
Filoche et al. Reply: In their comment [1], Comtet and
Texier propose two interesting test cases of the formula
NADJMFðEÞ ≈ NðEÞ introduced in [2]. Here NðEÞ is the
counting function (or IDOS) and NADJMFðEÞ (called here-
after NW) is obtained by replacing in the asymptotic Weyl
formula the original potential V by the effective potential
W ≡ 1=u, u being the localization landscape. Although
this effective potential brings out a “classical” interpretation
of the disorder-induced quantum confinement, consistent
with the use of Weyl’s law even at low energies, we
did not expect the above formula to be a universal.
Nevertheless, the efficiency of this formula has been
tested in [2] and successfully applied to disordered semi-
conductors [3,4].
More recent works of our team help us to answer the

authors’ comment. It was observed in [5] that the minimum
ofW inside a localization region,Wmin;i, often offers a very
good approximation of the fundamental eigenvalue E0;i of
the same region through the relation E0;i¼ð1þd=4ÞWmin;i,
d being the dimension. In the case of a one-dimensional
infinite square well of width a, this prediction gives
ðℏ2=2mÞð10=a2Þ, remarkably close to the exact value
ðℏ2=2mÞðπ2=a2Þ.
The potential of the “pieces” model is a sum of

Dirac functions of infinite weights, which amount to
partitioning the domain into many infinite square wells
of various sizes. The resulting IDOS is a superposition of
the IDOS of these wells. Its low energy asymptotics is
dominated by the lower eigenvalues of the larger wells.
This explains why the factor found in the asymptotics of
NW is expð− ffiffiffi

8
p

ρ=kÞ instead of expð−πρ=kÞ. Accounting
for the aforementioned factor ð1þ d=4Þ would lead instead
to an asymptotic factor expð− ffiffiffiffiffi

10
p

ρ=kÞ, much closer to the
real one (

ffiffiffiffiffi

10
p

≈ 3.16 ≈ π). In addition, despite the differ-
ence between the analytic formulas for NðEÞ and NWðEÞ,
Fig. 1 shows that they are remarkably close on a wide range
of values of E.

It has to be underlined that recent developments on the
landscape theory introduced a new approximation NuðEÞ,
called “landscape law” [6], which provides bounds to NðEÞ
at all energies in the form

C1NuðαEÞ ≤ NðEÞ ≤ C2NuðEÞ: ð1Þ

This rigorous estimate confirms that the landscape-based
formula NuðEÞ accurately captures the scaling of the
counting function.
In the second example (called “supersymmetric”) the

distribution of values of the landscape u is found to follow
a power law, PðuÞ ∝ u−jμj−1, leading to NWðEÞ ¼
ðL=πÞ Rþ∞

1=E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE − 1=uÞp

PðuÞdu ∝ Ejμjþ1
2, which differs

from the theoretical behavior NðEÞ ∝ Ejμj found in the
literature [7]. Interestingly, in this case, we can evaluate the
aforementioned NuðEÞ with a back-of-the envelope calcu-
lation. NuðEÞ is defined as the number of subintervals of
length 1=

ffiffiffiffi

E
p

where the maximum of u is larger than 1=E.
The probability of u being larger than 1=E is

Rþ∞
1=E PðuÞdu

and the total number of subintervals is about L
ffiffiffiffi

E
p

which,
assuming independence of the subintervals, means that
NuðEÞ ≈ L

ffiffiffiffi

E
p

Rþ∞
1=E PðuÞdu ∝ Ejμjþ1

2. According to Eq. (1),
the actual IDOS NðEÞ should follow the same behavior.
The W-based formula NWðEÞ is then consistent with the
scaling of NðEÞ.
We can imagine several reasons for the discrepancy

between NW and the scaling of N found in [7]. Among
others, the independence assumption above may fail due to
the possible clustering of the minima of 1=u. Also, the
potentials presented in both examples are much more
singular than those considered in [2,6].
More generally, the comment raises the question of the

domain of validity of NWðEÞ which has proved to be very
efficient in surprisingly many cases. We reiterate, however,
that the new landscape law [6], rigorously proven for all
potentials bounded from below provides the correct scaling
independently of energy. On the other hand, what are the
precise prefactors, which approximation gives a better
asymptotics in concrete examples, and why remains to
be seen.
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FIG. 1. Counting functions NðEÞ and NWðEÞ computed on an
interval of length L ¼ 3.106 for ρ ¼ 1, superimposed with the
corresponding predicted analytical formulas.
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