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We investigate the process of progressive passivation of irregular
surfaces accessed by diffusion. More precisely, we quantify
through numerical simulations how the activity of the von Koch
surface is gradually transferred from its initially active (or absorb-
ing) regions to its less accessible regions. We show that in three
dimensions, in sharp contrast with the two-dimensional case, the
size of the successive active zones steadily decreases during the
passivation process, even though a large quantity of alive surface
remains available. As a consequence, in three dimensions, the
evolution of the efficiency of a surface accessed by diffusion (i.e.,
by a Laplacian field) can exhibit long-tail behaviors that, unlike in
two dimensions, strongly depend on its specific geometry. This fact
has important implications for the design of heterogeneous cata-
lysts under deactivation conditions, for the performance of heat
exchangers subjected to passivation by ‘‘fouling,’’ and for changes
in the behavior of the digestive system, where the activity of the
absorbing intestinal membrane can be substantially affected by
inflammatory disorders.

fractals � Laplace � deactivation � fouling

The passivation of surfaces working under diffusion-limited
conditions is a general phenomenon that appears in many

natural or industrial systems ranging from catalysis (1) to heat
transfer (2), electrochemistry (3), and physiology (4). Although
microscopically different, all of these processes share a single
mathematical frame, namely the properties of the solutions of
Laplace’s equation in a domain with irregular boundaries. In
such situations, it is not only Laplacian screening that creates a
strongly inhomogeneous active surface, but part of the surface
activity may be progressively inhibited by phenomena bearing
different names: passivation, fouling, poisoning, or restricted
absorption, depending on the field. The cause for surface
deterioration may be external, for example poisoning by an
unwanted species or inflammation due to an external agent. It
may be internal when the surface properties deteriorate because
of its very activity. This is the case for parallel or serial fouling
in catalysis.

In many of these situations, the surface is accessed by diffusion
both for activity and deterioration. At the same time, large
surface-to-volume ratios are needed to obtain enough macro-
scopic activity, which means that in all of these systems, very
irregular or corrugated surfaces are present. This is the situation
discussed here in a case where the surface is very irregular and
the passivation is a direct consequence of the activity.

The performance of an interface accessed by diffusion is
determined by the arrival probabilities on this interface. Quite
surprisingly, very little is known about the distribution of the
arrival probabilities of diffusing particles on a complex surface
in three dimensions (5, 6), one of the reasons being the extreme
difficulty of the numerical studies. The question of what defines
the morphology of the ‘‘active’’ region is therefore mostly an
open problem. Moreover, the effect of any passivation or
poisoning phenomena will be to modify the physical properties
of the surface, preventing the arriving particles from reacting
and making them resume their diffusion in the surrounding bulk.
The question of interest here is how the size of the region where
most of the particles finally react or are absorbed will evolve, as

the passivation process gradually deactivates the initial alive
interface. Let us first list a few examples where this issue is
relevant.

In humans, as in other mammals, the transfer of nutrients from
the digestive system to the blood is mostly realized in the small
intestine in which the major transport mechanisms are passive
diffusion and absorption (7). Moreover, the anatomy of the small
intestine exhibits a fractal-like geometry, with finger-like struc-
tures at many different scales of magnification: f lexures, plicae,
villi, and microvilli (8). In this type of geometry, the most
exposed parts of the intestinal membrane are easily accessed by
diffusion and thus are the first to be altered by any inflammatory
disorder or any chemical species that would diffuse in the
digestive system. As a matter of fact, it is well known that a wide
range of gastrointestinal disorders are associated with abnormal
intestinal permeability (9).

Another important example of passivation is the phenomenon
known as ‘‘fouling’’ (parallel or serial) in heterogeneous catalysis
(10). During catalysis, this phenomenon consists in a secondary
and parasitic reaction that passivates the catalyst in the regions
that are active and eventually eliminates the entire activity of
these regions. Laplacian screening in catalyst grains of very
irregular geometry leads to active regions representing only a
fraction of the total catalytic surface. The time evolution of the
overall catalytic efficiency will then depend in a complex way on
the accessibility of the more remote regions of the interface.

