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Enhanced wave absorption through irregular interfaces
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PACS 42.60.Da – Resonators, cavities, amplifiers, arrays, and rings
PACS 43.55.+p – Architectural acoustics
PACS 73.20.Fz – Weak or Anderson localization

Abstract – The diffraction and absorption of waves by a system with both absorbing properties
and irregular geometry is an open physical problem. A more reachable and closely related question
is the understanding of wave oscillations in confined systems containing an absorbing material with
an irregular shape. This has to be solved to understand why anechoic chambers (electromagnetic or
acoustic) do work better with irregular absorbing walls. The answer to this question could also be
used in other fields such as light or microwave absorption, or also to improve the performances of
break-waters in order to damp sea-waves. It is found here that, in resonators containing an irregular
shaped absorbent material, there appears a new type of mode localization. This phenomemon, that
we call “astride” localization, describes the fact that these modes exist in both the lossless and
the lossy regions. It is these modes that are particularly efficient in dissipating the energy of waves
excited in the non-absorbing region.
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Simple to study in classical geometries, closed
resonators exhibit nontrivial localization effects as soon
as the confining geometry exhibits some kind of irreg-
ular behavior [1–7]. If the surface of the resonator is
itself absorbing, these localization effects give rise to a
specific enhancement of the damping [8]. Concerning
dissipation in the bulk however, the only mathematical
result concerning this problem has been given in 2D
for geometries that are smooth at the scale of the
wavelength [9]. In that situation, it was shown that the
modes are localized either in the non-absorbing region,
with approximately real eigenvalues, or are localized in
the absorbing region, with eigenvalues having a large
imaginary part. The qualitative consequence is that
waves excited in the non-absorbing region stay mostly
in the same region and are thus poorly dissipative.
Conversely, strongly dissipative modes localized in the
dissipative regions are poorly coupled to sources in the
non-absorbing regions due to their small amplitude in
these regions. So, strongly dissipative modes are poorly
coupled and strongly coupled modes are poorly dissipa-
tive: in both cases the system is poorly absorbing due to
localization.

(a)E-mail: marcel.filoche@polytechnique.edu

In this work, we show, on two examples, that if one
wishes to absorb waves, the above dilemma can be lifted
by using an irregular geometry for the interface between
the absorbing and the non-absorbing medium. We consider
two situations: an electromagnetic and an acoustic shallow
cavity Ω, in which the fields obey simple scalar wave
equations. The cavity is rectangular (fig. 1) but its global
shape has no significant effect on the qualitative results
that are described below. In a region Ω0 ⊂Ω, the cavity is
filled with a homogeneous and lossless medium, while on
the complementary part Ωd =Ω−Ω0, the homogeneous
medium is dissipative and possibly dispersive. Let us call
Γ the interface, of arbitrary shape, between the two media.
Thus, the eigenvalue problem can be written{

∆ψi =−k2i ψi in Ω0,

∆ψi =−k2i n2(ω)ψi in Ωd,
(1)

with the classical continuity conditions on Γ. The quantity
n(ω)∈C is the complex refraction index of the dissipative
medium.
For a shallow horizontal electromagnetic cavity, the

field ψi is the vertical electric field obeying the Dirichlet
condition ψi = 0 on the outer metallic boundary. For a
shallow acoustic cavity, the field ψi is the acoustic pressure
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Fig. 1: (Colour on-line) Low-frequency complex eigenvalues for
the electromagnetic cavity with a planar absorbent material
as shown on the top right. Relative dielectric constant and
permittivity are both equal to 1 in the lossless medium, and
equal to 2− 2j and 1, respectively in the lossy medium. The
dashed red line shows the location of the theoretical eigenvalues
of a single cavity filled with the same lossy medium.

field obeying the Neumann condition on the boundary:
�ν · �∇ψi = 0, with �ν the normal to the surface.
In the first example under consideration —an electro-

magnetic cavity with Dirichlet boundary conditions—
the lossless medium is characterized by a relative permi-
tivity ε0 and permeability µ0 both equal to 1, while the
corresponding values in the lossy medium are chosen
arbitrarily as εd = 2− 2j and µd = 1. Although both
quantities should really depend on the frequency, no
specific frequency dependance is needed to observe the
localization effect we are interested in.
The numerical results discussed below have been

obtained using a P2 finite element scheme and solving

libraries from FEMLAB R©. When the interface between
the two media in the cavity is planar, the spectrum of
eigenvalues ki is distributed in the complex plane as
shown in fig. 1. In this figure, one clearly distinguish
two families of eigenmodes, each following approximately
a simple theoretical limit. The first family have nearly
real eigenvalues, and their amplitude distributions show
that the corresponding modes are mostly localized in
the lossless region of the cavity, with a rapid decrease
in the lossy region. The second family is composed of
eigenmodes localized in the lossy region of the cavity, and
the corresponding eigenvalues are concentrated along the
dashed line. This line is the support of the theoretical
eigenvalues of an isolated cavity Ωd filled with the lossy
medium. This case can be easily calculated. Indeed,
consider a shallow cavity C of arbitrary shape, filled with

