
zone [1]. For two-dimensional Laplacian systems sub-
jected to Dirichlet’s boundary condition, the theorem of
Makarov [2] essentially states that, whatever the shape
(perimeter) of an interface, the size of the region where
most of the activity takes place (the active zone) is of the
order of the overall size L of the system. Here we define an
active length as La � 1=

PLp
i�1��

i
S�

2, with 1 � La � Lp. If
La is equal to the wall perimeter Lp, the entire wall works
uniformly. However, the theorem of Makarov indicates
that, for a purely Laplacian field, La � L. The results in
Fig. 4(a) (open circles) show that the value of La for the
square Koch curve remains approximately constant at
La=L � 0:55 for low and moderate Reynolds numbers.
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FIG. 3 (color online). (a) The dark (black) line is the curvilin-
ear distribution of the logarithm of the normalized shear stresses
�S on the interface along one of the two (symmetric) square
Koch curves corresponding to the channel walls. The light (red)
line gives the distribution of the logarithm of the normalized
Laplacian charges �L for the analogous electrostatic problem.
For better visualization, the distribution of �L has been shifted
downwards. (b) Double-logarithmic plot of �S versus �L, with
the red line indicating their linear relationship.
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FIG. 2. (a) Vortices in the reentrant zones of the upper half of
the (symmetric) prefractal roughness channel. The fluid flows
steadily from left to right at a low Reynolds number Re � 0:01.
(b) Sequence of the smaller eddies at the details of the roughness
wall shown in (a).
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This value is consistent with our screening analogy, be-
cause it indicates that the hydrodynamic stress is concen-
trated mainly on a subset of the wall whose size is of the
order of the system size L. Only at higher Re values, when
inertial forces become relevant, can one observe a small
increase in La. The stress becomes slightly less localized
due to the higher relative intensities of the vortices inside
the deeper reentrant zones, when compared with the in-
tensities of the correspondent flow structures at low
Reynolds conditions.

The usual approach to describe single-phase fluid flow in
irregular media (e.g., porous materials and fractures) is to
characterize the system in terms of a macroscopic index,
namely, the permeability K, which relates the average fluid
velocity V with the pressure drop �P measured across the
system V � �K�P=�L. Figure 4(b) (open circles) shows
that the permeability of the rough channel for low and
moderate Re remains essentially constant at a value that
is slightly above but very close to the reference perme-
ability of a two-dimensional smooth channel, namely,
(K=K0 ’ 1), with K0 � h2=12 [10]. Above a transition
point at Re ’ 10, the change in permeability reflects
the onset of convective effects in the flow and, therefore,
the sensitivity of the system to inertial nonlinearities.
Surprisingly, one observes that, instead of decreasing
with Re (i.e., a behavior that is typical of disordered porous
media), the permeability of the SKC substantially in-
creases. Moreover, as shown in Fig. 4(b), the higher the
generation of the SKC, the higher is the permeability of the
channel for a fixed value of Re above the transition. These
results show that the screening effect of the hierarchical
SKC geometry on the flow can be understood in terms of a

reduction in the effective nonslip solid-fluid interface. In
other words, we can imagine that each vortex present in a
given generation of the SKC is, in fact, replacing one or a
set of highly dissipative (nonslip) wall elements of SKCs of
lower generations.

