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Abstract

Mucociliary clearance is one of the major lines of defense of the human respiratory system.

The mucus layer coating the airways is constantly moved along and out of the lung by the

activity of motile cilia, expelling at the same time particles trapped in it. The efficiency of the

cilia motion can experimentally be assessed by measuring the velocity of micro-beads trav-

eling through the fluid surrounding the cilia. Here we present a mathematical model of the

fluid flow and of the micro-beads motion. The coordinated movement of the ciliated edge is

represented as a continuous envelope imposing a periodic moving velocity boundary condi-

tion on the surrounding fluid. Vanishing velocity and vanishing shear stress boundary condi-

tions are applied to the fluid at a finite distance above the ciliated edge. The flow field is

expanded in powers of the amplitude of the individual cilium movement. It is found that the

continuous component of the horizontal velocity at the ciliated edge generates a 2D fluid

velocity field with a parabolic profile in the vertical direction, in agreement with the experi-

mental measurements. Conversely, we show than this model can be used to extract micro-

scopic properties of the cilia motion by extrapolating the micro-bead velocity measurement

at the ciliated edge. Finally, we derive from these measurements a scalar index providing a

direct assessment of the cilia beating efficiency. This index can easily be measured in

patients without any modification of the current clinical procedures.

Author summary

Mucociliary clearance is the first line of defense mechanisms of the human airways. The

mucus transporting debris, particles, microorganisms and pollutants is carried away by

the coordinated motion of cilia beating at the surface of the airway epithelium. We present

here a mathematical and numerical model aiming at defining a global index for assessing

the efficiency of this beating. Numerical simulations show that the bead velocity parallel

to the wall varies according a parabolic profile with the distance to the wall. The velocity
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extrapolated at the wall is demonstrated to be a measurement of the momentum transfer

between cilia and the surrounding fluid. This model allows us to interpret experimental

measurements performed in a companion article and to propose a universal index charac-

terizing the beating efficiency, which can be extracted in the current clinical setting.

Introduction

Mucociliary clearance is one of the major defense mechanisms of the respiratory airway sys-

tem. The mucus layer coating the epithelial surface of the airways filters the inhaled air by trap-

ping potentially harmful material (fungi, bacteria and other particles) [1–4]. This mucus layer

is continuously carried away and out of the airways by the activity of motile cilia. Neighboring

cilia beat in an organized manner with a small phase lag, their tips creating an undulating sur-

face on top of the cilia layer which deforms in a wave-like fashion called the metachronal wave

[5–7].

The beat pattern of an individual cilium displays a two-stroke effective-recovery motion

[8]. During the effective stroke, cilia beat forwards and engage with the mucous layer, propel-

ling it forward. In contrast, during the recovery stroke, they return to their initial position in

the underlying periciliary fluid, minimizing thereby the drag on the mucus in the opposite

direction (Fig 1, left). This asymmetry in the beat pattern is responsible for a net fluid flow in

the direction of the effective stroke. In the airways, each mature ciliated cell may be covered

with up to 200 cilia, with a surface density around 5–8 cilia/μm2 [6, 9]. A cilium, approximately

6 μm long and of diameter around 0.2 μm, beats 12 to 15 times per second, resulting in a veloc-

ity of the mucus layer of several mm/min [10].

Fig 1. Schematic representation of the stroke of an individual cilium and the envelope model. (Left) Simplification of the stroke cycle as an ellipse.

(Right) Representation of the envelope model covering the cilia layer and the propagation of the metachronal wave. (Inspired by Velez-Cordero et al. [23])

https://doi.org/10.1371/journal.pcbi.1005552.g001
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This work intends to build a mathematical model of the experiments described in a com-

panion paper [11], and to derive from this model an efficient and reliable method to assess the

cilia beating efficiency in a clinical setting. In the experiments, ciliated cell clusters issued from

nasal brushing are immersed in a cell survival medium devoid of mucus, pushing forward the

medium as they beat. One has to stress here that the absence of mucus is an important ingredi-

ent of the experimental setting and the developed mathematical model. Polystyrene micro-

beads are then used as massless tracers to visualize and quantify the fluid velocity field around

the cilia. The theoretical and numerical work presented here therefore aim at a quantitative

modeling of the ciliary beating, then of the fluid flow generated by it.

In the literature, two main types of ciliary beating models can be found: discrete-cilia models

and volume-force models [12]. In discrete-cilia model, each cilium is modeled as a discrete

body and its shape is parametrized along its stroke period [1, 13, 14]. Discrete-cilia models are

themselves divided into two types: in the prescribed beating models, the cilium motion is

imposed as an input to the simulation [15]; in the couple-internal mechanics/fluid-structure
interaction models [16, 17], cilia motions originate from the coupling between the internal

structure of cilia and the external viscous forces. In contrast, in volume-force models cilia are

modeled through a phenomenological continuous force distribution, varying in space and

time as the cilia beat [18–20]. In this second type of model, the envelope modeling approach

accounts for the formation of metachronal waves above the cilia layer [21]. The cilia tips are

seen from the fluid as a “wavy wall”, hereby ignoring the details of the sub-layer dynamics

[22, 23] (see Fig 1, right).

Many studies have addressed experimentally [24–26] and numerically [27–31] the effect of

fluid visco-elasticity on transport and locomotion. We want to stress here that in our model,

no finite layer of viscous mucus sits on top of the cilia, since they are surrounded by a semi-

infinite layer of watery fluid.

In the following, we first compute the wave envelope boundary condition from the cilia

motions, based on the work of Ross [22]. We then derive the non linear equations for a fluid

flow periodic in the direction of the metachronal wave. These equations are expanded in ε,

which is the ratio of the cilium amplitude to the fluid layer thickness, then solved using a Fou-

rier decomposition. The steady contribution to the flow field in the vertical direction above the

cilia is shown to exhibit a parabolic profile, to a very good approximation. We finally show

that measuring microbead velocities as a function of the distance to the ciliated edge enables

us to compute a scalar index which accounts for the transfer of momentum between the cilia

and the fluid, and therefore assesses the cilia beating efficiency.

Materials and methods

We present here a two-dimensional model of cilia, fluid, and micro-beads motion.

