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ABSTRACT
In the presence of a confining potential V , the eigenfunctions of a continuous Schrödinger operator −Δ + V decay exponentially with the rate
governed by the part of V , which is above the corresponding eigenvalue; this can be quantified by a method of Agmon. Analogous localization
properties can also be established for the eigenvectors of a discrete Schrödinger matrix. This note shows, perhaps surprisingly, that one can
replace a discrete Schrödinger matrix by any real symmetric Z-matrix and still obtain eigenvector localization estimates. In the case of a
real symmetric non-singular M-matrix A (which is a situation that arises in several contexts, including random matrix theory and statistical
physics), the landscape function u = A−11 plays the role of an effective potential of localization. Starting from this potential, one can create
an Agmon-type distance function governing the exponential decay of the eigenfunctions away from the “wells” of the potential, a typical
eigenfunction being localized to a single such well.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0042629

I. INTRODUCTION: HISTORY AND MOTIVATION
The fundamental premises of quantum physics guarantee that a potential V induces exponential decay of the eigenfunctions of the

Schrödinger operator −Δ + V (on either a continuous domain Rd or a discrete lattice Zd) as long as V is larger than the eigenvalue E outside
of some compact region. This heuristic principle has been established with mathematical rigor by Agmon1 and has served as a foundation
to many beautiful results in semiclassical analysis and other fields (see, e.g., Refs. 2–5 for a glimpse of some of them). Roughly speaking, the
modern interpretation of this principle is that the eigenfunctions decay exponentially away from the “wells” {x : V(x) ≤ E}.

In 2012, two of the authors of the present paper introduced the concept of the localization landscape. They observed in Ref. 6 that
the solution u to the equation (−Δ + V)u = 1 appears to have an almost magical power to “correctly” predict the regions of localization for
disordered potentials V and to describe a precise picture of their exponential decay. For instance, if V takes the values 0 and 1 randomly on a
two-dimensional lattice Z2 (a classical setting of the Anderson–Bernoulli localization), the eigenfunctions at the bottom of the spectrum are
exponentially localized, that is, exponentially decaying away from some small region, but this would not be detected by the Agmon theory
because the region {V ≤ E} could be completely percolating and there is no “room” for the Agmon-type decay, especially if the probability of
V = 0 is larger than the probability of V = 1. Indeed, the phenomenon of Anderson localization is governed by completely different principles,
relying on the interferential rather than confining impact of V . On the other hand, looking at the landscape in this example, we observe that
the region { 1

u ≤ E} exhibits isolated wells and that the eigenmodes decay exponentially away from these wells. It turns out that, indeed, the
reciprocal of the landscape, 1

u , plays the role of an effective potential, and in Ref. 7, Arnold, David, Jerison, and the first two authors proved
that the eigenfunctions of −Δ + V decay exponentially in the regions where { 1

u > E} with the rate controlled by the so-called Agmon distance
associated with the landscape, a geodesic distance in the manifold determined by ( 1

u − E)+. The numerical experiments in Ref. 8 and physical
considerations in Ref. 9 show an astonishing precision of the emerging estimates, although mathematically speaking in order to use these
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results for factual disordered potentials, one has to face, yet again, a highly non-trivial question of resonances—see the discussion in Ref. 7. At
this point, we have only successfully treated Anderson potentials via the localization landscape in the context of a slightly different question
about the integrated density of states.10

However, the scope of the landscape theory is not restricted to the setting of disordered potentials. In fact, all results connecting the
eigenfunctions to the landscape are purely deterministic, and one of the key benefits of this approach is the absence of a priori assumptions on
the potential V , which already in Ref. 7 allowed us to rigorously treat any operator −div A∇+ V with an elliptic matrix of bounded measurable
coefficients A and any non-negative bounded potential V , a level of the generality not accessible within the classical Agmon theory. These ideas
and results have been extended to quantum graphs,11 to the tight-binding model,12 and, perhaps most notably, to many-body localization in
Ref. 13.

This paper shows that the applicability of the landscape theory, in fact, extends well beyond the scope of the Schrödinger operator or, for
that matter, even the scope of Partial Differential Equations (PDEs), at least in the bottom of the spectrum where the region { 1

u ≤ E} exhibits
isolated potential wells. Indeed, let us now consider a general real symmetric positive definite N ×N matrix A = (aij)i,j∈[N], which one can
view as a self-adjoint operator on the Hilbert space ℓ2([N]) on the domain [N] ∶= {1, . . ., N}. In certain situations, one expects A to exhibit
“localization” in the following two related aspects, which we describe informally as follows:

(i) (Eigenvector localization) Each eigenvector14 ϕ = (ϕk)k∈[N] of A is localized to some index i of [N] so that ∣ϕk∣ decays when ∣k − i∣
exceeds some localization length L≪ N.

(ii) (Poisson statistics) The local statistics of eigenvalues λ1, . . . , λN of A asymptotically converge to a Poisson point process in a suitably
rescaled limit as N →∞.

Empirically, phenomena (i) and (ii) are observed to occur in the same matrix ensembles A; intuitively, the eigenvector localization property
(i) implies that A “morally behaves like” a block-diagonal matrix, with the different blocks of A supplying “independent” sets of eigenvalues,
thus leading to the Poisson statistics in (ii). However, the two properties (i) and (ii) are not formally equivalent; for instance, conjugating A
by a generic unitary matrix will most likely destroy property (i) without affecting property (ii).

Example 1.1 (Gaussian band matrices). Consider the random band matrix Gaussian models A, in which the entries aij are independent
Gaussians for 1 ≤ i ≤ j ≤ N and ∣i − j∣ ≤W, but vanish for ∣i − j∣ >W for some 1 ≤W ≤ N. We refer the reader to Ref. 15 (Sec. 2.2) for a recent
survey of this model. If the matrix is normalized to have eigenvalues E concentrated in the interval [−2, 2] [and expected to obey the Wigner
semicircular law 1

2π (4 − E2)1/2
+ for the asymptotic density of states], it is conjectured (see, e.g., Ref. 16) that the localization length L should be

given by the formula

L ∼ min(W2(4 − E2), N).

