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The toposcopy, a new tool to probe the geometry of an irregular
interface by measuring its transfer impedance
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Abstract – Semi-permeable interfaces of irregular geometry accessed by diffusion exhibit complex
transfer properties. In particular, their transfer impedance is the non-trivial result of the interplay
between their geometry and their physical properties. In this paper, we present a new method
that we call toposcopy. Its aim is to solve the “inverse impedance spectroscopy problem”, namely
to retrieve the geometrical features of an irregular interface from a “black box” measurement of
its transfer impedance only. From previous studies, one knows that all the possible information
about the geometry of an interface that can be extracted from a measurement of its impedance
consists in its harmonic geometrical spectrum, a set of spectral characteristics of the Dirichlet-
to-Neumann operator of the same interface. Here, we first describe how the toposcopy technique
permits to retrieve the main components of the harmonic geometrical spectrum and to deduce from
them characteristic geometrical features of the interface. The toposcopy is then tested numerically
for several irregular interfaces of either simple or complex shape. It is finally shown that this
method gives access to the characteristics lengths of these interfaces and, when these lengths are
sufficiently different, allows to separate and quantify their respective contributions to the interface
impedance.
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Introduction. – The problem of transfer across irreg-
ular interfaces driven by Laplacian fields is a fundamental
theoretical frame for systems in many different fields:
electrochemistry [1–3], heterogeneous catalysis [4–8],
NMR relaxation in porous media [9,10], transfer across
biological membranes [11], . . . . In each of these situa-
tions, the physical transport properties of the system
(through the bulk and across the interface) interplay in
a complicated way with the geometrical characteristics
of the interface, to give rise to a non-trivial macroscopic
response. A number of theoretical [12–18], numeri-
cal [19–21] and experimental [22,23] works have been
devoted this problem. The most common physical repre-
sentation one can think of is the following: a “species”
characterized by its concentration C is emitted from
a distant source and diffuses into the bulk towards a
“semi-permeable” interface, on which it disappears at a
given rate (either by transfering across this interface, or
by reacting in the case of a catalytic cell). Such a model

can be put into the simple mathematical frame



C =C0 on the source,

∆C = 0 in the bulk,

∂C

∂n
=
C

Λ
at the surface,

(1)

∂/∂n being the normal derivative at the surface directed
towards the bulk. Apart from the characteristics of the
system geometry, Λ is the only parameter entering the
equations. It is homogeneous to a length and is the ratio
between the bulk diffusion coefficient D and the surface
permeability W : Λ =D/W . In other words, in this
simplified scheme of the diffusive transport across a semi-
permeable interface, all the physical information about
the system is condensed into the ratio of both transport
parameters D and W . Knowing the geometry of the
interface, one then should be able to deduce the transport
properties of the system. This problem has been tackled
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first by introducing the discrete Brownian self-transport
operator [12,15,17]. Recently, a complete theoretical
response has been proposed in terms of the spectral
properties of the Dirichlet-to-Neumann operator [18,19].
More difficult is the inverse problem that we address in

this paper: knowing the response of a system for a large
range of Λ, what information can be retrieved about the
geometry of the interface? In a nutshell, the net result
is the following: the information that can be extracted
from such a macroscopic measurement can be summed
up into a harmonic geometrical spectrum of the interface.
This spectrum is directly related to the characteristic sizes
of the interface accessible to diffusing particles.

The continuous approach. – In this section, we
briefly recall the main results of the continuous approach
based on the Dirichlet-to-Neumann operator [18]. For a
given diffusional cell Ω, this operator (calledM) associates
to a function f defined on the working interface ∂Ω the
normal derivative ∂u/∂n of the harmonic function u such
that u= f on ∂Ω. In physical terms, the function f can
be thought of as an initial distribution of “species” on
the working interface that diffuse in the bulk Ω and
then come back to the interface. In the vocabulary of
electrochemistry, one can consider the working interface
∂Ω with a given electric charge distribution f , and the
application of the operator M to f provides the density
of the induced electric field. The Dirichlet-to-Neumann
operator is known to be a pseudo-differential self-adjoint
operator with discrete positive spectrum and smooth
eigenfunctions forming a complete basis of L2(∂Ω) [24,25].
It has been shown that, given a domain Ω, its Dirichlet-

to-Neumann operator entirely determines the macroscopic
response of the working interface. In particular, the flux
density across the interface, φΛ = ∂C/∂n, can be written
as [18]

φΛ = (I +ΛM)−1φ0,
where the flux density φ0(s) corresponds to the solution
for a perfectly absorbing interface (Λ= 0), and s is the
curvilinear abscissa along the interface. The diffusion
admittance Y (Λ) of the cell is proportional to the total
flux ΦΛ through the working interface:

Y (Λ) =ΦΛ/C0,

with

ΦΛ =

∫
interface

φΛ(s) ds.