From the individual cilium motion to the metachronal wave

Each individual cilium is assumed to undergo a periodic motion in which its tip follows an

elliptic trajectory, see Fig 1, left. Taking the limit of a continuous cilia distribution, the cilia

array is simplified as an undulating surface that covers the cilia layer, ignoring the details of

the sub-layer dynamics (Fig 1, right) [22, 23]. The x� axis is chosen parallel to the ciliated edge,

each ciliary tip being located around y� = 0 on average (the ‘�’ notation stands for dimensioned

quantities, and will be removed once we switch to dimensionless quantities). The tip of a cil-

ium located at the horizontal coordinate ξ� is assumed to follow a periodic elliptic trajectory

centered in (ξ�, 0) during each elementary beat (Fig 2). At time t�, the tip coordinates ðX�w;Y
�
wÞ
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are

X�w ¼ x
�
� a cos ðot�Þ

Y�w ¼ ba sin ðot�Þ
ð1Þ

(

where β is the ellipse eccentricity, 2a is its major axis in the x� direction, and 2βa its minor axis

in the y� direction. For β> 0, the tip orbits clockwise, while for β< 0, the tip orbits

counterclockwise.

To reproduce the backwards traveling metachronal wave of wavelength λ, we introduce in

the periodic motion of each cilium a phase shift
2px

�

l
which linearly depends on the cilium

position:

X�w ¼ x
�
� a cos ot� þ

2px
�

l

� �

Y�w ¼ ba sin ot� þ
2px

�

l

� � ð2Þ

8
>>><

>>>:

The corresponding wave frequency is f = 2πω and its speed is c = f λ. By setting the space and

time units respectively to be h and ω−1, dimensionless parameters ε and k, and variables

(Xw, Yw) are introduced:

ε ¼
a
h
; k ¼

2ph
l

; Xw ¼
X�w
h

; Yw ¼
Y�w
h
; x ¼

x�

h
; y ¼

y�

h
; x ¼

x
�

h
; t ¼ ot� ð3Þ

Fig 2. Schematic elliptic motion of an individual ciliary tip.

https://doi.org/10.1371/journal.pcbi.1005552.g002
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The motion equations of each tip are thus rewritten in a dimensionless form:

Xwðx; tÞ ¼ x � ε cos ðkxþ tÞ

Ywðx; tÞ ¼ bε sin ðkxþ tÞ
ð4Þ

(

In the following, we assume that the ciliary beating amplitude is much smaller than the film

thickness, i.e. ε� 1. In the limit of continuously distributed cilia along the x axis, the envelope

of their tip motions forms a continuous boundary that generates a forcing on the fluid layer

above the cilia. Starting from Eq 4, we now express the position of a particle of this envelope

(or wall) in the Eulerian frame of reference (x, y, t). A tip located at position x at time t corre-

sponds to a cilium centered in (ξ, 0) such that:

x ¼ x � ε cos ðkxþ tÞ ð5Þ

This equation shows that (x − ξ) is of order ε. Therefore the vertical location of the cilia wall

yw(x, t), which is also the y-coordinate of the corresponding cilium, Yw(ξ, t), can be developed

around ξ = x using a Taylor expansion:

ywðx; tÞ ¼ Ywðx; tÞ ¼ Ywðx; tÞ þ x � xð Þ
@Yw

@x

�
�
�
�
�

x¼x

þ
ðx � xÞ2

2

@
2Yw

@x
2

�
�
�
�
�

x¼x

þ � � � ð6Þ

Since both Yw and (ξ − x) are first order in ε (Eqs 4 and 5), the expansion to the second order

in ε of yw is

ywðx; tÞ ¼ εb sin ðkx þ tÞ þ ε2bk cos 2ðkxþ tÞ ð7Þ

Now that we have determined the location of the ciliated wall at time t, we can derive its veloc-

ity. The horizontal component of the wall velocity is obtained as the time derivative of the

Lagrangian velocity of the tip at location x at time t, while its vertical component is calculated

from the time derivative of the vertical coordinate of the wall at position x and time t:

uwðx; tÞ ¼
@Xw

@t

� �

x

¼ εsinðkxþ tÞ

vwðx; tÞ ¼
@yw
@t
¼ εb cosðkxþ tÞ � ε2bk sinð2ðkxþ tÞÞ

ð8Þ

8
>>><

>>>:

The value of ξ to insert in the above horizontal velocity is given by Eq 5. Expanding the hori-

zontal component of the wall velocity in Taylor series to the second order in ε yields

uwðx; tÞ ¼
@Xw

@t

�
�
�
�
�

x¼x

þ ðx � xÞ
@uw

@x

�
�
�
�
�

x¼x

þ . . .

¼ ε sin ðkx þ tÞ þ ½ε cos ðkx þ tÞ�½εk cos ðkx þ tÞ�

¼ ε sin ðkx þ tÞ þ ε2k cos 2ðkxþ tÞ

ð9Þ

In summary, at location x in the Eulerian frame, the second order expansion in ε of the vertical

Characterizing micro-bead motion in a ciliary beating induced flow: Modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005552 July 14, 2017 5 / 21

https://doi.org/10.1371/journal.pcbi.1005552


position yw and of the velocity vector (uw, vw) of the ciliated wall are:

ywðx; tÞ ¼ εb sin yþ
ε2bk

2
1þ cos 2yð Þð Þ ð10Þ

uwðx; tÞ ¼ ε sin yþ
ε2k
2

1þ cos 2yð Þð Þ ð11Þ

vwðx; tÞ ¼ εb cos y � ε2bk sin ð2yÞ ð12Þ

where θ = kx + t is the local phase of the metachronal wave. We now introduce the first and

second orders of the ε-expansion of the wall velocity, called ~Uw;1 ¼ ðuw;1; vw;1Þ and

~Uw;2 ¼ ðuw;2; vw;2Þ, respectively, defined such that:

~Uw ¼ ε ~Uw;1 þ
ε2

2
~Uw;2 ð13Þ

In summary, the first and second orders in ε of the location and velocities of the cilia wall are:

yw;1ðyÞ ¼ b sin y ¼
b

2i
eiy �

b

2i
e� iy

yw;2ðyÞ ¼ bk 1þ cos 2yð Þð Þ ¼ bkþ
bk
2
e2iy þ

bk
2
e� 2iy

uw;1ðyÞ ¼ sin y ¼
1

2i
eiy �

1

2i
e� iy

uw;2ðyÞ ¼ k 1þ cos 2yð Þð Þ ¼ kþ
k
2
e2iy þ

k
2
e� 2iy

vw;1ðyÞ ¼ b cos y ¼
b

2
eiy þ

b

2
e� iy

vw;2ðyÞ ¼ � 2bk sin ð2yÞ ¼ ibk e2iy � ibk e� 2iy

ð14Þ

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

We can observe therefore that all velocity terms at the ciliated wall are oscillatory, except one

steady contribution to the horizontal velocity at the second order in ε that appears in uw,2. This

contribution is proportional to k and will be the origin of the steady horizontal motion of the

fluid above the cilia.