Diffusion also plays an important role in heat transfer. An
enhanced efficiency of heat exchangers is most often achieved by
building interfaces of very large surface, and fractal geometry is
a good candidate for the design of such interfaces (11, 12). But
the functioning of these interfaces can be substantially altered by
a fouling process, namely the scale deposition, in which crystal-
line deposits of very low thermal conductivity locally reduce the
heat transfer (13).

However, passivation is not always an unwanted phenomenon.
For instance in electrochemistry, passivation is used to achieve
a uniform deposition of copper atoms diffusing onto a rough
surface. Once again, because of Laplacian screening, the region
where most of the copper atoms arrive represents only a limited
fraction of the total surface, which would normally lead to a
nonuniform deposition (3). To avoid this, an inhibitor can be
deposited on the first layer of copper atoms via an electrochem-
ical reaction that is driven by an electric potential that also obeys
Laplace’s equation. The inhibitor-clad region is then passivated
for the deposition of copper atoms that can now reach into the
holes of the rough surface (14).

In the steady-state regime, each of these systems shares the
same mathematical frame in which there is a driving Laplacian
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field in the bulk adjacent to an irregular reactive interface.
Passivation, disease, aging, or fouling will likely start by dam-
aging the most accessible and active part of the interface, so the
question naturally arises: what happens after the initially active
regions have been passivated? Here, we couch the answer for this
question in terms of the catalytic problem. After deactivation,
most of the diffusing particles hit a now passivated zone and are
reflected, resuming their diffusion in the bulk to eventually react
on an alive but deeper region of the catalytic surface. Conse-
quently, regions that were initially poorly active become fully
active until they are in turn passivated. This goes on and on until,
finally, the whole catalytic interface is deactivated and the
catalytic process stops. The question under scrutiny here is to
determine and compare in two dimensions and three dimensions
the evolution of the active zone, defined as the region of the
interface in which ‘‘most’’ of the reaction occurs (15), and more
precisely the evolution of its size.

In mathematical terms, the distribution of first arrival for
Brownian particles onto a convoluted surface is called the
‘‘harmonic measure.’’ In two dimensions, a preliminary study
(16) has shown that the size of the active zone remains almost
constant throughout the passivation process, until the interface
(which is in this case a corrugated line) is totally passivated. The
argument for this result, first indicated by numerical simulations,
is based on a conjectural extension of Makarov’s theorem (17,
18). For 2D Laplacian systems subject to Dirichlet boundary
conditions, this theorem essentially states that whatever the
shape (perimeter) of an interface, the size of the region where
most of the activity takes place (the active zone) is of the order
of the overall size L of the system.

The passivation process can be described as follows. At the
beginning of the process, the alive sites are supposed to be
uniformly distributed over the whole irregular surface. We
suppose that the probability of reaction is equal to 1. This infinite
reaction rate corresponds to a homogeneous Dirichlet boundary
condition on the concentration of reactant molecules: C � 0. On
such an interface, the activity, although existing in principle
everywhere, is distributed in a very uneven manner because of
Laplacian screening. One may then define an ‘‘active zone’’ as
the smallest part of the interface carrying a given (large) fraction
p of the activity. In this article, p will be arbitrarily chosen to be
equal to 80%. Our results remain qualitatively valid for different
values of p. The passivation process is then discretized and
divided into the following steps (16).

Y At first, the entire interface is alive. The distribution of arrival
probabilities at the interface is calculated by a random-walk
algorithm.

Y The active region of the interface, which is only a fraction of
the alive interface, is determined. The activity is in this case
proportional to the harmonic measure density on the inter-
face.