Next we study the fluid flow through a rough channel
whose walls are composed of 10 successive and distinct
realizations of the random Koch curve (RKC) of the third
generation. Interestingly, the results shown in Fig. 4(a)
(stars) indicate that the active length La of the wall stress
calculated for the entire irregular interface geometry at low
values of Re, La=L ’ 0:46, is not substantially different
from the SKC case, where La=L � 0:55. In Fig. 5, we
show that the ratio La=L calculated individually for each of
the 10 wall subsets composing the rough channel does not
vary significantly from one unit to another. This is a rather
unexpected behavior, especially if we consider the com-
plexity of the different geometries involved (see Fig. 5). A
similar effect has been observed for the purely Laplacian
problem in a random geometry [5]. As depicted in
Fig. 4(a), by increasing the Reynolds number, the departure
from Stokes flow due to convection at Re ’ 10 results
initially in the decrease of La=L (calculated over the entire
surface) down to a minimum of approximately 0.25 at Re ’
200. This behavior indicates the presence of long-range
flow correlations imposed by inertia among successive
wall subsets. More specifically, due to the randomness of
these interface units, we can observe either ‘‘inward’’ (e.g.,
the wall subsets 2, 3, 4, 5, 6, and 8 in Fig. 5) or ‘‘outward’’
protuberances (e.g., the wall subsets 1, 7, 9, and 10 in
Fig. 5) composing the roughness of the channel. Because
of the symmetry of the system, the inward elements gen-
erate bottlenecks for flow. At high values of Re, the effect
of inertia is to induce flow separation lines between the
mainstream flow at the center of the channel and the flow
near the wall, which can be as large as the largest distance
between two consecutive bottlenecks. These exceedingly
large ‘‘stagnation regions’’ are responsible for the initial
decrease in the active length. If we increase the Reynolds
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FIG. 4. (a) Semilog plot showing the dependence of the active
length La on the Reynolds number Re for the (symmetrical)
square Koch channel (empty circles) and random Koch channel
(stars). The aspect ratio is h=L � 1:0. In (b), we show the
semilog plot of the variation of the normalized permeability
with Re for the random symmetrical (stars) and shifted (triangles
down) Koch curves and the second (up triangles), third (dia-
monds), and fourth (circles) generations of the (symmetrical)
square Koch channel.
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FIG. 5. The active length La for each of the 10 wall subsets
composing the entire geometry of the (symmetrical) random
Koch curve channel shown at the top. The dashed lines indicate
the boundaries between consecutive subsets, as numbered below.
The fluid flows from left to right at Re � 0:1.
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number even more, the relative intensities of the vortices in
these regions start to increase. As in the case of the SKC
channel, La=L starts to increase due to a better distribution
of shear stress near the wall.

In Fig. 4(b), we show the variation with Re of the
permeability for the RKC channel (stars). In this case, we
also observe a transition from linear (constant K) to non-
linear behavior that is typical of experiments with flow
through real porous media and fractures [11]. Contrary to
the results obtained for the SKC channel, however, the
value of K calculated for low Re values is significantly
different and smaller than the reference value K0 of the
corresponding smooth channel (K=K0 ’ 0:6). Once more,
this is a consequence of the presence of several bottlenecks
in the channel, which drastically reduce the effective space
for flow. At high Reynolds, this difference is amplified due
to inertial effects.

It is also important to understand the effect on the flow of
the channel symmetry and aspect ratio h=L. Here the
symmetry is broken by applying a longitudinal shift (x
direction) of magnitude �x=L to one of the channel walls.
In the case of the SKC channel, each wall interface is
composed of three consecutive third-generation prefractal
units. As shown in Fig. 6, the effect of the longitudinal shift
is to generally decrease the permeability of the channel. By
increasing �x=L for a small aspect ratio h=L � 0:25, we
observe that a minimum in K=K0 located right after the
transition point Re ’ 10 becomes more pronounced. As a
consequence, the original behavior observed in the sym-
metrical case, where the permeability tends to increase at
higher Re numbers, is significantly attenuated. A similar
tendency can be observed for the case of the RKC geome-
try [see Fig. 4(b)]. Compared to the symmetrical case, the

presence of a longitudinal shift between the walls leads to a
decrease in permeability at high Reynolds numbers. The
results shown in the inset in Fig. 6 indicate that K=K0

generally decreases with h=L. Moreover, the relative
change in behavior between low and high Re numbers is
substantially affected by this parameter. As previously
observed, the permeability increases monotonically with
Reynolds for h=L � 1:0 above the transition point Re ’
10. While this behavior is still valid for h=L � 0:5, but in
an attenuated form, a minimum in K=K0 that is below the
Darcy permeability level can be clearly observed for
h=L � 0:25.

In summary, we have investigated the effect of determi-
nistic and random roughness of 2D channels on local as
well as macroscopic flow properties. At low Reynolds
numbers, there exists a close analogy between the spatial
distribution of the local stress on the rough walls and the
distribution of charge resulting from the solutions of the
Laplace equation in the same geometry. For a fractal
deterministic roughness, a surprising increase of the per-
meability of symmetrical channels with Reynolds is ob-
served. Moreover, this effect is augmented by increasing
the fractal generation of the channel wall.
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FIG. 6. Semilog plot of the normalized permeability against
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units. The inset reveals the effect of h=L on the curves K=K0

versus Re for channels with walls shifted by �x=L � 0:5.
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