In particular, in the bulk of the spectrum, it is conjectured that localization [in both senses (i), (ii)] should hold when W ≪ N1/2 (with
localization length L ∼W2) and fail when W ≫ N1/2, while near the edge of the spectrum [in which 4 − E2 = O(L−2/3)], localization is
expected to hold when W ≪ N5/6 and fail when W ≫ N5/6. Toward this conjecture, it is known17 in the bulk 4 − E2 ∼ 1 that (i) and (ii)
both fail when W ≫ N3/4+ε for any fixed ε > 0, while localization in sense (i) was established for W ≪ N1/7 in Ref. 18 (see also Ref. 19).
In the edge 4 − E2 = O(L−2/3), both directions of the conjecture have been verified in sense (ii) in Ref. 20, but the conjecture in sense (i)
remains open. Finally, we remark that in the regime W = O(1), the classical theory of Anderson localization21 can be used to establish both (i)
and (ii).

We now focus on the question of establishing eigenvector localization (i). Can one deduce any uniform bound on the eigenvectors of
a general matrix A depicting, in particular, a structure of the exponential decay similarly to the aforementioned considerations for a matrix
of the Schrödinger operator −Δ + V? An immediate objection is that there is no “potential” that could play the role of V . Even aside from
the fact that the proof of the Agmon decay relies on the presence of both kinetic and potential energy, as well as on many PDE arguments,
it is not clear whether there is a meaningful function, analogous to V , which governs the behavior of eigenvectors of a general matrix. The
main result of this paper is that, surprisingly, the landscape theory still works, at least in the class of real symmetric Z-matrices (matrices with
non-positive entries off the diagonal). Furthermore, when A is a real symmetric non-singular M-matrix (a positive semi-definite Z-matrix),
the reciprocal 1

u of the solution to Au = 1 gives rise to a distance function ρ on the index set [N], which predicts the exponential decay of the
eigenvectors.

II. MAIN RESULTS
We introduce an Agmon-type distance ρ on the index set [N] ∶= {1, . . . , N} associated with an N ×N matrix A, a N × 1 “landscape”

vector u, and an additional spectral parameter E ∈ R.

Definition 2.1 (distance). Let A = (aij)i,j∈[N] be a real symmetric N ×N matrix, let u = (ui)i∈[N] be a vector with all entries non-zero,
and let E be a real number. We define the effective potential V = (vi)i∈[N] by the formula
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vi := (Au)i

ui
, (2.1)

the shifted effective potential by the formula

vi := (vi − E)+ (2.2)

[where x+ ∶= max (x, 0)], the potential well set by the formula

KE := {i ∈ [N] : vi = 0} = {i ∈ [N] :
(Au)i

ui
≤ E},

and the distance function ρ = ρA,u,E : [N] × [N] → [0,+∞] by the formula

ρ(i, j) := inf
L≥0

inf
i0 ,...,iL∈[N]:i0=i,iL=j

⎛
⎜
⎝

L

∑
ℓ=0

ln
⎛
⎜
⎝

1 +
¿
ÁÁÀ
√
viℓviℓ+1

∣aiℓiℓ+1 ∣
⎞
⎟
⎠

⎞
⎟
⎠

,

where we restrict the infimum to those paths i0, . . . , iL for which aiℓiℓ+1 ≠ 0 for ℓ = 0, . . . , L − 1. To put it another way, ρ is the largest pseudo-
metric such that

ρ(i, j) ≤ ln
⎛
⎝

1 +
¿
ÁÁÀ
√
vivj

∣aij∣
⎞
⎠

(2.3)

whenever aij ≠ 0.
For any set M ⊂ [N], we denote by ρ(i, M) ∶= infj∈Mρ(i, j) the distance from a given index i to M using the distance ρ [with the con-

vention that ρ(i, M) = ∞ if M is empty]. Similarly, for any set K ⊂ [N], we define ρ(K, M) ∶= infi∈Kρ(i, M) for the separation between K
and M.

It is easy to see that ρ is a pseudo-metric in the sense that it is symmetric and obeys the triangle inequality with ρ(i, i) = 0, although
without further hypotheses22 on A, u, E, it is possible that ρ(i, j) could be zero or infinite for some i ≠ j. One can view ρ as a weighted graph
metric on the graph with vertices [N] and edges given by those pairs (i, j) with aij ≠ 0 and with weights given by the right-hand side of (2.3).
We discuss the comparison between ρ and the Euclidean metric in the beginning of Sec. V.

We recall that a Z-matrix is any N ×N matrix A such that aij ≤ 0 when i ≠ j, and a M-matrix is a Z-matrix with all eigenvalues hav-
ing non-negative real part. Our typical setup is the case when A is a real symmetric non-singular M-matrix, i.e., a positive definite matrix
with non-positive off-diagonal entries, and in that case, we will choose u as the landscape function, i.e., the solution to Au = 1, with 1
denoting a vector with all values equal to 1. We say that a matrix A has connectivity at most Wc if every row and column has at most Wc
non-zero non-diagonal entries. If A is a real symmetric non-singular M-matrix, all the principal minors are positive (see, e.g., Ref. 23), and
hence, by Cramér’s rule, all the coefficients of the landscape u will be non-negative. In this case, a simple form of our main results is as
follows:

Theorem 2.5 (exponential localization using the landscape function). Let A be a symmetric N ×NM-matrix with connectivity at
most Wc for some Wc ≥ 2. Let u ∶= A−11 be the landscape function. Assume that φ is an ℓ2-normalized eigenvector of A corresponding to the
eigenvalue E. Let ρ = ρA,u,E, K = KE be defined by Definition 2.1. Then,

∑
k
φ2

k e
2ρ(k,K)√

Wc ( 1
uk
− E)

+
≤Wc max

1≤i,j≤N
∣aij∣.