Y This first active region is passivated. In mathematical terms, it
would correspond to a particle concentration obeying Neu-
mann boundary condition. Physically, it means that when a
particle now hits a site belonging to this passivated region, it
is reflected back and resumes its bulk diffusion until it reaches
the regions that are still alive. In other words, this passivation
process locally transforms a Dirichlet boundary condition into
a Neumann boundary condition. The remaining alive inter-
face thus consists in the former alive interface minus the newly
passivated region.

Y The new distribution of arrival probabilities is now computed
using the new boundary condition (reflecting sites in the
former active region).

Y A new active region is determined, which is a subset of the
remaining alive interface (the nonpassivated boundary). This
new active region will be in turn passivated, and so on.

This passivation process thus generates at each iteration a new
active region. All of these regions are different subsets of the
interface. The whole interface can thus be decomposed as a sum
of successive and disjoint active regions.

In what follows, we study the passivation of deterministic cubic
Koch surfaces and quadratic Koch curves at different genera-
tions (Figs. 1 and 2). This particular choice does not reduce the
generality of this work as randomness plays little role in the
properties of diffusive transfer across irregular boundaries.
Indeed, very different reactive interfaces accessed by diffusion,
whether deterministic or random, reproduce almost the same
response as long as their essential geometrical parameters
(fractal dimension, width, and perimeter) are the same (19). This
property plays a very important role because it can be used to
generalize the results obtained for deterministic interfaces to
disordered or random interfaces. As we show next, the choice of
deterministic fractals also allowed us to develop and use an
efficient technique (detailed in Methods) to compute the landing
probabilities of random walkers onto a partially passivated
deterministic fractal surface of fifth generation, which would
have been almost impossible in the case of any disordered or
random interface of comparable complexity.

Results
The combined use of two algorithms (described later in the
article) has permitted us to study the passivation of a determin-
istic square Koch curve (two dimensions) up to the seventh
generation and of a cubic Koch surface (three dimensions) up to
the fifth generation, which is to our knowledge the most complex
structure studied numerically until now for this type of problem.

Fig. 1. Second generation of a prefractal surface based on the cubic Koch
surface. The particles arrive from a distant source located far under the
surface. The results presented in this study were computed up to the fifth-
generation surface.

Fig. 2. Schematic view of the successive active then passivated regions. The
diffusing particles are coming from below. The first active region is in red and
has a length La. After the first step of the passivation process, the boundary
condition on this region is set to Neumann, allowing a new region (in green)
to become active. This region will be in turn passivated and so on, until the
whole developed surface is passivated. In two dimensions, the active length La

remains almost constant from one iteration to the next, until the entire
surface is passivated.

Filoche et al. PNAS � June 3, 2008 � vol. 105 � no. 22 � 7637

A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S



One can take note visually of the complexity of the 3D surface
and the evolution of the active zone in Fig. 3.

In two dimensions, the active region has approximately a con-
stant length La at each step of the process, as schematically
indicated in Fig. 2. As one can see in Fig. 4, this result is confirmed
by numerical simulations for both the fourth and seventh genera-
tions. The observed oscillations can be attributed to the discrete
scaling of the deterministic interface. Moreover, it is known from
previous studies that the size of the active region is of the order of
the width of the interface (16, 17). This implies that the number of
passivation steps before the whole interface is deactivated should be
of the order of the ratio between the total developed perimeter and
the size of the interface. Quantitatively, the perimeter of the fourth
generation (resp. seventh generation) of the quadratic Koch curve
is �8 times (resp. 36 times) larger than the size of the system [more
precisely, (5/3)4 � 7.7 for the fourth generation and (5/3)7 � 35.7
for the seventh generation]. Hence, one can see in Fig. 2 that the
length of the active region becomes definitively smaller than 50%
of the width of the cell after 8 and 37 passivation iterations, for the

fourth and seventh generations, respectively. After that, in both
cases the size of the active region falls rapidly.

