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Abstract – The localization subregions of stationary waves in continuous disordered media have
been recently demonstrated to be governed by a hidden landscape that is the solution of a Dirichlet
problem expressed with the wave operator. In this theory, the strength of Anderson localization
confinement is determined by this landscape, and continuously decreases as the energy increases.
However, this picture has to be changed in discrete lattices in which the eigenmodes close to the
edge of the first Brillouin zone are as localized as the low energy ones. Here we show that in a
1D discrete lattice, the localization of low and high energy modes is governed by two different
landscapes, the high energy landscape being the solution of a dual Dirichlet problem deduced from
the low energy one using the symmetries of the Hamiltonian. We illustrate this feature using the
one-dimensional tight-binding Hamiltonian with random on-site potentials as a prototype model.
Moreover we show that, besides unveiling the subregions of Anderson localization, these dual
landscapes also provide an accurate overall estimate of the localization length over the energy
spectrum, especially in the weak-disorder regime.

editor’s  choice Copyright c© EPLA, 2015

Introduction. – In Anderson localization [1,2], elec-
tronic states are exponentially localized despite the
absence of classical confinement, this localization being
explained as originating from the destructive interference
of waves reflected in the random atomic potential. Despite
numerous theoretical advances, such as the prediction by
the scaling theory of the lower critical dimension of the
Anderson transition [3], there was until recently no gen-
eral formalism capable to accurately pinpoint the spatial
location of these localized modes for any given potential,
nor to predict the exact energy at which delocalized modes
would begin to form.

Recently, a new theory has been proposed, unveiling
in continuous media a direct relationship between any
specific realization of the random potential and the cor-
responding location of localized states [4]. It has been
demonstrated that the boundaries of the localization re-
gions, which cannot be deduced by directly looking at the
bare random potential, can be accurately retrieved as the
valleys lines of a “hidden landscape” u(x) which is the so-
lution of a Dirichlet problem with uniform right-hand side
for the same Hamiltonian.

In this article, we show that not only the exact same the-
ory can be extended to the case of a tight-binding Hamil-
tonian defined on a discrete lattice, but also that, contrary
to the continuous case, two different types of localization
occur here. First, localization of low energy states can be
predicted using a discrete analog of the landscape u(x)
defined in the continuous situation. Secondly, the dis-
creteness of the system also triggers a strong localization
of states of typical wavelength of the order of the lattice
spacing [5–8] (corresponding to the top of the band for
a periodic potential). We show that this localization can
also be studied in the framework of the landscape theory,
with a different operator than the original Hamiltonian
and, respectively, a different landscape.

The localization landscape at low energy. – Let
us first recall the essential aspects of the theory developed
in [4]. In a continuum space, the eigenstates for one par-
ticle of mass m in the presence of a potential V (x) are
solutions of the time-independent Schrödinger equation

[−∆ + V (x)]Ψ(x) = E Ψ(x), (1)
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where units of �
2/2m were considered. The only con-

straint we impose here on the potential is that it has to
be non-negative everywhere: V (x) ≥ 0, a condition eas-
ily fulfilled by shifting the potential without changing the
eigenstates. The new approach allows us to infer several
aspects of the eigenstates localization based on a single
hidden landscape u(x) which is actually the solution of
the corresponding Dirichlet problem

[−∆ + V (x)]u(x) = 1, (2)

with the same boundary conditions as for eq. (1). Every
eigenmode (normalized to maximum unitary amplitude)
is proved to satisfy the relation

|Ψ(x)| ≤ Eu(x) (3)

everywhere in the domain. This inequality compels the
eigenfunctions to be small at the local minima of u(x)
and along the valleys of u considered as a landscape. How-
ever, due to the normalization of Ψ in eq. (3), this con-
straint is only effective in the regions where u(x) < 1/E.
Therefore, the portions of the valleys where u(x) is be-
low 1/E act as confining borders for the eigenstates, thus
defining localization subregions. For higher energies E,
the constraint is progressively lifted: neighboring localiza-
tion subregions merge, up to a point where they form a
set that spans the entire domain, signaling the transition
to delocalized states. Consequently, while the low energy
states are well confined within the valleys of u (i.e., the
minima of u in one dimension), higher energy states can
permeate through shallow valleys and extend over several
neighboring regions. This picture has been mathemati-
cally demonstrated and numerically confirmed for several
random potentials [9]. Finally, one has to stress here that
retrieving the localization landscape requires only solving
a Dirichlet problem, a much easier and faster task than
computing the entire set of eigenfunctions and eigenvalues
of the Hamiltonian (the complexity of the former problem
is usually about N log N where N is the system size, while
it is of order N2 log N for the latter).