Fig. 2: (Colour on-line) Low-frequency complex eigenvalues for
the two electromagnetic cavities with irregular absorbers as
shown on the right. Green circles (respectively, red triangles)
correspond the first (respectively, second) generation of the
prefractal interface. Dielectric constants and permittivities are
the same as in fig. 1. The dashed red line shows the location
of the theoretical eigenvalues of a single cavity filled with the
lossy medium. The dotted circle corresponds to the eigenvalue
of the mode displayed in fig. 4(a).

a medium having a refraction index n(ω)∈C, with homo-
geneous Dirichlet or Neumann condition on the boundary.
Solving the eigenvalue equation ∆ψi =−k2i n2(ω)ψi
in C leads to a set of discrete real values δi = kin.
Writing that δi is real implies that, in the complex plane
(Im(k),Re(k)) the eigenvalues ki are located on the curve
(−Re(k)Im(n)/Re(n),Re(k)). In the present case where
the refraction index n=

√
2− 2j is chosen to be frequency

independent, this curve is the dashed line shown in
fig. 1. Thus, the inhomogeneous resonator Ω, with a
planar separation between the two subdomains, behaves
essentially as two decoupled resonators Ω0 and Ωd.
We now consider the role played by the irregular

character of the geometry of the interface between the
two media. By this, we mean that the interface exhibits
geometrical irregularities whose sizes are of the order of the
wavelengths under consideration. We use first and second
generations of the quadratic Koch curve (fractal dimension
equal to 3/2) in order to increase the irregularity while
keeping constant the quantity of dissipative material
(fig. 2). Now, the well discriminated undamped and
damped eigenmodes found for the planar interface are
replaced by an ensemble of modes with eigenvalues widely
spread in the complex plane. The eigenvalues occupy a
region delimited by the two theoretical limits described
above. There are still a few values close to the former
theoretical limits, but most of the modes now are found
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Fig. 3: (Colour on-line) Low-frequency complex eigenvalues of
acoustic cavities as shown on the right of figs. 1 and 2. Blue
dots (respectively, green circles and red triangles) correspond
the zeroth (respectively, first and second) generation of the
prefractal interface. Relative density and compressibility are
both equal to 1 in the lossless medium, and 1 and (2− 2j)−1
in the lossy medium. The dashed red line shows the location
of the theoretical eigenvalues of a single cavity filled with the
same lossy medium as described above. The dotted circle on the
right plot corresponds to the eigenvalue of the mode displayed
in fig. 4(b).

Fig. 4: (Colour on-line) Examples of astride localization of
modes located at the irregular interface in (a) an electromag-
netic cavity (Dirichlet boundary condition), (b) an acoustic
cavity (Neumann boundary condition). The “astride” charac-
ters of these modes (see below) are, respectively, η= 0.2412
and η= 0.2489.

between these limits, and the number of these modes
increases with the irregularity of the interface.
This type of behavior is general and can be observed in

analogous wave systems. For example, a shallow acoustic
cavity, now obeying Neumann boundary conditions,

Fig. 5: (Colour on-line) Eigenvalues in the same geometries
for dispersive and a realistic absorbing acoustic material. Blue
dots (respectively, green circles and red triangles) correspond
the zeroth (respectively, first and second) generation of the
prefractal interface. Relative density and compressibility are
1 and 1 in the lossless medium, while in the lossy medium
they are those of a porous medium in the equivalent fluid
assumption. The material used here is a typical polyurethane
foam at audio frequencies [10]. The dashed curve shows the
location of the theoretical eigenvalues of a single cavity filled
with the same medium. The dotted line on the left plot shows
some of the classical “interface” modes that may arise on a
plane interface.

exhibits the same kind of results as shown in fig. 3. Here
the lossless medium is characterized by a relative density
ρ0 and a relative compressibility K0 both equal to 1 [10],
while the corresponding values in the lossy medium are
ρd = 1 and K = (2− 2j)−1, so that n=

√
2− 2j as in the

electromagnetic case above.
A major characteristic is that the amplitude distrib-

ution of the modes corresponding to these intermediate
eigenvalues are located around the irregular interface.
Examples for both the electromagnetic and acoustic cases
are shown in fig. 4. These are what we call “astride”
modes and the number of these astride modes increases
with increasing irregularity.
The existence of frequency dispersion in the absorbent

properties of course modify the details of the spectrum
but astride modes remains present. For example, one now
considers a medium whose dispersion relation is typical
of a porous acoustic material, modelled as an equivalent
fluid [10]. The eigenvalues spectra are shown in fig. 5. Note
that, due to the dependence of the refraction index n on
the frequency, the theoretical limit case for the lossy modes
(red dashed line) is no longer a straight line, but a curve.
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Fig. 6: (Colour on-line) Values of the astride character

ηi = S
(Ω0)
i S

(Ωd)
i /S2i for the eigenmodes of the acoustic cavities

already considered in fig. 5. Blue dots (respectively, green
circles and red triangles) correspond the zeroth (respectively,
first and second) generation of the prefractal interface. In the
flat case, the dotted line indicates three classical “interface”
modes (see fig. 5).