Informally, the above inequality ensures that an eigenvector φ experiences exponential decay away from the wells of the effective potential
V = ( 1

uk
)k∈[N] cutoff by the energy level E. This is what typically happens for the Schrödinger operator −Δ + V (according to some version of

the Agmon theory); see, for instance, Ref. 7 (Corollary 4.5). However, the existence of such an effective potential for an arbitrary M-matrix is
perhaps surprising.

In fact, our results apply to the larger class of real symmetric Z-matrices A and more general vectors u and can handle “local” eigenvectors
as well as “global” ones. We first introduce some more notations.

Definition 2.6 (local eigenvectors). Let M ⊂ [N]. We use IM to denote the N ×N diagonal matrix with (IM)ii equal to 1 when i ∈M
and 0 otherwise. If φ ∈ ℓ2([N]), we write φ∣M ∶= IMφ for the restriction of φ to M (extending by zero outside of M), and similarly, if A is
an N ×N matrix, we write A∣M ∶= IMAIM for the restriction of A to M ×M (again extending by zero). We say that a vector φ ∈ ℓ2([N]) is a
local eigenvector of A on the domain M with the eigenvalue E if φ = φ∣M is an eigenvector of A∣M with the eigenvalue E; thus, IMφ = φ and
IMAIMφ = Eφ.
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To avoid confusion, we shall sometimes refer to the original notion of an eigenvector as a global eigenvector; this is the special case of a
local eigenvector in which M = [N].

We can now state a more general form of Theorem 2.5.

Theorem 2.7 (exponential localization). Let A be a symmetric N ×NZ-matrix with connectivity at most Wc for some Wc ≥ 2, and let
u be some n × 1 vector of non-negative coefficients. Let E > 0 be an energy threshold, and let ρ = ρA,u,E, vi, and KE be defined by Definition 2.1.
Then, for any subset D of [N] and any local eigenvector φ of A of the eigenvalue E ≤ E on Dc = [N] /D, one has

(E − E)∑
k∉KE

∣φk∣2e2αρ(k,KE/D) + (1 − α
2Wc

2
)∑

k∉KE

∣φk∣2e2αρ(k,KE/D)vk ≤
Wc

2
∥φ∥2 max

i∈KE/D, j∉KE/D
∣aij∣ (2.4)

for any 0 < α ≤
√

2/Wc. [Here and in the sequel, we use ∥ ⋅ ∥ to denote the ℓ2([N]) norm.]
In particular, if α =

√
1/Wc, E = E, D = ∅, and φ is an ℓ2-normalized (global) eigenvector of A on the entire domain [N]with the eigenvalue

E, (2.4) implies that

∑
k∈[N]

φ2
k e

2ρ(k,KE)√
Wc vk ≤Wc max

i,j∈[N]
∣aij∣. (2.5)

There are two terms on the left-hand side of (2.4), corresponding to two different lines in the display, and they serve different purposes.
The bound for the term in the second line [which, in particular, yields (2.5)] asserts, roughly speaking, that the eigenvector φk experiences
exponential decay in the regime where k is far from KE in the sense that ρ(k, KE) ≫

√
Wc. Note that Theorem 2.5 is the special case of (2.5)

when A is a M-matrix and u = A−11.
By taking advantage of the term in the first line of (2.4), we can proceed further and demonstrate an approximate diagonalization, or

decoupling, of A on the collection of disjoint subregions defined by the landscape function u by following the arguments from Ref. 7. The
details are too technical to be put in the Introduction, and we refer the reader to Sec. V. In short, the idea is that viewing [N] as a graph
induced by A (with the vertices connected whenever aij ≠ 0), we can define a Voronoi-type splitting of this graph into subgraphs, Ωℓ, each
containing an individual connected component of KE (or sometimes merging a few components if convenient). Then, A can be essentially
decoupled into smaller matrices A∣Ωℓ with the strength of coupling exponentially small in the ρA,u distance between individual “wells.” Related
to this, the spectrum of A will be exponentially close to the combined spectrum of A∣Ωℓ ’s.

Note how the geometry of the metric ρ is sensitive to the spatial distribution of the matrix A and, in particular, to the connectivity
properties of the graph induced by the locations of the nonzero locations of A. For instance, conjugating A by a generic orthogonal matrix
will almost certainly destroy the localization of the eigenvectors φ but will also heavily scramble the metric ρ (and most likely also destroy the
property of being an M- or Z-matrix). On the other hand, conjugating A by a permutation matrix will simply amount to a relabeling of the
(pseudo-)metric space ([N], ρ) and not affect the conclusions of Corollary 2.5 and the decoupling results in Theorem 5.2 and Corollary 5.5
in any essential way.

We will show some results of the numerical simulations in Sec. III and then pass to the proofs, but let us say a few more words about the
particular cases that would perhaps be of most interest.

A. Random band matrices
Here, the connectivity is Wc = 2W. Strictly speaking, the random Gaussian band matrix models A considered in Example 1.1 do not fall

under the scope of Corollary 2.5 because the matrices will not be expected to have non-positive entries away from the diagonal nor will they
be expected to be positive definite. However, one can modify the model to achieve these properties (at least with high probability) by replacing
the Gaussian distributions by distributions supported on the negative real axis and then shifting by a suitable positive multiple of the identity
to ensure positive definiteness with high probability. These changes will likely alter the semicircle law for the bulk distribution of eigenvalues,
but in the spirit of the universality phenomenon, one may still hope to see localization of eigenvectors, say, in the bulk of the spectrum,
as long as the width W of the band matrix is small enough (in particular, when W ≪ N1/2). In this case, Corollary 2.5 entails exponential
decay of the eigenvectors governed by the landscape 1