Computing the flow field

We now compute the oscillatory flow field of a fluid of density ρ and viscosity μ in the channel

comprised between y = yw(x, t) and y = h in the vertical direction. Due to the periodic nature

of the forcing from the wall, we will consider periodic solution in the x direction. Given the

normalization chosen in Eq 3, the normalization factors for velocity and pressure are hω and

μω, respectively. Hence, the dimensionless Navier-Stokes equation reads

a2

 
@~U
@t
þ ð~U �r

!

Þ ~U

!

¼ � r
!

pþ D~U ; ð15Þ

where ~U ¼ ðu; vÞ is the dimensionless velocity field, p is the dimensionless pressure, and α is

the Womersley number defined by a2 ¼
rh2o

m
. In the limit α! 0, one recovers the classical

stationary Stokes equation. In our case, typical values for the channel thickness and beating
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frequency are h = 50 μm and f = 10 Hz. In water (ρ = 1 g.cm−3 and μ = 1 cP), the above expres-

sion leads to a Womersley number α� 0.4, which means α2 of the order of 0.1.

Boundary conditions. Boundary conditions are periodic in the horizontal direction with

a period equal to the wavelength of the metachronal wave (corresponding here to λ/h = 2π/k):

~U
2p

k
; y; t

� �

¼ ~U ð0; y; tÞ ð16Þ

At the upper side of the domain (y = 1), one assumes vanishing vertical velocity and vanishing

shear stress due to the presence of stagnant fluid above the channel:

vðx; 1; tÞ ¼ 0 and
@u
@y

�
�
�
�
�
ðx;1;tÞ

¼ 0 ð17Þ

Next to the cilia envelope (y = yw), we introduce a Robin-type boundary condition, which

involves both the velocity and its normal derivative (Eq 18). The factor in front of the normal

derivative, called ϕ, accounts for the partial momentum transfer between the wall and the fluid

due to the non continuous coverage of the cilia. ϕ = 0 corresponds to a no slip boundary condi-

tion, while ϕ! +1 corresponds to a vanishing shear stress at the wall (perfect sliding). This

condition is analogous to that of a fluid flow next to a porous wall, where the presence of pores

reduces the transfer of momentum between the wall and the fluid [32, 33]:

~U � �
@~U
@y

 !�
�
�
�
�
ðx;yw ;tÞ

¼ ~Uwðx; tÞ ð18Þ

If expressed in dimensional quantities, the parameter ϕ becomes a length ϕ� = hϕ. For a porous

wall, this length is proportional to the square root of the permeability. In our case, it is inter-

preted as a characteristic sliding length and will be related to the cilia surface density.

Expanding the flow field ~U in powers of ε, ~U ¼ ε ~U 1 þ
ε2

2
~U 2, the boundary conditions

can be expressed at all orders in ε. Since yw is first order in ε (see Eq 10), the boundary condi-

tion can be expanded around y = 0 both for the velocity ~U and its normal derivative @~U=@y:

~U ðywÞ ¼ ~U ð0Þ þ yw
@~U
@y

�
�
�
�
�
y¼0

þOðε3Þ

¼ ε~U 1ð0Þ þ
ε2

2
~U 2ð0Þ þ εyw;1 þ

ε2

2
yw;2

� �

ε
@~U 1

@y

�
�
�
�
�
0

þ
ε2

2

@~U 2

@y

�
�
�
�
�
0

" #

þOðε3Þ

¼ ε ~U 1ð0Þ þ
ε2

2
~U 2ð0Þ þ 2yw;1

@~U 1

@y

" #

þOðε3Þ

ð19Þ

@~U
@y

�
�
�
�
�
yw

¼
@~U
@y

�
�
�
�
�
0

þ yw
@

2~U
@y2

�
�
�
�
�
0

þOðε3Þ

¼ ε
@~U 1

@y

�
�
�
�
�
0

þ
ε2

2

@~U 2

@y

�
�
�
�
�
0

þ εyw;1 þ
ε2

2
yw;2

� �

ε
@

2~U 1

@y2

�
�
�
�
�
0

þ
ε2

2

@
2~U 2

@y2

�
�
�
�
�
0

" #

þOðε3Þ

¼ ε
@~U 1

@y

�
�
�
�
�
0

þ
ε2

2

@~U 2

@y

�
�
�
�
�
0

þ 2yw;1
@

2~U 1

@y2

�
�
�
�
�
0

" #

þOðε3Þ

ð20Þ
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Inserting Eqs 19 and 20 into Eq 18 finally gives the first two orders of the ε-expansion of the

boundary condition at the ciliated wall:

~U 1ð0Þ � �
@~U 1

@y

�
�
�
�
�
0

¼ ~Uw;1 ð21Þ

~U 2ð0Þ � �
@~U 2

@y

�
�
�
�
�
0

¼ ~Uw;2 � 2yw;1
@~U 1

@y

�
�
�
�
�
0

� �
@

2~U 1

@y2

�
�
�
�
�

0

 !

ð22Þ

The stream function

Since the flow is two-dimensional and incompressible, a natural formulation of the problem is

obtained by introducing the stream function ψ such that:

u ¼
@c

@y
and v ¼ �

@c

@x
ð23Þ

Such a solution automatically fulfills the continuity equation divð~U Þ ¼ 0. The dimensionless

Navier-Stokes equation now reads:

a2ðcyt þ cycyx � cxcyyÞ ¼ � px þ cyxx þ cyyy

a2ð� cxt þ cycxx þ cxcxyÞ ¼ � py � cxxx � cxyy

ð24Þ

(

We derive a Partial Differential Equation (PDE) in ψ only by taking the y-derivative of the first

equation and subtracting it to it the x-derivative of the second equation:

a2fcxxt þ cyyt þ cycyyx � cxcyyy þ cycxxx � cxcxxyg ¼ cyyyy þ 2cxxcyy þ cxxxx ð25Þ

This equation can finally be rewritten in the following compact form:

a2fDct þ cyDcx � cxDcyg ¼ D
2
c ð26Þ

Asymptotic expansion of the stream function. We now expand the stream function to

the second order in ε, as it was done for the flow field:

c ¼ εc1 þ
ε2

2
c2 ð27Þ

The zero order term ψ0 vanishes since the fluid is set into motion only by the cilia beating

(ε> 0). The two orders in ε are solved in sequence. The first order of Eq 26 is:

a2Dc1;t ¼ D
2
c1 ð28Þ

while the second order is:

a2fDc2;t þ 2c1;yDc1;x � 2c1;xDc1;yg ¼ D
2
c2 ð29Þ

The boundary condition at the lower wall (the cilia envelope) couples the first and second

orders ψ1 and ψ2 through the Robin condition of Eq 18. The two velocity components and the

Characterizing micro-bead motion in a ciliary beating induced flow: Modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005552 July 14, 2017 8 / 21

https://doi.org/10.1371/journal.pcbi.1005552


two orders in ε translate into 4 equations at the wall boundary:

c1;yjðx;0Þ � � c1;yy ¼ sin y ð30Þ

c1;xjðx;0Þ � � c1;xy ¼ � b cos y ð31Þ

c2;yjðx;0Þ � � c2;yy ¼ kð1þ cos ð2yÞÞ � 2b sin y ðc1;yy � � c1;yyyÞ ð32Þ

c2;xjðx;0Þ � � c2;xy ¼ 2bk sin ð2yÞ � 2b sin y ðc1;xy � � c1;xyyÞ ð33Þ

The stream function can thus be computed in first approximation as if the domain were a

straight channel comprised between y = 0 and y = 1.