In three dimensions, the striking result is that, unlike in two
dimensions, the surface of the active region Sa is not constant
during the passivation process, but gradually decreases (as shown
in Fig. 5 for P � 80%). Even more, for the fifth generation, the
developed surface in our 3D simulation contains �6 times the
projected surface [(13/9)5 � 6.3], but 25 passivation iterations
are necessary to completely passivate the surface. We can
observe from Figs. 4 and 5 that there is a net discrepancy
between the 2D case and the 3D case: because of the properties
of Brownian motion in two dimensions, the passivation process
is much steadier than in three dimensions but stops much more
abruptly. The 3D dynamics, in contrast, are characterized by a
very slow decay of the size of the active zone.

To better distinguish the differences between 2D and 3D
systems in a framework with reduced f luctuations, we also plot
the evolution during the passivation process of two integral
variables, namely the remaining alive length, LR(it) � LT �
�j

itLa
j , and surface, SR(it) � ST � �j

itSa
j , for the 2D and 3D

systems, respectively. Here, ‘‘it’’ is the iteration, LT is the total
perimeter (2D system), and ST is the total surface (3D system)
of the initial absorbing interfaces of the Koch structures.

The results shown in Fig. 6a indicate that the decay of LR is
approximately linear up to the eighth and thirtieth iteration for
the fourth and seventh generations, respectively, of the Koch
fractal curve. Moreover, this linear behavior in both cases
follows very closely our theoretical prediction (the dashed lines
in Fig. 6a) based on the conjectural extension of the Makarov’s
theorem (16). This is analogous to saying that the size of the
region passivated at each step is of the order of the interface
width in two dimensions, which leads to the linear decay LR(it) �
LT � itL. Fig. 6a Inset also shows that the initial decrease in LR
(before the first oscillation in the case of the seventh-generation
Koch curve, due to the discreteness in its scaling) is compatible
with a linear type of relationship.

The passivation process follows a rather different pathway in
three dimensions. As shown in Fig. 6b, the decrease in the
remaining alive surfaces SR for the third and fifth generations of
the fractal Koch surface clearly does not obey the corresponding
constant decay law for a 3D system, namely SR(it) � ST � itS
(dashed lines in Fig. 6b). In addition, Fig. 6b Inset shows that SR

Fig. 3. Successive active regions during the passivation process of a fifth-
generation prefractal surface based on the cubic Koch surface. Diffusing
particles are coming from below and reach first mainly the blue region of the
interface. Each color in the simulation represents a set of four successive
passivated regions (dark blue corresponds to regions 1–4, light blue to 5–8,
etc.). One can see that the size of the active region gradually decreases during
the passivation process. At the end, only the dark-red regions on the tip are
active.

Fig. 4. Iterative deactivation for generations four and seven of 2D Koch
curves. The size of the active region is plotted in units of the system width (L4

or L7) at each step of the passivation process. One can see that the normalized
active length La/L remains almost constant throughout the process and is of
the order of the structure width, until the number of iterations reaches the
ratio between the perimeter of the interface and its width, LT/L. These ratios
are indicated by the vertical dashed lines. After this threshold, the passivation
process rapidly terminates.

Fig. 5. Iterative deactivation for the third and fifth generations of the cubic
Koch surface. The vertical axis represents the relative surface of the active
region Sa (in units of the projected surface of the structure, resp. S3 and S5) at
each step of the passivation process. In contrast with Fig. 4, the size of the
active region at each step regularly decreases. It takes �25 steps to passivate
almost the entire surface at of the fifth generation, whereas the total devel-
oped surface represents only 6 times the projected surface. The vertical lines
correspond to the ratio of the total developed surface (ST,3 and ST,5) on the
projected surface (S3 and S5). Note that the progressive slow decrease is very
different from the 2D case.
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decreases exponentially at the beginning of the passivation
process for both third- and fifth-generation surfaces, in sharp
contrast with the results from 2D simulations. At this point one
should add, however, that here the iteration steps do not directly
represent the real time. A more thorough analysis of the
dynamics of this process in three dimensions remains an open
problem (22).