u , and Theorem 5.2 and Corollary 5.5 yield the corresponding diagonalization of A. Of
course, the key question is the behavior of the landscape. If the set KE of wells is localized to a short interval, then this corollary will establish
localization in the spirit of (i) above; however, if KE is instead the union of several widely separated intervals, then an eigenvector could,
in principle, experience a resonance in which non-trivial portions of its ℓ2 energy were distributed amongst two or more of these intervals.
Whether or not this happens is governed to some extent by Theorem 5.2 and Corollary 5.5. These results indicate that the resonances have to
be exponentially strong in the distance between the wells, and our numerical experiments suggest that such strong resonances are, in fact, quite
rare.
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B. Tight-binding Schrödinger operators
When A is a matrix of the tight-binding Schrödinger operator (a standard discrete Laplacian plus a potential) in a cube in Zd, the

connectivity parameter Wc is now the number of nearest neighbors, 2d, and the size of the matrix is the sidelength of the cube to the power
d. If the potential is non-negative, A is an M-matrix with the entries aij equal to −1 whenever i ≠ j corresponds to the nearest neighbors in the
graph structure induced by Zd, and aii = 2d + V i. This particular case has been considered in Ref. 12, and our results clearly cover it. However,
the tight-binding Schrödinger is only one of many examples, even when concentrating on applications in physics. We can treat any operator
in the form −div A∇+ V on any graph structure, provided that the signs of the coefficients yield an M-matrix. We can also address long range
hopping for a very wide class of Hamiltonians.

C. Many-body system and statistical physics
Much more generally, in statistical physics, the probability distribution over all possible microstates (or the density matrix in the quantum

setting) of a given system evolves through elementary jumps between microstates. This evolution is a Markov process whose transition matrix
is a Z-matrix that is symmetric up to a multiplication by a diagonal matrix. For a micro-reversible evolution, the matrix A is symmetric and
is akin to a weighted Laplacian on the high-dimensional indirect graph whose vertices are the microstates and whose edges are the possible
transitions.

One essential result of statistical physics is that under the condition of irreducibility of the transition matrix, the system eventually
reaches thermodynamical equilibrium. Our approach might open the way to unravel the structure of the eigenvectors of the Markov flow
and thus to understand how localization of these eigenvectors can induce a many-body system to remain “frozen” for mesoscopic times
out of equilibrium. This effect is referred to as many-body localization. A first successful implementation of the landscape theory in this
context has been recently achieved by Balasubramanian et al.13 for a many-body system of spins with nearest-neighbor interaction. In this
work, the authors cleverly use the ideas of Ref. 24 to transfer the problem to the Fock space and to deduce an Agmon-type decay governed
by the corresponding effective potential. Once in the Fock space, their results are also a particular case of Theorem 2.7 and Theorem 5.2.
From that point, however, the authors of Ref. 13 go much farther to discuss, based on physical considerations, deep implications of such an
exponential decay on many-body localization, but in the present paper, we restrict ourselves to mathematics and will not enter those dangerous
waters.

Finally, we would like to mention that the idea of trying the localization landscape and similar concepts in the generality of ran-
dom matrices has appeared before, e.g., in Refs. 25 and 26. However, the authors relied on a different principle, extending the inequality
∣φ∣ ≤ Eu from Ref. 6 to these more general contexts, which by itself, of course, does not prove exponential decay. Reference 25 actually
deals with a different proxy for the landscape and different inequalities, but we (and the authors) believe that these are related to the
landscape and that, again, they do not prove exponential decay estimates. However, we would like to mention that the importance of
M-matrices was already suggested in Ref. 26, and it was inspiring and reassuring to arrive at the same setting from such different points of
view.

III. NUMERICAL SIMULATIONS
We ran numerical simulations to compute the localization landscape u, the effective potential 1

u , and the eigenvectors for several realiza-
tions of random symmetric M-matrices. The diagonal coefficients are random variables that follow a centered normal law of variance 1. The
off-diagonal coefficients belonging to the first Wc/2 diagonals of the upper triangle of the matrix are minus the absolute values of random
variables following the same law. The remaining off-diagonal coefficients of the upper triangle are taken to be zero, and the lower triangle is
completed by symmetry. This creates A0, a Z-matrix of bandwidth Wc + 1 (and connectivity Wc). To ensure positivity, we add a multiple of
the identity

A := A0 + a I where a = ε − λ0, (3.1)

with λ0 being the smallest eigenvalue of A0 and ε = 0.1. The smallest eigenvalue of the resulting matrix A is thus ε. The matrices A and A0
clearly have the same eigenvectors, and their spectra differ only by a constant shift.

Below are the results of several simulations. We take N = 103. Figures 1–4 correspond to random symmetric M-matrices constructed as
above of connectivity Wc = 2, 6, 20, and 32. Each figure consists of two frames.

The top frame displays the localization landscape u superimposed with the first five eigenvectors plotted in log10 scale. The exponential
decay of the eigenvectors can clearly be observed on this frame for Wc = 2, 6, and 20. One can see that, as expected, it starts disappearing
around Wc = 32 (Wc being in this case roughly equal to

√
N). It is important to observe that in all cases, the eigenvectors decay exponentially

except for the wells of 1
u (equivalently, the peaks of u) where they stay flat. This is exactly the prediction of Theorem 2.7.

The bottom frame displays the effective potential 1
u superimposed with the first five eigenvectors plotted in linear scale. The horizontal

lines indicate the energies of the corresponding eigenvectors. One can clearly see the localization of the eigenvectors inside the wells of the
effective potential.
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FIG. 1. (a) Localization landscape (blue line) and the five first eigenvectors (in log10 scale) for a random 3-band symmetric M-matrix. (b) Effective potential ( 1
u

) and the first
eigenvectors (in linear scale). The baseline (the 0 of the vertical axis) is chosen differently for each eigenvector so that it coincides with the eigenvalue of the same eigenvector
of the left axis. This convention will be used in Figs. 1–4.