To characterize more precisely the astride modes, it
is useful to introduce a measure of the confinement of
the spatial amplitude distribution of the modes. The
confinement of a mode ψi, normalized by

∫
Ω
|ψi|2 dS = 1, is

classically characterized by its “existence” surface [11,12]

Si =
1∫

Ω
|ψi|4 dS . (2)

But rather than the existence surface itself, it is more
interesting here to consider how the amplitude distribution
of the eigenmodes is distributed over both the lossless and
the lossy regions. This can be done by writing the existence
surface Si as a sum of two existence surfaces, respectively
in the lossless and in the lossy region:

S
(Ω0)
i = Si×

(∫
Ω0
|ψi|4 dS∫

Ω
|ψi|4 dS

)
= S2i

∫
Ω0

|ψi|4 dS, (3)

S
(Ωd)
i = Si×

(∫
Ωd
|ψi|4 dS∫

Ω
|ψi|4 dS

)
= S2i

∫
Ωd

|ψi|4 dS. (4)

These quantities obey the natural additivity rule

Si = S
(Ω0)
i +S

(Ωd)
i . One can then compute the product

ηi = S
(Ω0)
i S

(Ωd)
i /S2i . This quantity would be equal to 0

both for modes localized only in the lossless or the lossy
regions. It can then be considered as a simple measure of
the “astride” character of a mode.
Figure 6 gives the values of ηi for the eigenmodes

of the three acoustic cavities considered above, that is,
with the generations 0, 1, and 2 of the Koch curve
as the interface between the two media. One clearly
observes a net increase of the number of astride modes
with increasing irregularity. The average values 〈ηi〉 are,
respectively, 0.05, 0.08, and 0.12 for the generations 0, 1,
and 2 of prefractal geometry.

Fig. 7: (Colour on-line) Correlation between the astride charac-
ter ηi of each mode (in abscissa), and its absorption efficiency
computed as Q−1i ×SΩ0i /Si, for three interfaces. Blue dots
(respectively, green circles and red triangles) correspond to the
zeroth (respectively, first and second) generation of the prefrac-
tal interface. One can first notice the direct correlation between
the astride character of a mode and its absorption efficiency.
Moreover, rougher interfaces exhibit a larger number of modes
of high astride character, which corresponds to an increased
absorption of the vibrations excited in the lossless region.

In order to efficiently contribute to the global damping
of the cavity, a mode i must have both a small quality
factor Qi =Re(ki)/Im(ki) and, for a source placed in
the lossless region, a strong coupling to this source. So
the absorption efficiency of a given mode ψi should be

roughly proportional to the quantity (S
(Ω0)
i /Si)Q

−1
i .

When plotting this absorption efficiency against the
astride character ηi for the modes of each interface
(fig. 7), one can clearly see that both characteristics
are closely correlated. Rougher interfaces exhibit simul-
taneously a larger number of modes of high astride
character and large absorption efficiency. The average of
the absorption efficiencies for the interfaces considered
here (flat, rougher, and more rougher) are, respectively,
proportional to 4, 6 and 7.5. The qualitative conclusion is
that, due to the increase in the number of astride modes,
geometrical irregularity favors dissipation. In other words:
the more irregular, the better.
In summary, it was found in this study that the

properties of 2D inhomogeneous resonators partially
filled with an absorbing material strongly depend on the
morphology of the interface separating the absorbing from
the non-absorbing materials. For simple planar interface
the modes split into two groups localized respectively in
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the absorbing and the non-absorbing regions. And, in
first approximation, the complex spectrum is the union of
the spectra associated with the separated absorbing and
non-absorbing regions. The situation is very different with
irregular interfaces. In the latter case, most of the modes
live on both media, “astride” the irregular interface and
the eigenvalue spectrum is not anymore the union of the
separate spectra of the irregular regions. These facts are
discussed here for a specific prefractal morphology but the
same results can be obtained whatever the specific type
of geometrical irregularity that is considered. Because
they simultaneously display an important imaginary
part to the eigenvalue and a larger amplitude in the
non-absorbing region, the astride modes are thought to
be important for the dissipation of wave energy emitted in
the non-absorbing region. We believe that this constitutes
the first simple rationale towards understanding the
role of the absorbent geometry in anechoic chambers or
wave-absorbing devices, would they be electromagnetic
or acoustic [13–21]. The use (and theory) of reverberation
chambers to measure the absorption of irregular panels
should also be reconsidered in order to properly take into
account the role of localization. But more generally, the
same ideas should be useful in designing electromagnetic
wave absorbers. In particular, they could explain how
surface texturing at the scale of the wavelength may
enhance photon energy conversion efficiency and decrease
reflectance at silicon-air interface [22–24]. Astride locali-
sation should also modify the surface emissivity and then
Kirchoff’s laws on porous surfaces. In the same manner,
one may suggest that efficient break-waters should be
more efficient if irregular at the scale of the wavelengths
of sea-waves [25].
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