These observations are significant, for example in the case of
catalysis. On the one hand, the necessity of a large surface within
a finite volume implies the use of very irregular surfaces. On the
other hand, in three dimensions, the diffusion admittance of a
region of typical size L scales as (D � L), whereas it is constant
in two dimensions. As a consequence, the deep parts of the
surface become more and more difficult to reach as the passi-
vated zone increases and the random walkers are more and more
prone to come back to the source. In consequence, the yield of
reaction may decrease despite the fact that active regions still
exist. In other words, for example, catalyst grains with very
irregular internal porous geometry, even when they seem to be
exhausted, may still contain a large amount of alive surface. Put
simply, the diffusion process does not allow the reactant particles
to reach efficiently the deep regions of the catalyst. In this case,
a large amount of catalyst can be wasted just because it is not
easily accessed by 3D diffusion anymore. From this point of view,
an engineered (2D � 1) geometry (with translational invariance)
would be preferable.

These results may also cast a new light on very different
systems in which diffusion plays a significant role. In the lung of
mammals, the alveolar membrane, a complex surface embedded
within the chest, is mostly accessed by diffusion. In some
pulmonary diseases that affect this membrane, the local decrease
of the membrane permeability would produce an effect similar
to passivation (23). The results presented here tend to show that,
in this case, not only might the gas transfer occur in a more distal
region of the lung, but the size of the active surface that
contributes effectively to the gas transfer could also be reduced,
leading to a further decrease of the diffusing lung capacity.

In conclusion, by taking advantage of a new numerical algo-
rithm (using the partially passivated boundary as an effective
source for reactive particles), we have been able to compute in
three dimensions the iterative passivation for high-generation
orders of the cubic Koch surface. In our study, this type of
surface is used as an example of a highly irregular geometry. In

significant contrast with the 2D case, for which a mathematical
argument permits an understanding of the evolution of the active
region, it has been shown that, in three dimensions, the size of
the active zone steadily decreases during the passivation process.
This leads to a longer tail of low activity that involves a large
portion of the sites. These results should have direct implications
for the understanding of the dynamics of complex diffusive
systems in nature.

Methods
Classical numerical techniques such as finite differences or finite elements
have strong limitations in terms of mesh size and computation time for solving
the Laplace equation near complex boundaries. For instance, if each elemen-
tary square of the cubic Koch surface is meshed with only 5 nodes on each side,
more than 9 million nodes (5 � 5 � 135) are needed to mesh the surface at the
fifth generation. This would lead to a bulk mesh of at least several hundreds
of million nodes. To overcome this difficulty, a Monte Carlo approach has been
used where the harmonic measure on the boundary is computed by launching
random walkers from a distant source and monitoring their arrival sites on the
surface. Moreover, here we use a fast random walk algorithm (20) that, in the
case of deterministic interfaces, can be greatly improved by taking advantage
of the exact scaling of the structure (21). In this algorithm, the length of each
step of the Brownian trajectory of a particle diffusing toward the Koch surface
is not constant but equal to the current distance between the particle and the
surface. The value of this distance, normally lengthy to compute, can be found
simply in the case of a deterministic self-similar structure such as the Koch
surface. The particle is considered to have hit the boundary when it ap-
proaches the Koch surface at a distance smaller than a given threshold. For a
large enough number of particles, the distribution of their arrivals on the
surface reproduces the harmonic measure and the distribution of the activity.

Although this ‘‘geometry adapted fast random walk’’ algorithm (GAFRW)
has proved to be very efficient, its direct application to a partially passivated
boundary is still not sufficient to solve the problem here. The reason is the
following: after a few iterations of the passivation process, the remaining
alive regions are highly screened. So a reactant particle launched from a
distant source has to follow a very long stochastic trajectory, with a large
number of reflections on the passivated sites of the boundary, before reaching
any potentially active region. The extremely large computational time re-
quired for further passivation iterations makes it then difficult or even im-
possible to study the whole passivation process.