In the following, we consider the quantum mechanical
tight-binding problem of one particle restricted to move
along a discrete open chain with first-neighbor hopping
amplitude t, random on-site potentials Vi, and unitary
lattice spacing a = 1. For an eigenmode of energy E
written as a linear superposition of Wannier local orbitals
|i〉, the components (ψi) satisfy the following equation
which is the discrete equivalent of the time-independent
Schrödinger equation

−t[ψi−1 + ψi+1] + Viψi = Eψi, (4)

where i ∈ {1, . . . , L} denote the chain sites and bound-
ary conditions ψ0 = ψL+1 = 0 are assumed. For an on-
site potential ranging from Vmin to Vmax, the spectrum
of possible eigenenergies is restricted to the interval
[Vmin − 2t, Vmax + 2t], which implies that the random po-
tential has to be restricted to values Vi ≥ 2t. Figure 1 dis-
plays the two lowest and two highest energy eigenstates

Fig. 1: (Color online) Random potential V − 2t (filled black
piecewise constant at the bottom), and the corresponding am-
plitudes of the two lowest energy states (dashed green lines)
and of the two highest energy states (solid red lines). For bet-
ter visibility, the eigenstates are vertically shifted. The bare
potential does not bring a clear indication of where to find to
exponentially localized states.

Fig. 2: (Color online) Localization near the bottom of the band:
the landscape ui (top blue line) is plotted together with the
probability distribution |Ψi|

2 of the 4 lowest energy eigenstates
(bottom red lines) under the same potential depicted in fig. 1.
Two line segments indicate the values of 1/E for the funda-
mental state (left solid line) and for the 4th state (right dashed
line). Note that the low energy states are trapped between the
minima of ui which fulfill the confinement condition ui < 1/E.

in a finite chain with L = 100 sites for a realization of
an i.i.d. random potential uniformly distributed in the
interval [2t, 4t]. Note that both low and high energy
states are exponentially localized but there is no direct
indication of where to find their localization region in
the original potential. They however differ by an overall
phase factor, the low energy states having typically a long
wavelength (k = 2π/λ → 0) while the high energy ones
have wavelengths of the order of twice the lattice spacing
(k = 2π/λ → π/a).

To unveil the hidden landscape confining the low energy
eigenstates, one has to solve the corresponding Dirichlet
problem associated to eq. (4) (a rigorous proof of eq. (3)
satisfied by the energy eigenfunctions in the discrete case
is provided in the appendix):

−t(ui+1 + ui−1 − 2ui) + (Vi − 2t)ui = 1, (5)

with u0 = uL+1 = 0. In fig. 2 we plot the localization land-
scape u corresponding to the random potential displayed
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in fig. 1 together with the probability amplitudes for the
4 lowest energy eigenstates. As predicted by the the-
ory, the profile and location of the lowest energy states
are clearly identifiable in the landscape: they are located
around the most prominent maxima of u and confined by
the deepest minima near each subregion. In the contin-
uous limit where the lattice parameter goes to zero, the
above equation resembles a classical Schrödinger equation
with uniform right-hand side, and one recovers the local-
ization of quantum states of a continuous Hamiltonian.

The high energy landscape. – Not only the the-
ory of the localization landscape enables us to predict the
occurrence of the low energy localized modes, but it also
explains the strong localization of high energy states oscil-
lating at a scale close to the lattice parameter (see fig. 3).
To this end, one has to examine the behavior of the en-
velope ϕ of an eigenmode ψ whose wave vector is close
to k = π/a (top of the energy band). This envelope is
defined by ψi = ejkxiϕi, with xi = a × i = i being the
abscissa of site i. In other words, ϕ is obtained by re-
moving the fast oscillating contribution to the eigenmode
(see the appendix):

t (ϕi+1 + ϕi−1) + Viϕi = Eiϕi. (6)

One observes here two symmetry properties of the tight-
binding model. First, the symmetry related to a sign
change in the hopping amplitude t: this symmetry re-
verses the energy band. The low (respectively, high) en-
ergy states become the high (respectively, low) energy
states when reversing the sign of the hopping amplitude:
t → −t. Also, they acquire an overall phase of π/a. Re-
versing the sign of the hopping amplitude is equivalent to
reversing the signs of the original random potential and of
the corresponding eigenenergies. In order to avoid nega-
tive values resulting from this sign change, a global shift
Vshift has to be applied to the reversed potential, which has
again no consequence on the localization properties. The
envelope function ϕ obeys then the following Schrödinger-
type equation:

− t (ϕi+1 + ϕi−1 − 2ϕi) + (Vshift − Vi − 2t)ϕi =

(Vshift − Ei)ϕi. (7)

Therefore, the appropriate dual Dirichlet problem that
provides the confinement landscape for the high energy
states takes the form

−t(u∗

i+1 + u∗

i−1 − 2u∗

i ) + (Vshift − Vi − 2t)u∗

i = 1, (8)

where Vshift is a constant chosen such that Vshift−Vi−2t ≥
0 everywhere. To keep the potential in the dual Dirichlet
problem in the same range as the one in the original Dirich-
let problem, the global shift has to be Vshift = Vmin+Vmax.