It can be exactly written as an infinite sum, each term
corresponding to the contribution of one eigenvector Vα
of the Dirichlet-to-Neumann operatorM:

Y (Λ) =
1

DC0

∑
α

Fα

µα(1+Λµα)
(2)

in which the µα are the eigenvalues of the operator and the
Fα are the decomposition weights of the function φ0(s) on

the eigenvectors:

Fα =
(φ0 ·Vα)(φ0 ·V∗α)
(φ0 · 1)(φ0 · 1) .

The µα are homogeneous to the inverse of a length, while
the Fα are homogeneous to the inverse of an area (in 3D).
The admittance Y (Λ) embeds into one single measure-

ment both the bulk transport towards the interface and
the surface transfer across the same interface. In the case
of a perfectly absorbing interface (Λ= 0), the admittance
is solely determined by the bulk transport. The added
contribution of the transfer across the working interface
can be characterized by the difference between the total
fluxes Φ0 and ΦΛ: Z(Λ) =C0(Φ0−ΦΛ)/Φ20. This quan-
tity has been shown to be an intrinsic characteristic of
the interface and is called its effective impedance [15]. Its
spectral decomposition can be deduced from (2):

Z(Λ) =
Λ

D

∑
α

Fα

(1+Λµα)
. (3)

The explicit formula (3) allows one to infer the exact
dependence of the experimental quantity Z(Λ) as a func-
tion of the transport parameters of the problem (Λ and
D). Moreover, the influence of the geometrical irregularity
is totally captured through the spectral characteristics µα
and Fα of the Dirichlet-to-Neumann operator M. What-
ever the nature of the transport phenomena (stationary
diffusion, electrical transport, molecular diffusion in
heterogeneous catalysis), the geometrical irregularity of
the interface can be taken into account through a set
of real positive numbers {µα, Fα}. This set, which only
depends on the geometry of the interface, is called the
harmonic geometrical spectrum of the interface [18].
It is useful to recall several known properties of the

harmonic geometrical spectrum [19]. When the source is
placed at infinity, the first eigenmode V0 of the Dirichlet-
to-Neumann operator is constant. The other eigenmodes
Vα are orthogonal to V0 and “oscillate” around zero
with some “spatial frequencies” that increase with µα.
The contribution of each eigenmode to the admittance
is proportional to Fα, as defined before. The relative
(dimensionless) contributions are

fα =
Fα∑
α Fα

. (4)

For each contributing eigenmode, the eigenvalue µα
(homogeneous to the inverse of a length) corresponds
to one typical length scale of variation of the harmonic
measure density while fα gives the intensity of this vari-
ation. This is very similar to a “Fourier transform” of
the harmonic measure, the basis being here the eigen-
basis of the operator M . In other words, each geometri-
cal irregularity of the interface generates eigenmodes that
contribute to the admittance, and the eigenvalues associ-
ated to these eigenmodes are directly related to the typical
sizes of the irregularity of the interface.
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This suggests a method that could extract from
a measurement of the effective impedance Z(Λ) the
harmonic geometrical spectrum {µα, Fα} by using eq. (3).
We will now present this method that we call “toposcopy”.

The toposcopy: mathematical foundation. – The
aim of the toposcopy is to extract the geometrical features
of an unknown semi-permeable interface using the exper-
imental measurements of its macroscopic response. Since,
for a given interface, the harmonic geometrical spectrum
entirely determines the macroscopic response of the
system, this aim can be achieved in two steps:

– First, one solves the inverse problem that consists
in finding the harmonic geometrical spectrum of an
unknown interface from the macroscopic response of
the system. More precisely, assuming that one can
measure the impedance Z(Λ) for a certain range of
values of Λ with sufficiently high accuracy, it means
to invert eq. (3).

– Second, one has to interpret the harmonic geometrical
spectrum in terms of the geometrical features of the
interface.