This difficulty has been overcome here by using the distribution of the
activity at step n as the initial source distribution for the next step (n � 1). As
a matter of fact, the distribution of the activity at step (n � 1) is composed of
two types of particles: (i) particles arriving directly on the nonpassivated part
of the boundary (corresponding to its contribution to the initial harmonic
measure) and (ii) particles arriving after being reflected by the already passi-
vated part of the boundary up to step n. The distant source of diffusing

Fig. 6. Passivation decay in two and three dimensions. (a) Decay during the passivation process of the ratio between the remaining alive length and the initial
total perimeter, LR/LT, for the fourth and seventh generations of the quadratic Koch curves. The dashed lines correspond to the theoretical prediction in which,
at each iteration, the size of the passivated region is assumed to be equal to the width of the interface, namely LR(it) � LT � itL. (Inset) The initial decrease can
be very well fitted by a linear relation, LR/LT � 1 � ait, with a � 0.11 and 0.032 for the fourth- and seventh-generation cases, respectively. (b) Decay of the ratio
between the remaining alive and initial surfaces, SR/ST, for the third and fifth generations of the Koch fractal geometry. One can clearly see that the dashed lines
corresponding to the constant decay law SR(it) � ST � itS cannot describe the simulation results of the 3D system. Also in contrast with the linear behavior observed
for the 2D case, Inset shows that the initial decrease of SR/ST follows an exponential behavior, SR/ST � exp(�bit), with b � 0.23 and 0.092 for the third and fifth
generations, respectively.
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particles is thus replaced by a fictitious source on the boundary itself. Because
the last passivated regions are close to the remaining alive zones, using them
as sources considerably enhances the efficiency of the computation. The
following formalism develops this idea into a rigorous mathematical frame.

If one considers the bulk domain called 	 and its boundary �	, one can
define an operator TA that will ‘‘transfer’’ by Brownian motion a distribution
f defined on the subset A of �	 onto the complementary subset (�	 � A) by

TAf �
�u
�n

��	 � A, [1]

where u is the solution of the system

�

u � 0 in 	
�u
�n

� f on A

u � 0 on �	 � A .

[2]

In physical terms, if f corresponds to a distribution of particles arriving on A,
then TAf is the distribution of the same particles arriving on �	 � A, after they
have been reflected on A and have resumed their diffusion in 	.

If one now considers two disjoint subsets A1 and A2 (which correspond to
two successive passivated regions), one can compute the distribution T(A1�A2)f
by successively applying the operators TA1 and TA2: the function u, namely the
solution of System 2 for T(A1�A2), can be written as u1 � u2 where

�

u1 � 0, 
u2 � 0 in 	
�u1

�n
� f ,

�u2

�n
� 0 on A1

u1 � 0,
�u2

�n
� f �

�u1

�n
on A2

u1 � u2 � 0 on �	 � �A1 � A2� .

[3]

It is easy to check that u does indeed satisfy System 2. From that point, the
function [T(A1�A2)f] can be written in (�	 � (A1 � A2)) as the sum of the two
contributions of u1 and u2:

TA1�A2f �
�u1

�n
�

�u2

�n
� TA1f � T�A1�A2�f�A2 � T�A1�A2��TA1 f��A2.

[4]

This equation simply states that the distribution of particles that react on the
surface when both A1 and A2 are passivated is constituted of

1. the particles that would have reacted at the same position, even if only A1

was passivated (term TA1f ).
2. the particles that come first to A2 (they would have reacted here if only A1

was passivated) and that are now reflected since A2 is also passivated (term
T(A1�A2)f�A2).

3. the particles that would have been first reflected by A1, and then sent to A2.
These are now also reflected by A2 and sent back to react further in the
nonpassivated part of the surface (term T(A1�A2)(TA1f )�A2). There is a minus
sign in front of the third term because the current density of particles
coming from A1 to A2 is reflected and sent back, which corresponds in fact
to a positive contribution.
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