Figure 5 provides numerical evidence for finer effects encoded in Theorems 2.7 and 5.2. The two Theorems combined prove that expo-
nential decay away from the wells of the effective potential governed the Agmon distance associated with 1/u, at least in the absence of
resonances. In Fig. 5, we display, for several values of connectivity Wc and several eigenvectors, the values −ln ∣ψi∣ against the distance
ρA,u,E(i, imax), taking as the origin the point imax where ∣ψ∣ is imal and using the corresponding eigenvalue as the threshold E. The linear cor-
respondence down to e−40 is quite remarkable and shows that e−cρA,u,E(i,imax) is not only an upper bound but actually an approximation of the

FIG. 2. (a) Localization landscape (blue line) and the five first eigenvectors (in log10 scale) for a random 7-band symmetric M-matrix. (b) Effective potential ( 1
u

) and the first
eigenvectors (in linear scale).
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FIG. 3. (a) Localization landscape (blue line) and the five first eigenvectors (in log10 scale) for a random 21-band symmetric M-matrix. (b) Effective potential ( 1
u

) and the first
eigenvectors (in linear scale).

eigenfunction and that the resonances are indeed unlikely. On the other hand, the constant c does not appear to be equal to 1/
√

Wc, which
means that in this respect, our analysis is probably not optimal, at least in the class of random matrices. Indeed, we believe that the application
of the deterministic Schur test in the proof does not yield the best possible constant for random coefficients, but since we emphasize the
universal deterministic results, this step cannot be further improved.

Finally, Fig. 6 shows that Hypothesis 5.1 is actually fulfilled in some realistic situations. The top frame displays the example already
presented in Fig. 2. Superimposed to the eigenvectors, the set KE introduced in Definition 2.1 is also drawn (gray rectangles) for E = 0.7

FIG. 4. (a) Localization landscape (blue line) and the five first eigenvectors (in log10 scale) for a random 33-band symmetric M-matrix. (b) Effective potential ( 1
u

) and the first
eigenvectors (in linear scale).
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FIG. 5. Scatter plots of the logarithm of the absolute value of several eigenvectors against the corresponding Agmon distance for three different values of the connectivity
W c = 2, 6, and 20 [frames (a)–(c)]. For each eigenvector (eigenvectors 1, 2, and 5 in each frame), we display −ln∣ψi ∣ at any given point i vs the Agmon distance between
the point i and the location where ∣ψ∣ is imal. The plots exhibit a strong linear relationship between these two quantities, down to values of ∣ψi ∣ around e−40 (of the order of
10−18), which is a signature of the exponential decay. The slope seems to depend only on W c .

FIG. 6. (a) Eigenvectors in log scale, superimposed with the set KE defined in 2.1 (gray rectangles) for the value E = 0.7 (indicated by the red dashed line). (b) Plot of the
Agmon distance of each point to the set KE . The orange rectangles correspond to the S-neighborhood of KE for S = 2 (indicated by the green horizontal line). (c) Partition of
the domain in five subdomains. All distances ρ(∂−Ωℓ, Kℓ) defined in 5.1 are larger than S. This partition thus fulfills Hypothesis 5.1.
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(horizontal dashed red line). The middle frame displays the plot of the Agmon distance to KE. Thresholding this plot at S = 2 (green hor-
izontal line) allows us to draw the S-neighborhood of KE (the orange rectangles). The bottom frame shows a possible partition of the
entire domain into five subdomains (Ω1, . . .,Ω5), each subdomain containing at least one well of the effective potential 1/u. The distances
ρ(∂−Ωℓ, Kℓ) defined in Hypothesis 5.1 are here, respectively, 48.1584, 2.8093, 4.2169, 3.6784, and 9.3756. They all are larger than S, thus
satisfying Hypothesis 5.1.

To be more precise, let us turn to the exact statements.

IV. THE PROOF OF THE MAIN RESULTS
In this section, we prove Theorem 2.7. We will use a double commutator method. Let [A, B] ∶= AB − BA denote the usual commutator

of N ×N matrices and ⟨, ⟩ denote the usual inner product on ℓ2([N]). We observe the general identity

⟨[[A, D], D]u, u⟩ = ∑
i,j∈[N]:i≠j

aijuiuj(dii − djj)2 (4.1)

whenever A = (aij)i,j∈[N]is a matrix, D = diag(d11, . . ., dnn) is a diagonal matrix, and u = (ui)i∈[N]is a vector. In particular, we have

⟨[[A, D], D]u, u⟩ ≤ 0 (4.2)

whenever A is a Z-matrix and the entries of u have constant sign. It will be this negative definiteness property that is key to our arguments.
One can compare (4.1) and (4.2) to the Schrödinger operator identity

⟨[[−Δ + V , g], g]u, u⟩ = −2∫Rd
∣∇g∣2∣u∣2 ≤ 0

for any (sufficiently well-behaved) functions V , g, u : Rd → R.
To exploit (4.1), we will use the following identity:

Lemma 4.3 (double commutator identity). Let A,Ψ, G be N ×N real symmetric matrices such that ΨG = GΨ, and suppose that u is an
N × 1 vector. Then,

⟨G[Ψ, A]u, GΨu⟩ = 1
2
⟨[[A, GΨ], GΨ]u, u⟩ − 1

2
⟨[[A, G], G]Ψu,Ψu⟩.

Proof. By the symmetric nature of G, we have

⟨[[A, G], G]Ψu,Ψu⟩ = 2⟨GAΨu, GΨu⟩ − 2⟨AGΨu, GΨu⟩,

and similarly, from the symmetric nature of GΨ, we have

⟨[[A, GΨ], GΨ]u, u⟩ = 2⟨GΨAu, GΨu⟩ − 2⟨AGΨu, GΨu⟩.