In what follows, we focus our attention on the inverse
problem. One can write the expression (3) as

Z(Λ) =
1

D

∞∫

0

dλ e−λ/Λ ζ(λ), (5)

with

ζ(λ) =
∑
α

Fα e
−λµα . (6)

This corresponds in fact to a Laplace transform repre-
sentation of the effective impedance Z considered as a
function of 1/Λ. But instead of the harmonic geometrical
spectrum which is a Dirac comb, we now manipulate a
function ζ(λ) which is infinitely differentiable for λ> 0.
The uniqueness of the inverse Laplace transform thus
provides a way to find the functional representation
ζ(λ) of the harmonic geometrical spectrum from a
measurement of the macroscopic response of the system.
In principle, it should be possible to compute the whole

harmonic geometrical spectrum {µα, Fα} containing
all the information on the geometry which may be
available from such an experiment. However, one should
take into account a finite accuracy of the experimental
measurements, errors due to the numerical inversion
of the Laplace transform, difficulties to determine the
spectral characteristics µα and Fα from function ζ(λ),
and the a priori infinite number of eigenmodes. In what
follows, we address these issues in detail.
The first simplification can be achieved by assuming

the existence of a minimal cut-off � of the geometrical
irregularity. The introduction of the minimal cut-off is
very reasonable and even necessary from the physical

point of view: the molecular diffusion governed by the
Laplace equation can be used only if the mean free
path of diffusing particles is sufficiently smaller than
the geometrical features of the boundary. In this case, the
harmonic measure density φh0 (s) becomes smooth at scales
smaller than �, and its projection on the high-frequency
oscillating eigenfunctions Vα(s) vanishes. Thus, only a
finite number of eigenmodes has to be taken into account
in the inversion procedure which reduces the infinite sum
in eq. (5) to a finite sum over the contributing modes.
One should note that, if the mean free path is much

larger that the geometrical irregularities of the boundary,
in particular in heterogeneous catalysis, the system enters
another regime called Knudsen diffusion [26,27]. In this
situation, the molecules may enter deeply into narrow
pores and their landing probabilities on the interface
do not correspond anymore to the harmonic measure.
The inversion method proposed in this paper would then
fail in this case to detect the geometrical irregularities
significantly smaller than the mean free path.
As will be shown below, the toposcopy is not intended

to distinguish different features of the interface of similar
sizes. The aim is more to determine the respective
contributions from sizes of different orders of magnitude
to the macroscopic response. In this frame, the second
simplification is to assume the existence of separated
characteristic scales in the interface (such as, e.g., in self-
similar (pre)fractal boundaries). In this case, it has been
shown that only a few eigenmodes significantly contribute
to the macroscopic response of the system [17,19]. More-
over, the associated eigenvalues correspond to the inverses
of characteristic scales of the interface. In the general
case of any interface, this assumption will correspond
to regrouping the contributions of eigenmodes with
eigenvalues relatively close to each other.
The inversion technique consists in inverting the

measured impedance curve Z(Λ) (e.g., by using Gaver-
Wynn-Rho or Talbot algorithms [28]) and looking for
ζ(λ) as a finite sum of exponentials with well-separated
parameters µα [29]. This procedure will give as a result a
sequence {µ̂k, F̂k} which is an approximate solution of the
original problem (after cut-off and possible regrouping of
the contributing eigenmodes).
To summarize, the toposcopy extracts from a direct

measurement of the effective impedance curve the
approximate harmonic geometrical spectrum {µ̂k, F̂k}.
The eigenvalues µ̂k are the inverses of the characteristic
variation lengths of the harmonic measure on the inter-
face. These characteristic lengths are in direct correlation
with the characteristic scales of the interface itself. In
turn, the factors F̂k represent the relative contributions
of these scales to the macroscopic impedance.

Numerical validation. – In order to check the
applicability of the toposcopy, we consider various inter-
faces: simple curves with one or two different irregularities,
and deterministic and random Koch curves.
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Fig. 1: Three simples curves to test the toposcopy: (a) a small
pore; (b) a large pore (nine times larger than “a”); (c) a large
pore “decorated” by small pores. Diffusing particles arrive
from an infinitely distant source located above. The dotted
vertical lines (with periodic boundary condition) delimit the
bulk region.

For each interface, we perform the following computa-
tion:

– First, the boundary element method is used to
compute the spectral characteristics of the Dirichlet-
to-Neumann operator, allowing one to express the
effective impedance Z(Λ) according to eq. (3).

– Second, we apply the toposcopy technique to extract
from the effective impedance curve Z(Λ) alone the
approximate values of µ̂k and F̂k. This is realized
without any a priori knowledge of the interface. Thus,
the impedance curve could as well come from a real
experiment providing the macroscopic response of a
system with “unknown” geometry.