First order of the stream function. ψ1(x, y, t) is a periodic function of period 2π/k along x
that solves the following system:

D
2
c1 � a2Dc1;t ¼ 0

c1;y � � c1;yy ¼ sin y at y ¼ 0

c1;x � � c1;xy ¼ � b cos y at y ¼ 0

c1;yy ¼ 0 at y ¼ 1

c1;x ¼ 0 at y ¼ 1

ð34Þ

8
>>>>>>><

>>>>>>>:

We expand ψ1 in Fourier series along the x direction, each term corresponding to a wave trav-

eling forward or backward at dimensionless speed 1.

c1ðx; y; tÞ ¼
Xþ1

n¼� 1

anðyÞ e
inðkxþtÞ ð35Þ

Due to the linearity of the PDE in Eq 34, each term of this Fourier series satisfies the same

equation, which implies:

ða0000n � 2k2n2a00n þ k4n4anÞ � ina2 ða00n � k2n2anÞ ¼ 0 : ð36Þ

this linear ODE is solved using its characteristic equation:

d
4
� ð2k2n2 þ ina2Þd

2
þ k2n2 ðk2n2 þ ina2Þ ¼ 0 ð37Þ

whose 4 solutions are:

d ¼ �kjnj and d ¼ �gn with gn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2n2 þ ina2
p

ð38Þ

The coefficients of the Fourier decomposition of ψ1 are determined by the boundary condi-

tions. In real experiments carried out on fluid flow next to ciliated edges [11], the value of k is

much larger than 1 (which means that the channel width along y is much larger than the meta-

chronal wavelength). This enables us to translate the boundary condition at y = 1 (the last two

of Eq 34) into the cancellation of the coefficients attached to the roots with positive real part in

Eq 37. Finally, since the only non homogeneous terms appearing in these boundary conditions

are in eiθ and e−iθ (sin θ and cos θ), we only retain the coefficients corresponding to n = 1 and

n = −1, which leads to the following expression for ψ1:

c1ðx; y; tÞ ¼ ½A1e
� ky þ B1e

� g1y� eiy þ ½A� 1e
� ky þ B� 1e

� g� 1y� e� iy ð39Þ

Since g� 1 ¼ �g1, imposing that ψ1 is real valued implies that the coefficients also satisfy A� 1 ¼
�A1
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and B� 1 ¼
�B1. Therefore, ψ1 can be expressed as:

c1ðx; y; tÞ ¼ ½A1e
� ky þ B1e

� g1y� eiy þ c:c: ; ð40Þ

where c.c. stands for complex conjugate. The flow field at first order in ε is then:

u1 ¼ c1;y ¼ � 2 Ref½kA1e� ky þ g1B1e� g1y� eiyg

v1 ¼ � c1;x ¼ � 2k Imf½A1e� ky þ B1e� g1y� eiyg
ð41Þ

(

A1 and B1 are determined from the two boundary conditions at y = 0 in Eq (34):

� kA1 � g1B1 � �ðk2A1 þ g2
1
B1Þ ¼

1

2i

ik½A1 þ B1 � �ð� kA1 � g1B1Þ� ¼ �
b

2

ð42Þ

8
>><

>>:

which finally gives:

A1 ¼
i

2ð1þ k�Þ

bg1

k
� 1

g1 � k

0

B
@

1

C
A and B1 ¼

i
2ð1þ g1�Þ

1 � b

g1 � k

� �

ð43Þ

Second order of the stream function: The steady contribution. ψ2(x, y, t), the second

order in ε of the stream function, is a periodic function of period 2π/k along x that solves the

following system:

D
2
c2 � a2Dc2;t ¼ 2a2fc1;yDc1;x � c1;xDc1;yg

c2;y � � c2;yy ¼ kð1þ cos ð2yÞÞ � 2b sin y c1;yy þ 2b� sin y c1;yyy at y ¼ 0

c2;x � � c2;xy ¼ 2bk sin ð2yÞ � 2b sin y c1;xy þ 2b� sin y c1;xyy at y ¼ 0

ð44Þ

8
>><

>>:

Since the first order ψ1 of the stream function contains only terms in eiθ and e−iθ, as seen in the

previous section, a rapid analysis of the above boundary conditions shows that the second

order ψ2 will only contain terms either constant or proportional to e2iθ and e−2iθ. We are inter-

ested here only in the constant term, which corresponds to the first non vanishing contribu-

tion to the steady flow field in the ε-expansion. From Eq 29, we know that the steady part of

ψ2, here called c
ðsÞ
2

, solves the following equation

D
2
c
ðsÞ
2
¼ 2a2 fc1;yDc1;x � c1;xDc1;yg

ðsÞ
ð45Þ

where the superscript ‘(s)’ on the right hand side stands for the steady part. More precisely, the

bracketed term can be rewritten as:

c1;yDc1;x � c1;xDc1;y ¼ c1;yðc1;xxx þ c1;xyyÞ � c1;xðc1;xxy þ c1;yyyÞ

¼ ðc1;yc1;xyy � c1;xc1;yyyÞ þ ðc1;yc1;xxx � c1;xc1;xxyÞ

¼ ðc1;yc1;xy � c1;xc1;yyÞy þ ðc1;yc1;xx � c1;xc1;xyÞx

ð46Þ

Let us examine the x-dependency of the parentheses appearing in the last line. All products

contain terms that are either constant or oscillating in x. Therefore the contribution of the sec-

ond parenthesis to the steady stream function can only be constant. Its x-derivative then
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vanishes and can be removed from the equation satisfied by c
ðsÞ
2