The claim follows. ◻
We can now conclude as follows:

Corollary 4.4. Let A = (aij)i,j∈[N] be a N ×N real symmetric Z-matrix. Assume that D is some subset of [N] and that φ is a local eigenvector
of A corresponding to the eigenvalue E on Dc = [N]/D. Let u = (ui)i∈[N] be a vector with all positive entries, and let G = diag(G11, . . ., GNN) be
a real diagonal matrix. Then,

∑
k∈[N]

φ2
kG2

kk(
(Au)k

uk
− E) ≤ −1

2 ∑
i,j∈[N]:i≠j

aijφiφj(Gii −Gjj)2. (4.3)

Proof. Writing [Ψ, A] = Ψ(A − EI) − (A − EI)Ψ, we apply Lemma 4.1 with Ψ ∶= diag(φ1/u1, . . .,φN/un) to get

⟨GΨ(A − EI)u, GΨu⟩ − ⟨G(A − EI)Ψu, GΨu⟩ = 1
2
⟨[[A, GΨ], GΨ]u, u⟩ − 1

2
⟨[[A, G], G]Ψu,Ψu⟩.

By (4.2), the first term on the right-hand side above is non-positive, and hence, the entire expression is less than or equal to
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−1
2
⟨[[A, G], G]Ψu,Ψu⟩ ≤ −1

2 ∑
i,j∈[N]:i≠j

aijφiφj(Gii −Gjj)2.

The latter inequality follows from (4.1) and the fact that by definition Ψu = φ.
Since G is diagonal and φ = Ψu is a local eigenvector on Dc, the second term on the left-hand side is equal to zero. Indeed, (Ψu)k

= (GΨu)k = 0 for k ∈ D, and hence,

⟨G(A − EI)Ψu, GΨu⟩ = ⟨G(A − EI)∣DcΨu, GΨu⟩ = 0.

Writing

Ψ(A − EI)u = (((Au)k

uk
− E)φk)

k∈[N]
,

the claim follows. ◻
The strategy is then to apply this corollary with a sufficiently slowly varying function G so that one can hope to mostly control the

right-hand side of (4.3) by the left-hand side.

Proof of Theorem 2.7. We abbreviate KE as K for simplicity. We can, of course, assume that φ is not identically zero. If K /D was empty,
we could apply Corollary 4.4 with Gkk = 1 to obtain a contradiction, so we may assume without loss of generality that K /D is non-empty. We
apply Corollary 4.4 with

Gii := 1i∉K/D eαρA,u,E(i,K/D),

where the indicator 1i∉K / D is equal to zero for i ∈ K /D and equal to 1 otherwise. By construction, Gkk vanishes for k ∈ K /D and φ vanishes
on D so that Gkkφk vanishes on K. Thus, by (2.2),

(E − E)∑
k∉K
φ2

ke2αρ(i,K) +∑
k∉K
φ2

ke2αρ(i,K)vk

= ∑
k∉K
φ2

kG2
kk(E − E) + ∑

k∉K
φ2

kG2
kk(
(Au)k

uk
− E)

+

= ∑
k∉K
φ2

kG2
kk(E − E) + ∑

k∉K
φ2

kG2
kk(
(Au)k

uk
− E)

= ∑
k∈[N]

φ2
kG2

kk(
(Au)k

uk
− E)

≤ −1
2 ∑

i,j∈[N]:aij≠0;i≠j
aijφiφj(Gii −Gjj)2.

(4.4)

Now, we need to estimate the quantity Gii −Gjj whenever aij ≠ 0. We first observe from the triangle inequality and (2.3) that

∣eαρ(i,K/D) − eαρ(j,K/D)∣ ≤ eαρ(i,K/D)(eαρ(i,j) − 1)

≤ eαρ(i,K/D)
⎛
⎜
⎝
⎛
⎝

1 +
¿
ÁÁÀ
√
vivj

∣aij∣
⎞
⎠

α

− 1
⎞
⎟
⎠

≤ eαρ(i,K/D)α

¿
ÁÁÀ
√
vivj

∣aij∣

and similarly with i and j reversed; in particular,

∣eαρ(i,K/D) − eαρ(j,K/D)∣2 ≤ α2eαρ(i,K/D)eαρ(j,K/D)
√
vivj

∣aij∣
.

Thus, we have
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(Gii −Gjj)2 ≤ α2eαρ(i,K/D)eαρ(j,K/D)
√
vivj

∣aij∣
(4.5)

when i, j ∉ K /D.
Next, suppose that i ∉ K /D, j ∈ K /D. Then, Gjj = 0, and from (2.3) we have

ρ(i, K/D) ≤ ρ(i, j)

≤ ln
⎛
⎝

1 +
¿
ÁÁÀ
√
vivj

∣aij∣
⎞
⎠

= 0

since vj = 0. We conclude that (Gii −Gjj)2 = 1 in this case. Similarly, i ∈ K /D and j ∉ K /D. Finally, if i, j ∈ K /D, then Gii = Gjj = 0 so that
(Gii −Gjj)2 = 0 in this case. Applying all of these estimates, we can bound the right-hand side of (4.4) by

α2

2 ∑
i,j∉K/D:i≠j; aij≠0

∣φi∣∣φj∣eαρ(i,K/D)eαρ(j,K/D)
√
vivj +

1
2 ∑

i∈K/D;j∉K/D or i∉K/D,j∈K/D; aij≠0
∣aij∣∣φi∣∣φj∣. (4.6)

Since A has at most Wc non-zero non-diagonal entries in each row and column, we see from Schur’s test (or the Young inequality
ab ≤ 1

2 a2 + 1
2 b2) that

∑
i,j∉K/D:i≠j; aij≠0

∣φi∣∣φj∣eαρ(i,K/D)eαρ(j,K/D)
√
vivj

∣aij∣
≤Wc ∑

i∉K/D
∣φi∣2e2αρ(i,K/D)vi

and

∑
i∈K/D;j∉K/D or i∉K/D,j∈K/D;aij≠0

∣aij∣∣φi∣∣φj∣ ≤Wc( sup
i∈K/D;j∉K/D

∣aij∣) ∑
i∈[N]
∣φi∣2.