– Finally, one compares the obtained values of µ̂k and
F̂k with the initial harmonic geometrical spectrum
{µα, Fα} and the typical sizes of the interface irregu-
larities.

Interfaces with two characteristic pore sizes. We first
test the toposcopy technique on three simple interfaces
in 2D. These interfaces are represented in fig. 1: first, a
square pore; second, its copy magnified by a factor 9; third,
the same copy but now “decorated” with smaller square
pores analog to the first interface, such that the average
width of the large pore is still 9�. While the first two
curves are intended to represent “elementary” (one-scale)
geometrical features, the latter curve has irregularities at
two different scales.
Figure 2 presents the effective impedances of the three

interfaces as a function of the parameter Λ. One can notice
that, from the impedance curve only, the interfaces (b) and
(c) may be barely distinguishable within the measurement
errors. Figure 3 shows the harmonic geometrical spectra
{µα, Fα} extracted using the toposcopy technique.
In all cases, the lowest eigenvalue (which is the closest

to 0) corresponds to the inverse of the effective distance
between the interface and the distant source [18]. In our
simulations, the source was placed at infinity, yielding
µ0 = 0. The contribution F0 of this eigenvalue is equal to
the inverse of the total perimeter of the interface. Since
these data do not carry any information about the typical
sizes of the interface irregularities, we will from now only
consider the other contributions.
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Fig. 2: (Color online). The effective impedance for three simples
curves shown in fig. 1.
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Fig. 3: (Color online). The harmonic geometrical spectra for
three simples curves shown in fig. 1. To present the eigenvalue
µ0 = 0 at logarithmic scale, the abscissa axis is interrupted.
The contributing peaks computed by the toposcopy technique
are shown below each harmonic geometrical spectrum. For the
curves (a) and (b), the toposcopy technique retrieves the mean
contributing peaks with a very high accuracy (the recovered
peaks are barely distinguishable from the original ones). In the
case of the “decorated” curve (c), one can also distinguish the
peaks corresponding to the two typical lengths of the interface.

In the two first cases (a) and (b), one observes only one
contributing peak located at µa1 � 1.038 for the small pore
(a) and at µb1 � 0.115 for the large pore (b) (the eigenvalues
are expressed in units of �−1, � being the width of the
small pore (a)). The inverses of µa1 and µ

b
1 (respectively,

0.96 and 8.67) then provide the typical irregularity sizes
of both pores, as “seen” by diffusing particles.
The third curve represents the pore (b) “decorated” by

the small pores (a). One now observes two contributing
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Fig. 4: The test geometries: third generation of the determin-
istic (left) and random (right) Koch curves.
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Fig. 5: (Color online). Top: the harmonic geometrical spectrum
of the third generation of the deterministic quadratic Koch
curve (the zeroth eigenmode with µ0 = 0 is not present on
the log-scale). The dotted lines show the contributing peaks
determined by the toposcopy technique. Bottom: the harmonic
geometrical spectrum of the third generation of the random
Koch curve. The dotted lines show the contributing peaks
determined by the toposcopy technique.

peaks at µc1 � 0.055 and µc2 � 0.786 which lead, respec-
tively, to the lengths 18.18 and 1.27. The smaller length
corresponds to the size of the small pore (a), while the
larger corresponds to twice the size of the pore (b). This
factor 2 is the ratio between the perimeters of the inter-
faces (c) and (b).
The toposcopy technique thus allows in this case to

identify and separate the characteristic length scales of the
interface, which were “hidden” in the impedance curve.

Deterministic Koch boundaries. Prefractal bound-
aries, which exhibit irregularity at various scales, can be
used as test geometries for the toposcopy technique. We
first consider the deterministic quadratic Koch curve of
fractal dimension Df = ln 5/ ln 3 (the third generation of
this curve is shown on the left of fig. 4).
Numerical simulations carried out in [17,19] show that

the harmonic geometrical spectrum of the generation g of
this curve presents mainly (g+1) eigenmodes contributing
to the impedance, while the contribution of the other
eigenmodes can be neglected. For example, this spectrum
for the third generation is drawn in fig. 5.