, leaving only the first paren-

thesis:

c
ðsÞ
2;yyyy ¼ 2a2 ðc1;yc1;yx � c1;xc1;yyÞ

ðsÞ
y ð47Þ

Integrating along y yields:

c
ðsÞ
2;yyy ¼ 2a2 ðc1;yc1;yx � c1;xc1;yyÞ

ðsÞ
þ 2A2 ð48Þ

where 2A2 is an integration constant. Note that ε2/2 × 2A2 = ε2 A2 can actually be interpreted

as the steady component of the pressure gradient pðsÞx which appears in the right hand side of

the Navier-Stokes equation (Eq 15). The model therefore predicts a constant pressure gradient

along x. From the previous section, we know that ψ1 can be written as:

c1ðx; y; tÞ ¼ a1ðyÞ e
iy þ c:c: with a1ðyÞ ¼ A1e

� ky þ B1e
� g1y ð49Þ

Inserting this expression of ψ1 into the right hand side parenthesis of Eq 48 leaves:

ðc1;yc1;yx � c1;xc1;yyÞ
ðsÞ
¼ � ikja01j

2
� ika1�a

@
1 þ c:c: ¼ 2k Imða1�a

@
1Þ ð50Þ

(The first term of the above right hand side being imaginary, its contribution vanishes when

adding its complex conjugate). Eq 48 and the first boundary condition of Eq 44 thus provide

the following simpler system for c
ðsÞ
2

(the second boundary condition deals with x-derivatives

that vanish in the steady flow due to the translation invariance of the problem):

c
ðsÞ
2;yyy ¼ 4a2k Imða1�a001Þ þ 2A2

c
ðsÞ
2;yðx; 0Þ � � c

ðsÞ
2;yyðx; 0Þ ¼ kþ C

ð51Þ

8
<

:

where C stands for the constant contribution of −2β sin θ (ψ1, yy − ϕ ψ1, yyy)|y = 0. This constant

C is determined using the expression of ψ1 in Eq 49:

c1;yy � � c1;yyy ¼ ða
00

1
� � a000

1
Þ eiy þ c:c: ð52Þ

Therefore the constant contribution C can be expressed from the constants A1 and B1 com-

puted in the previous section:

C ¼ 2b Imða00
1
ð0Þ � � a000

1
ð0ÞÞ ¼ 2b Imðk2A1 þ g2

1
B1 þ k3�A1 þ g3

1
�B1Þ ð53Þ

Using the values of A1 and B1 obtained in the previous section gives immediately:

C ¼ 2b Im
ik2

2

bg1

k
� 1

g1 � k

0

B
@

1

C
Aþ

ig2
1

2

1 � b

g1 � k

� �
2

6
4

3

7
5 ¼ bkþ bð1 � bÞ Reðg1Þ ð54Þ

We now turn to Im(a1�a001) in order to determine c
ðsÞ
2

. Using Eq 40, this term can be rewritten:

Imða1�a001Þ ¼ ImfðA1e� ky þ B1e� g1yÞðk2 �A1e� ky þ �g2
1

�B1e� �g1 yÞg

¼ Imf�g2
1
A1

�B1e� ðkþ�g1Þy þ k2 �A1B1e� ðkþg1Þy þ �g2
1
B1

�B1e� ðg1þ�g1Þyg
ð55Þ

Using the relation �g2
1
¼ k2 � ia2 allows us to simplify the above expression to:

Imða1�a001Þ ¼ Imf� ia2A1
�B1e� ðkþ�g1Þy � ia2jB1j

2e� ðg1þ�g1Þyg

¼ � a2 ½ReðA1
�B1e� ðkþ�g1ÞyÞ þ jB1j

2e� ðg1þ�g1Þy�
ð56Þ
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This expression is now inserted into the first equation of Eq 51, which gives after 2 integra-

tions:

c
ðsÞ
2;y ¼ A2 y

2 þ B2 y þ C2 � 4a4k Re A1
�B1

e� ðkþ�g1Þy

ðkþ �g1Þ
2

 !

þ jB1j
2 e� ðg1þ�g1Þy

ðg1 þ �g1Þ
2

" #

; ð57Þ

where B2 and C2 are integration constants. We observe here that the steady contribution to the

horizontal fluid velocity appears as the sum of one parabolic and two exponential profiles. The

parabolic profile depends on integration constants A2, B2, and C2 that are determined using

the boundaries conditions. Velocity and shear stress vanish at y = 1, so that the fluid in the

flowing layer matches the stagnant fluid above. The boundary conditions take the following

form:

c
ðsÞ
2;yð1Þ ¼ 0 ¼ A2 þ B2 þ C2 þ G1

c
ðsÞ
2;yyð1Þ ¼ 0 ¼ 2A2 þ B2 þ G2

c
ðsÞ
2;yð0Þ � � c

ðsÞ
2;yyð0Þ ¼ kþ C ¼ C2 � �B2 þ G3 þ kþ C

ð58Þ

8
>>><

>>>:

where G1, G2, and G3 are defined such that:

G1

4a4k
¼ � Re A1

�B1

e� ðkþ�g1Þ

ðkþ �g1Þ
2

 !

� jB1j
2 e� ðg1þ�g1Þ

ðg1 þ �g1Þ
2

G2

4a4k
¼ Re A1

�B1

e� ðkþ�g1Þ

ðkþ �g1Þ

� �

þ jB1j
2 e� ðg1þ�g1Þ

ðg1 þ �g1Þ

G3 þ kþ C
4a4k

¼ � Re
A1

�B1

ðkþ �g1Þ
2

 !

� � Re
A1

�B1

ðkþ �g1Þ

� �

�
jB1j

2

ðg1 þ �g1Þ
2
� �

jB1j
2

ðg1 þ �g1Þ

ð59Þ

8
>>>>>>>>>><

>>>>>>>>>>:

The coefficients of the steady parabolic profile are finally:

A2 ¼
G1 � ð1þ �ÞG2 � G3

1þ 2�

B2 ¼
� 2G1 þ G2 þ 2G3

1þ 2�

C2 ¼
� 2� G1 þ � G2 � G3

1þ 2�

ð60Þ

8
>>>>>>><

>>>>>>>:

In summary, the velocity field of the fluid flow can be expanded in powers of ε. The first non

vanishing order in ε for the oscillatory part of the fluid flow is of order 1 while at the second

order, a steady contribution appears. This steady flow is the one responsible for the micro-

bead motion observed in the experiments. It has essentially a parabolic profile whose coeffi-

cients are directly determined from the values of the quantities k, α, β, and ϕ, which are in turn

deduced from the fundamental parameters of the cilia motion and the surrounding fluid (fre-

quency, amplitude, density, viscosity). In the experiments, fitting the measured micro-bead

velocities with a parabolic profile will allow us to extract quantities that are not easily measur-

able, such as the cilium amplitude a or the transfer parameter ϕ.