Combining all of the above considerations, we arrive at the conclusion of the theorem. ◻

V. DIAGONALIZATION
Let the notation and hypotheses be as in Theorem 2.7. We abbreviate ρ = ρA,u,E and K = KE. To illustrate the decoupling phenomenon,

we place the following hypothesis on the potential well set K:

Hypothesis 5.1 (separation hypothesis). There exists a parameter S > 0, a partition K = ⋃ℓKℓ of K into disjoint “wells” Kℓ, and
“neighborhoods” Ωℓ ⊃ Kℓ of each well Kℓ obeying the following axioms:

(i) The neighborhoods Ωℓ are all disjoint.
(ii) The neighborhoods Ωℓ contain the S-neighborhood of Kℓ; thus, ρ(Ωc

ℓ, Kℓ) ≥ S.
(iii) For any ℓ, we have ρ(∂−Ωℓ, Kℓ) ≥ S, where the inner boundary ∂−Ωℓ is defined as the set of all k ∈Ωℓ such that akj ≠ 0 for some j ∉Ωℓ.

We remark that axioms (i)–(iii) imply that the full boundary ∂Ωℓ, defined as the union of the inner boundary ∂−Ωℓ and the outer
boundary ∂+Ωℓ consisting of those j ∉ Ωℓ such that akj ≠ 0 for some k ∈ Ωℓ, stays at a distance at S from K since every element of an outer
boundary ∂+Ωℓ either lies in the inner boundary of another Ωℓ′ or else lies outside of all of the Ωℓ′ . We also remark that axiom (iii) is a
strengthening of axiom (ii), since if there was an element k inΩc

ℓ at a distance less than S from Kℓ, then by taking a geodesic path from Kℓ to k,
one would eventually encounter a counterexample to (iii), but we choose to retain the explicit mention of axiom (ii) to facilitate the discussion
below.

Informally, to obey Hypothesis 5.1, one should first partition K into “connected components” Kℓ, concatenating two such components
together if their separation ρ is too small so that the separation S := infℓ≠ℓ′ρ(Kℓ, Kℓ′) is large and then perform a Voronoi-type partition in
which Ωℓ consists of those k ∈ [N] that lie closer to Kℓ in the ρ metric than any other Kℓ′ . The axioms (i) and (ii) would then be satisfied for
any S < S/2, thanks to the triangle inequality, and when S is large, one would expect axiom (iii) to also be obeyed if we reduce S slightly. It
seems plausible that one could weaken axiom (iii) and still obtain decoupling results comparable to those presented here, but in this paper,
we retain this (relatively strong) axiom in order to illustrate the main ideas.

We have already demonstrated in Sec. III non-vacuousness of Hypothesis 5.1, at least in typical numerical examples. Let us say a few
more words in this direction. Recall the simulations in Sec. III. Much as there, let us assume for the moment that we are working with a band
matrix and W is the band width, that is, aij = 0 whenever ∣i − j∣ >W. One can deduce a rather trivial lower bound for the Agmon distance
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associated with v as in Definition 2.1. If vi ≥ vmin for all i in an interval I = [i1, iq] ∪N of length q, then the Agmon distance between two
components of the complement of I is

ρ(i1 − 1, iq + 1) ≥ ⌊ iq − i1 + 1 −W
W

⌋ ln(1 +
√

vmin

maxi,j∈[N]aij
).

Here, the lower bracket as usual stands for the floor function. The above inequality follows directly from the observation that the number of
non-trivial components such that viℓ ≠ 0 and viℓ+1 ≠ 0 and aiℓiℓ+1 ≠ 0 of the path from i1 − 1 to iq + 1 is at least ⌊ iq−i1+1−W

W ⌋. Going back to our
definitions and fixing some E > E and the respective partition of KE = ∪ℓKℓ into disjoint components, we denote by d the minimal “Euclidean”
distance between the components, i.e.,

d ∶= min
ℓ

min
i∈Kℓ , j∈Kℓ+1

∣i − j∣.

It is in our interest to make this distance (or rather the corresponding Agmon distance) substantial, so we might combine several disjoint
components into one Kℓ. With this at hand, we choose Ωℓ to be imal possible neighborhoods of Kℓ, which are still disjoint. Since the inner
boundary ∂−Ωℓ consists of i ∈Ωℓ such that j ∉Ωℓ and aij ≠ 0, that is, has “width” at most W, one can see that with the aforementioned choices,
the “Euclidean” distance between Kℓ and ∂−Ωℓ

min
i∈Kℓ , j∈∂−Ωℓ

≥ d
2
−W

or, to be more precise, ⌊ d+1
2 ⌋ −W. By design, the complement of Kℓ in Ωℓ consists of points such that vi > Ē, that is, there is vmin > 0 such

that v > vmin in Ωℓ/(∂−Ωℓ ∪ Kℓ). Hence, at the very least, for this vmin > 0, we have

ρ(∂−Ωℓ, Kℓ) ≥ ⌊
d/2 − 2W − 1

W
⌋ ln(1 +

√
vmin

maxi,j∈[N]aij
).

Clearly, we could take a smaller subinterval of Ωℓ/(∂−Ωℓ ∪ Kℓ) and make vmin > 0 larger, not to mention that this is a trivial lower estimate
that does not take into account high values of v. In any case, this demonstrates that Hypothesis 5.1 is non-vacuous.

Let ψ j denote the complete system of orthonormal eigenvectors of A on [N] with eigenvalues λj. Let Ψ(a,b) denote the orthogonal
projection in ℓ2([N]) onto the span of eigenvectors ψj with the eigenvalue λj ∈ (a, b). For a fixed ℓ, let φℓ,j denote a complete orthonormal
system of the local eigenvectors of A on Ωℓ with eigenvalues μℓ,j and let Φ(a,b) be the orthogonal projection onto the span of the eigenvectors
φℓ,j with the eigenvalue μℓ,j ∈ (a, b) over all ℓ and j.