One can now compare the exact harmonic geometrical
spectrum {µα, Fα} to the set {µ̂α, F̂α} deduced from
the impedance curve by using the toposcopy technique
(fig. 5). In both sets, the contribution of the lowest
eigenmode µ0 = 0 corresponds to the ratio between the
diameter L of the interface and its developed perimeter.
The toposcopy gives the exact value 0.216 = (3/5)3. The
exact harmonic geometrical spectrum presents three other
main peaks surrounded by a collection of eigenmodes
of much smaller contributions. The application of the
toposcopy technique to the impedance response allows
one to retrieve the same three peaks. Their intensities are
comparable but not identical to the original intensities
of the harmonic geometrical spectrum, because the peaks
deduced from the toposcopy also contain the contributions
of the surrounding eigenmodes. The toposcopy technique
produces two spurious peaks (at µ� 50 and µ� 136)
which in fact gather the contributions of all high-frequency
eigenmodes. The corresponding lengths µ−1 of the three
main peaks (µ= 0.65, µ= 3.44, and µ= 19.67) are 1.54,
0.29, 0.05, respectively. This shows that the interface
presents characteristic irregularities at each of these
scales.
Thus, the toposcopy technique allows one to extract the

harmonic geometrical spectrum, from which one can then
recover the characteristic scales of the geometry and their
relative weights.
In order to check the quality of this technique, one can

now reconstruct the effective impedance Z(Λ) by using
the data {µ̂k, F̂k} computed by toposcopy. The maximal
relative error is found to be of the order of 10−3.

Random Koch boundaries. The deterministic Koch
boundaries provide an example of an irregular inter-
face with well-defined characteristic scales. However, in
general, real interfaces do not present a perfect hierarchi-
cal structure. In order to study a more realistic case, one
considers random Koch boundaries (one realization of this
curve is shown on the right of fig. 4).
Using the same approach as for the previous interfaces,

one determines from the impedance response the values
of µ̂k and F̂k (fig. 5). Once again, the position and the
contribution of the lowest eigenmode (µ0 = 0) is found
with good accuracy. The first eigenmode with nonzero
eigenvalue µ is also extracted with a very good preci-
sion. For the higher frequency eigenmodes, one can see
that the toposcopy technique gives a simplified harmonic
geometrical spectrum by regrouping modes of comparable
eigenvalues. Thus, this technique is not meant to sepa-
rate very similar characteristic sizes of the interface, as
for instance two characteristics lengths in a ratio 2 : 1.
This is not surprising since the impedance responses Z(Λ)
of deterministic and random prefractal interfaces of the
same fractal dimension and same generation are known
to be almost indistinguishable [30]. In a few words, the
toposcopy technique is really a tool designed to deduce
from impedance measurements the characteristic variation

40008-p5



M. Filoche and D. S. Grebenkov

lengths of the harmonic measure on the interface and from
them, for each order of magnitude, the typical sizes of
the interface and their relative contributions to the over-
all transfer response.
It is interesting to note that, although their impedance

curves are very similar, the harmonic geometrical spectra
of both deterministic and random interfaces extracted by
toposcopy are not identical. In that sense, the toposcopy,
which is mathematically the natural way to solve the
inverse problem, acts as a “magnifying glass” by enhancing
the tiny differences between the impedance curves.

Conclusion. – In this paper, we addressed the
inverse problem consisting in retrieving, from impedance
measurements, the geometry of an interface accessed by a
Laplacian current. More precisely, the main question was:
“Which information about the geometrical features of the
interface can be extracted from experimental measure-
ments of the macroscopic response of the system?” One
knows from previous works that this information is all
contained in the harmonic geometrical spectrum {µα, Fα}
of the interface, namely the spectral decomposition of the
harmonic measure onto the eigenbasis of the Dirichlet-
to-Neumann operator. In theory, the absolute knowledge
of the impedance response should allow a complete
determination of this harmonic geometrical spectrum.
The inversion technique presented here, called topo-

scopy, allows in fact to identify the orders of magnitude
of the main contributing eigenvalues. In turn, these eigen-
values correspond to the typical feature sizes of the inter-
face. For interfaces with precisely defined and separated
length scales (as for instance a deterministic prefractal
interface), it has been shown that the toposcopy technique
even retrieves accurately the exact positions and ampli-
tudes of the main contributing peaks. In practical appli-
cations such as in electrochemistry for which a large range
of parameter Λ can be explored by varying the frequency
of the applied electric potential, the toposcopy technique
would extract information for the characteristic lengths of
the interface. In other fields, the exploration range would
be more limited, but the toposcopy could still be used to
extract information for this reduced range of lengths.
In summary, this technique permits, at least in theory,

to deduce from a macroscopic measurement qualitative
and quantitative characteristics of a transfer interface.
It may have direct applications in systems driven by
a Laplacian field (diffusion, NMR, electrochemistry,
catalysis), for which the transfer interface at work may
be difficult to observe visually.
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