The steady velocity profile. In experiments carried out on real samples, the values of k
are larger than 10 (in most cases much larger), and α2 is about 0.1. We can therefore safely

assume that e−k� 1 and α� 1. In this situation, G1 and G2 are negligible compared to G3,
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and the coefficients of the parabolic profile are:

A2 ¼ �
G3

1þ 2�
; B2 ¼

2G3

1þ 2�
; C2 ¼ �

G3

1þ 2�
ð61Þ

This leads to the following steady flow:

uðyÞ ¼ �
ε2

2

G3

1þ 2�
y2 þ

2G3

1þ 2�
y �

G3

1þ 2�

� �

¼ �
ε2

2

G3

1þ 2�
ðy � 1Þ

2
ð62Þ

One recovers here a parabolic profile with vanishing velocity and vanishing shear stress at

y = 1. Moreover, from Eq 59, the term proportional to 4α4k in G3 can be neglected, leading to:

G3 � � k � C ¼ � k � bk � bð1 � bÞ Reðg1Þ � ðb
2
� 2b � 1Þk ð63Þ

The dimensionless extrapolated velocity at the ciliated wall in this case is then:

uð0Þ ¼
ε2

2

1þ 2b � b
2

1þ 2�

� �

k ¼
ε2

2

2 � ðb � 1Þ
2

1þ 2�

� �

k ð64Þ

One can see here that the extrapolation of the flow velocity (hence of the microbead) at the cili-

ated wall depends on β, ϕ, and k. It has a maximum value, ε2k/(1 + 2ϕ), which is achieved for

β = 1, i.e., for a circular motion of the cilia tips. The case β = 0, together with a finite value of

ε = a/h corresponds to the limit of the flat horizontal motion of the cilia tips. The dimension-

less fluid velocity at the cilia wall in this situation is:

uð0Þ ¼
ε2k

2ð1þ 2�Þ
ð65Þ

One would think that the limit case β = 0 would lead to a vanishing steady velocity of the fluid,

since all cilia undergo the same oscillatory motion, with a left/right symmetry. What we see

here is that the metachronal wave (antiplectic, i.e. going backwards for k> 0) breaks this sym-

metry and leads to a positive steady contribution to the fluid velocity. When k = 0 (no wave),

one recovers a pure oscillatory motion of the fluid, with no net fluid motion.

Finally, the limit β! +1 corresponds to a flat vertical motion of the cilia tips. Since

ε = a/h is the adimensioned horizontal beating amplitude, the limit has to be taken with

ε! 0, βε remaining constant as the adimensioned vertical amplitude b/h. The horizontal

component of the steady velocity is then:

uð0Þ ¼ lim
b!þ1

ε2

2

1þ 2b � b
2

1þ 2�

� �

k ¼ �
b2k

2h2ð1þ 2�Þ
ð66Þ

Interestingly, the metachronal wave also breaks the left/right symmetry in this case, but in the

opposite direction. In summary, the existence of an antiplectic metachronal wave triggers a net

fluid motion along Ox, in the positive direction for smaller values of β and in the opposite

direction for larger values of β, the critical value βc being obtained when (βc − 1)2 = 2 (accord-

ing to Eq 64), i.e., for bc ¼ 1þ
ffiffiffi
2
p
� 2:41. In realistic situations, the trajectories of cilia tips

are very flat, so that one is always in the case of small values of β: the fluid steady motion occurs

always in the direction opposite to the metachronal wave propagation.
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Modeling the micro-bead motion

Once the oscillatory velocity field ~U ¼ ðu; vÞ is computed, the trajectories and the crossing

times of micro-beads in this field are calculated by solving their equation of motion:

m
d~U �b
dt�
¼ ~F drag ; ð67Þ

where m is the individual mass of the micro-bead, ~U �b its velocity, and~Fdrag is the drag force

applied on the bead by the fluid flow. Assuming a spherical shape for the bead and small speed

differences between the bead and the fluid, the drag force takes the Stokes expression

~F drag ¼ � 6pRmð~U �b � ~U
�Þ ; ð68Þ

where R stands for the bead diameter. Using the previously defined space and time units h and

ω−1, the adimensioned version of Eq 67 reads:

d~Ub

dt
¼
~U � ~Ub

Stk
with Stk ¼

mo

6pRm
ð69Þ

Stk is the bead Stokes number, which characterizes the effective inertia of the bead in the fluid

flow. For spherical particles of radius R and density ρb, this number also reads:

Stk ¼
4

3
pR3rbo

6pRm
¼

2

9

R2rbo

m
ð70Þ

The micro-beads are about 4.5 μm diameter, and made out of polystyrene of density ρb of

order 1 g.cm−3. At 10 Hz in water, the corresponding Stokes number is about 10−4, which

means that the micro-beads can be considered as massless tracers. Their velocity can be

assumed to be permanently equal to the fluid velocity at the same location.

For each micro-bead entering the simulation window at x = 0 and a given altitude y0, the

effective speed is computed as:

Veffðy0Þ ¼
L

tðy0Þ
¼

L
H

T y0
dt
¼

L
I

T y0

ds
k~U ðsÞk

; ð71Þ

where τ(y0) is the crossing time of the micro-bead entering at (0, y0), and T y0
is the trajectory

followed by this micro-bead. During each elementary step of this trajectory, the infinitesimal

duration is dt ¼ ds=k~U ðsÞk, ~U being the fluid velocity at curvilinear abscissa s of the trajectory.

The effective speed Veff corresponds to the quantity measured in our experiments.

Results

Simulation of micro-bead motions

The fluid velocity field is solved using the Fourier transform decomposition exposed earlier.

This field is periodic both in space and time. Fig 3A and 3B displays the horizontal and vertical

components of the fluid velocity, respectively, while Fig 3D presents the micro-bead trajecto-

ries in this fluid, simulated by numerically solving Eq 69. One can observe that the beads follow

slightly wavy trajectories when close to the cilia wall, but that these trajectories become almost

perfect straight lines when moving away from the wall farther than a cilia length. This means

that the transit time of a micro-bead across the simulation window is dominated by the steady

part of the flow field.
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Fig 4A displays the various contributions to the flow profile in the y-direction for typical

values of the input parameters CBF, CBA, λ, ϕ, and h. One observes that the total bead velocity

(blue line) is essentially dominated by the steady parabolic contribution (black line) deter-

mined by the coefficients A2, B2, and C2 in Eq 57. The oscillatory part coming from the first

order in ε (green line) brings a significant contribution only very close to the ciliated edge, and

the exponential contribution in the steady part is negligible everywhere. Consequently, mea-

suring the bead velocity as function of the distance to the ciliated edge essentially amounts to

measuring the steady parabolic profile of the flow. Fie 4B shows the excellent agreement

between the model and the actual measurements performed on different ciliated edges (here 3

samples from 3 different subjects are presented).