The goal of this section is to prove that under the assumption of Hypothesis 5.1, A can be almost decoupled according to⋃ℓΩℓ, with the
coupling exponentially small in S. More precisely, we have the following result, which is an analog of Ref. 7 (Theorem 5.1) in the M-matrix
setting:

Theorem 5.2 (decoupling theorem). Assume Hypothesis 5.1. Fix δ > 0, and let φ be one of the local eigenvectors φℓ,j with the eigenvalue
μ = μℓ,j and μ ≤ E − δ. Then,

∥φ −Ψ(μ−δ,μ+δ)φ∥2 ≤ Wc
2

δ3 max
i,j∈[N]

∣ai,j∣3 e−
2S√
Wc ∥φ∥2. (5.1)

Conversely, if ψ is one of the global eigenvectors ψj with the eigenvalue λ = λj ≤ E − δ, then

∥ψ −Φ(λ−δ,λ+δ)ψ∥2 ≤ Wc
2

δ3 max
i,j∈[N]

∣ai,j∣3 e−
2S√
Wc ∥ψ∥2. (5.2)

Proof. We mimic the arguments from Ref. 7. Let us consider the residual vector

r := Aφ − μφ = (A − A∣Ωℓ)φ.

Note that the expression (A − A∣Ωℓ)φ only depends on the values of φ in the boundary region ∂Ωℓ. From Schur’s test, one thus has
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∥r∥ ≤Wc
1/2 max

i,j∈[N]
∣ai,j∣ ∥φ∥ℓ2(∂Ωℓ).

We apply Theorem 2.7 with E = μ and D = Ωc
ℓ so that K /D = K∩ Ωℓ = Kℓ, and ρ(k, K /D) = ρ(k, Kℓ) ≥ S for all k ∈ ∂Ωℓ by Hypothesis 5.1,

which then yields

∥φ∥2
ℓ2(∂Ωℓ) ≤ e−2αS 1

E − μ
Wc

2
max

i,j∈[N]
∣ai,j∣ ∥φ∥2.

Taking α :=
√

2/Wc and recalling that E − μ > δ, we have

∥r∥2 ≤ 1
δ

Wc
2

2
max

i,j∈[N]
∣ai,j∣3 e−

2S√
Wc ∥φ∥2.

From the spectral theorem, one has

∥r∥2 ≥ δ2∥φ −Ψ(μ−δ,μ+δ)φ∥2,

and claim (5.1) follows.
The proof of (5.2) is somewhat analogous. Let us define the residual vector

r̃ := ∑
ℓ

(A∣Ωℓ − λI)ψ∣Ωℓ = ∑
ℓ

IΩℓ[A, IΩℓ]ψ,

where the matrices IΩℓ were defined in Definition 2.6. The values (IΩℓ[A, IΩℓ])ik are only non-zero when aik ≠ 0 and i, k ∈ ∂Ωℓ. In particular,
by Hypothesis 5.1, we have ρ(k, K) ≥ S, and r̃ only depends on the values of ψ outside of the S-neighborhood of K. Applying Theorem 2.7
with E = λ and D = ∅ and applying Schur’s test as before, we conclude that

∥̃r∥2 ≤ 1
δ

Wc
2

2
max

i,j∈[N]
∣ai,j∣3 e−

2S√
Wc ∥φ∥2.

On the other hand, from the spectral theorem, we have

∥̃r∥2 = ∑
ℓ

∥(A∣Ωℓ − λI)ψΩℓ∥
2

≥ δ2∥ψ −Φ(λ−δ,λ+δ)ψ∥2,

and claim (5.2) follows. ◻
The theorem above assures that A can be essentially decoupled on the union of Ωℓ’s in the sense that the eigenvectors of A are expo-

nentially close to the span of the eigenvectors of A∣Ωℓ , and vice versa. A direct corollary of this result is that the eigenvalues of A are also
exponentially close to the combined spectrum of A∣Ωℓ over all ℓ.

Corollary 5.5. Assume Hypothesis 5.1. Fix some δ > 0. Consider the counting functions

N(λ) := #{λj : λj ≤ λ}, N0(μ) := #{μℓ,j : μℓ,j ≤ μ}.

Assume that μ ≤ E, and choose a natural number N̄ such that

Wc
2

δ3 max
i,j∈[N]

∣ai,j∣3 N̄ < e
2S√
Wc .

Then,

min(N̄, N0(μ − δ)) ≤ N(μ) and min(N̄, N(μ − δ)) ≤ N0(μ). (5.3)

Proof. Consider the first p unit eigenvectors ψ1, . . . ,ψp of A, where p := min(N̄, N(μ − δ)). By definition of the counting function, the
eigenvalues λ1, . . . , λp of these eigenvalues are less than μ − δ. Applying the second conclusion of Theorem 5.2, we conclude that
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∥ψk −Φ(0,μ)ψ
k∥2 ≤ Wc

2

δ3 max
i,j∈[N]

∣ai,j∣3 e−
2S√
Wc

for k = 1, . . ., p. Hence, for any nonzero linear combination ψ = ∑p
j=1αjψj, we have

∥ψ −Φ(0,μ)ψ∥ ≤ ∑
j
∣αj∣∥ψ j −Φ(0,μ)ψ

j∥

≤ (Wc
2

δ3 max
i,j∈[N]

∣ai,j∣3 e−
2S√
Wc )

1/2
∥ψ∥p1/2

≤ (Wc
2

δ3 max
i,j∈[N]

∣ai,j∣3 e−
2S√
Wc N̄)

1/2
∥ψ∥

< ∥ψ∥.

It follows that the restriction of Φ(0,μ) to the span of the ψj, j = 1, . . ., p, is injective, and hence, the rank N0(μ) of the matrix Φ(0,μ) is at least
p. In other words, N0(μ) ≥ p. This establishes the latter inequality in (5.3); the former one is established similarly. ◻
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