Fig 3. Numerical simulation of the velocity field and micro-bead trajectories. (A) Color view of the horizontal velocity field. The dashed square

represents the zoomed-in area represented in Fig 3C. The beating parameters are: CBF = 10 Hz, CBA = 8 μm, λ = 10 μm,Φ = 0, h = 50 μm). (B) Color

view of the vertical velocity field. The dashed square represents the zoomed-in area represented in Fig 3C. (C) Zoomed in horizontal (top frame) and

vertical (bottom frame) velocity field. (D) Particle trajectories for several insertion points. The particles enter the fluid flow on the left side of the window

and travel to the right.

https://doi.org/10.1371/journal.pcbi.1005552.g003
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The ciliary beating efficiency index

The horizontal component of the steady pressure gradient pðsÞx (see Eq 48), applies a force on

the fluid directed negatively along Ox. This force is exactly compensated by the force exerted

by the cilia on the fluid, proportional to the dimensionless shear stress @u/@y (see S1 File for

the detailed force balance between the cilia and the fluid). The dimensionless steady force

applied by the cilia to a volume fluid of length 2π/k (the dimensionless wavelength) in the Ox
direction and dimensionless thickness H/h in the Oz direction thus reads:

FðsÞw ¼ �
H
h

2p

k
@uðsÞ

@y

�
�
�
�
�
ðy¼0Þ

¼ �
lH
h2

@uðsÞ

@y

�
�
�
�
�
ðy¼0Þ

ð72Þ

Using the parabolic velocity profile u(s)(y) = u(0)(y − 1)2 found in Eq 62, and putting back

dimensional quantities finally leads to the expression of the local shear stress τw applied to the

fluid by the cilia:

tw ¼
ðmoh2ÞFðsÞw

lH
¼

moh2

lH
lH
h2

2uð0Þ ¼
2mU0

h
ð73Þ

where U0 is the velocity extrapolated at y = 0 from the measurements of microbead velocities

above the cilia. This shear stress characterizes the momentum transfer between cilia and the

surrounding fluid. Since h is also directly measured by fitting the microbead velocity profile

with a parabolic profile, it means that τw can be directly deduced using this microbead tracking

technique. Consequently, we propose this shear stress as an index for assessing the efficiency

of the ciliary beating. One has to stress that we do not intend to reproduce in this model the in
vivo condition. The shear stress measured using this micro-bead velocity technique is not

assumed to be identical to the shear stress experienced by mucus in the pulmonary airways. It

Fig 4. Parabolic velocity profile. (A) Contribution of the different order of the micro-beads velocity The blue dashed line represent the effective velocity

(in μm.s-1). Green dashed line represent the contribution of the first order of the fluid velocity. The red dashed line represented the contribution of the

second order. Black points are the contribution of the parabolic term of the second order. Magenta points are the contribution of the exponential function.

Ciliary beating parameters are the following: CBF = 10.0 Hz, CBA = 8.0 μm, λ = 10 μm, ϕ = 0 and h = 100 μm. (B) Examples of parabolic fitting on

microbead velocity measurements on 3 different ciliated edges (see companion paper [11]).

https://doi.org/10.1371/journal.pcbi.1005552.g004
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is only a way to assess of the ability of the ciliated edge to transfer momentum into the sur-

rounding fluid, thus defining a usable clinical index.

Finally, the extrapolated velocity at the wall can be compared to the one predicted from

Eq 64:

U0 ¼ ho uð0Þ ¼ ho
a2

2h2

1þ 2b � b
2

1þ 2�

� �
2ph

l
¼

pa2o

l

1þ 2b � b
2

1þ 2
�
�

h

0

B
@

1

C
A ð74Þ

The cilium beating amplitude a (CBF), the the cilium beating frequency ω/2π (CBF), and the

metachronal wavelength λ are measured directly by microscopic measurements on the cilia,

while h is extracted from the parabolic fitting of the microbead velocity profile. In the approxi-

mation of a flat beating (β = 0), this set of measurements therefore provides a way to assess ϕ�,
the equivalent sliding length introduced in the boundary condition of Eq 18.

Discussion

In human airways, the coordinated motion of the cilia covering the epithelium induces a com-

plex displacement of a double layer consisting in a bottom periciliary layer (PCL) and a top

mucus layer. Both layers have similar thicknesses, about 5 to 10 μm, but very different viscosi-

ties. The situation presented in this paper is however very different from the in vivo condition.

It reproduces in fact the ex vivo experiments performed on a few ciliated cells obtained from

nasal brushing. In these experiments, clusters formed of a few ciliated cells are immersed in

water, and observed between two microscope slides by high speed video-microscopy. The cili-

ated edges are therefore lying horizontally in the simulation plane (Ox, Oy), which is perpen-

dicular to the optical axis Oz of the microscope.

The first and foremost difference lies in the fact that the fluid surrounding the cilia is now

essentially water, i.e., a homogeneous Newtonian fluid. Secondly, unlike the in vivo situation

where mucus is propelled only by the forward trajectory of the cilia tips, here both forward

and backward parts of the stroke cycle contribute to the fluid motion. Consequently, as

expressed through the mathematical model developed here, the oscillatory motion of the cilia

induces at first order in the amplitude a an oscillatory motion of the fluid, and at second order

a net steady component that pushes the fluid in the direction of the cilia beating. The net

motion of the fluid originates from the phase shift between neighboring cilia tips, which breaks

the left/right symmetry. More precisely, it creates an unbalance on the envelope between the

respective densities of tips moving forward and those moving backwards. This unbalance

appears in the second term of Eq 9. One can also note that the direction of the net fluid motion

does not depend on the sense of rotation of the tips (clockwise or counterclockwise), but only

the direction of the metachronal wave: the fluid is propelled in the direction opposite to the

metachronal wave. This property due to the antiplectic nature of the wave might have an inter-

esting consequence: Although the forcing mechanism on the fluid is very different in the pres-

ence of mucus (the tips of the cilia enter the mucus layer and push it forward), the fluid

covering the cilia would still be pushed in the same direction if the mucus viscosity was signifi-

cantly lowered or if the mucus would disappear.

In the ex vivo experiments, the Womersley number α is close to 0.4 while the dimensionless

wave vector k = 2πh/λ is at least about 10 and most of the time much larger than that (h is com-

prised between 30 μm and 140 μm in the experiments, see [11]). This means that the contribu-

tion of the convective acceleration to momentum conservation is very small in all cases, and

that in first approximation, the system can be understood using a linear Stokes equation point

of view. The steady and oscillatory contributions to the wall velocity decouple and induce
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independent and additive steady and oscillatory contributions to the flow field, respectively.

Regarding micro-bead velocity far from the ciliated edge, the system then behaves as an equiv-

alent stationary system with an effective wall velocity Uw = ε2k/2.

At a distance larger than a fraction of the metachronal wavelength from the ciliated edge

(the wavelength λ is of order 10–20 μm in all experiments, see [11]), the oscillatory behavior of

the flow field vanishes and only the net steady horizontal flow remains. The microbead track-

ing technique therefore probes this steady part of the flow field, which exhibits a parabolic pro-

file along y. The steady contribution to the dimensionless horizontal wall velocity is ε2k/2 (see

Eq 11). In the case of flat beating (β = 0) and no slip boundary condition at the cilia wall

(ϕ = 0), this value is exactly the steady fluid velocity at the wall expressed in Eq 65. As a conse-

quence, it also corresponds to the extrapolated micro-bead velocity at the wall. Our model

shows that the synchronized elliptic motion of the cilia generates a correction to this velocity

by a factor (1 + 2β − β2) (Eq 64). In addition, an imperfect momentum transfer between the

cilia and the fluid (ϕ> 0) reduces this velocity.

Introducing a partial slip at the cilia wall, through a Robin type boundary condition with an

effective sliding length ϕ� = hϕ (Eq 18), reduces the fluid velocity by a factor (1 + 2ϕ), a result

that is also obtained in a purely steady model for a parabolic profile. As shown in the compan-

ion paper [11], this effective sliding length is directly correlated to the average density of cilia.

This is very consistent with the use of this type of boundary condition in fluid flow next to

porous flow, the pore openings corresponding to the empty space between cilia. In clinical

application of this model, it is expected that ϕ will not be a fitting parameter but predicted by

the mere measurement of the cilia density.

Model limitations

The model proposed in this article relies on several assumptions, hence has a few limitations

that we examine now.

First, the motion of each individual cilium tip is assumed to be elliptic. Although this is a

generally accepted hypothesis, microscopic imaging of the actual motion of the cilium shows a

more complicated trajectory [34]. In particular, the path followed by the tip on the backward

trajectory seems to be closer to the forward path than for an elliptic motion. However, we have

seen that the net steady motion of the fluid is essentially generated by the metachronal wave.

This discrepancy of the trajectory should be accounted for through a change of the parameter

β representing the ellipse eccentricity. One also has to stress that, since our model reproduces

an experimental setup in which cilia are surrounded only by water, one might expect a differ-

ent motion from the one achieved in in vivo situations where cilia are beating in a periciliary

liquid while their tips are entering the bottom of the mucus layer.

The model also assumes an exact synchronization of the individual cilia motions, generat-

ing a metachronal wave of constant velocity. This implies that the phase shift between two cilia

is a linear function of the distance separating them along the direction of the metachronal

wave propagation. Ex vivo experiments carried out in [11] show that this hypothesis is satisfac-

torily verified at the observational scale of the experiment, i.e., an edge of a cluster containing a

few ciliated cells. A deviation from the linear phase shift would disrupt the translational peri-

odicity of the system and alter our solution based on a Fourier decomposition along the hori-

zontal axis. The fluid velocity at the cilia wall computed in our model can thus be considered

as an “ideal velocity”, reached for a perfect metachronal wave. Any measured discrepancy with

respect to this ideal velocity could be therefore be attributed either to an imperfect momentum

transfer (through the effective slip length ϕ), or to a perturbed metachronal wave.
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In the model, the ciliated edge is supposed to be flat. This assumption is generally valid in

real experiments (see [11]). Cases in which cell clusters appear to have a rough, curved, or dis-

rupted ciliated edge are removed from the measurement procedure.

An important assumption lies in the fact that the fluid surrounding the cilia is stagnant at a

distance h above the edge. The stagnation of the fluid above the cilia is observed experimen-

tally, and originates from the external environment of the measured cell cluster. Various expla-

nations can account for it: it can be due to the presence of other cell clusters at a few hundred

microns distance which create a complex fluid flow in the entire system, or by the friction of

the fluid on the upper and lower slides, or the appearance of boundary layers. Determining

this value would require modeling the full 3D geometry of the system whose geometry is not

easily accessible by microscopic observation. The distance h therefore is treated as the only fit-

ting parameter of the model (the sliding length ϕ being calculated from the measured cilia

density).

Finally, the bead velocities are found in the model to be almost always parallel to the cilia

wall. In real experiments, a vertical component (i.e., in the direction perpendicular to the

wall) might appear, although much smaller than the horizontal component. This is in partic-

ular the case when the ciliated edge is not strictly flat, or when the observation window is

such that the ciliated edge is on one side of the window and the bead passing on the other

side of the same window. The micro-beads are in this situation not set into motion only by

the considered ciliated edge, and external influence originating from outside the observation

window interfere, contributing to create a more complex fluid flow pattern. Such situations

should be discarded from the analysis, either through eye examination or by an automatized

procedure.

Conclusion

We have developed a mathematical model of micro-bead velocity in a fluid set into motion by

the periodic beating of a ciliated edge. The cilia wall is represented as a continuous envelope

whose motion is calculated from the coordinated movement of all cilia. The boundary condi-

tion imposed by the effective wall induces a motion of the fluid above the wall. This motion

has two components: one oscillatory, at the spatial and temporal periodicity of the metachro-

nal wave and the cilia beating, respectively, and one steady, oriented along the direction of the

wall. The oscillatory component vanishes at a distance of the order of the metachronal wave-

length. The steady component extends on a much longer distance and exhibits a parabolic pro-

file in the direction perpendicular to the wall. The parameters governing this profile are the

fluid viscosity, the ciliary beating frequency (CBF), the ciliary beating amplitude (CBA), the

metachronal wavelength (λ), the cilia density (through the sliding length ϕ�), and the distance

from the wall to the region of stagnant fluid (h). Polystyrene micro-beads immersed in the

fluid act as massless tracers, allowing the measurement of the local fluid velocity, hence the

measurement of the velocity profile. All aforementioned parameters can be determined

through local measurement by high speed video-microscopy, except for the distance h which

remains the only fitting parameter of the model extracted from the velocity profile. The veloc-

ity extrapolated from the profile at the wall is found to be linearly related to the shear stress

exerted by the cilia on the fluid. This shear stress is proposed as a new index for assessing the

efficiency of the ciliary beating. One has to stress that this index can be measured from nasal

brushing in the clinical setting without any modification of the current clinical procedures.

Preliminary tests (see [11]) have already shown that this index has the potential to be a power-

ful screening test, able to distinguish patients suffering from various alterations of the cilia

beating such Primary Ciliary Dyskinesia (PCD).
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