In fig. 3 we show the resulting dual landscape (top
curve) for the same random potential displayed in fig. 1,
together with the 4 highest energy states. Although these

Fig. 3: (Color online) Localization near the top of the band: the
dual landscape u∗ is plotted together with the 4 eigenstates of
highest energy corresponding to the same potential as depicted
in fig. 1. Two line segments indicate the values of 1/(Vshift−E)
for the highest energy state (solid line) and for the 4th state
from the top of the band (dashed line). Here, Vshift = 6t. The
high energy states are localized in subregions of u∗ close to its
most prominent peaks, and are confined between the minima
of u∗ that fulfill the confining condition u∗ < 1/(6t − E).

states present spatial oscillations at the scale of the lattice
parameter, the dual landscape u∗ clearly signals the subre-
gions of localization close to its most prominent maxima.
Also, the confinement strength decreases as one departs
from the top of the band, the confinement condition at
ui < 1/E being replaced by u∗

i < 1/(Vshift − E).
We now show that these landscapes u and u∗ can al-

low us to compute an estimate of the average localization
length of the eigenstates around any given energy. This
estimate will then be compared to the participation ra-
tio of each mode ψ, a widely used measurement of the
localization length [10,11], defined as

P =

(

∑

i

|ψi|
2

)2 /(

∑

i

|ψi|
4

)

. (9)

This ratio is usually understood as a measure of the num-
ber of sites on which the particle probability distribution
is concentrated. It is of the order of the localization length
for exponentially localized states while for a uniform po-
tential, all harmonic eigenstates have an identical partici-
pation ratio equal to 2L/3, L being the chain length.

To pinpoint the confining sub-region —defined by the
landscape u— associated with an eigenstate of low energy
Ek, we first locate the chain site imax at which this specific
state has its largest amplitude. We then define the size of
the localization subregion ξk as the length (j − i)a of the
smallest interval [i, j] containing imax (i.e. i < imax < j)
such that ui and uj are local minima of u that are both
smaller than 1/Ek. In other words, i and j are the nearest
“valleys” of the landscape u surrounding this eigenstate.
For high energy modes, a similar procedure is employed
using the dual landscape u∗ and 1/(Vshift −E) as the con-
finement strength criterion.

In fig. 4 we evidence the very strong correlation be-
tween the participation ratio Pk and the size of the
confining subregions ξk by plotting the histogram of the
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Fig. 4: Histogram in log scale of the ratio Pk/(2/3ξk) for the
bottom 50 and top 50 eigenstates in a chain of L = 200 sites
and a random potential V whose values range in the interval
[2t; 10t] (see eq. (9) and the following text for the definitions
of Pk and ξk). This histogram shows that both quantities are
always of the same order for localized eigenstates.

ratio Pk/(2/3ξk) for the 50 states of lowest energy and the
50 states of highest energy in a chain of length L = 200
(i.e., half of the states, their total number being 200).
Note that Pk/(2/3ξk) can take in theory any value rang-
ing from 1/(2/3L) to L/(4/3). Although the participation
ratio of an individual eigenstate may vary from a few sites
to the entire length of the chain, both quantities appear
to be always of the same order of magnitude.

This strong correlation provides a key to introducing
an even simpler estimate of the localization length, called
here δ(E) which depends only on the energy value E. It is
obtained by averaging all distances between minima of u
which are below 1/E, and then multiplying the obtained
quantity by 2/3. Therefore δ(E) can be understood as
averaging the sizes ξ of all subregions found below 1/E,
independently of their location in the system and thus be
used as a rough estimate of the average localization length
of all eigenmodes of energy around E.

In fig. 5, we superimpose plots of the participation ratio
for each eigenstate (circles) and the average size δ(E) of
the localization subregions (line). For the bottom half of
the spectrum, δ(E) is computed using the landscape u,
whereas the dual landscape u∗ is used for the upper half.
Two representative cases of disorder, weak and strong
(fig. 5, respectively left and right), are illustrated. In the
case of weak disorder, δ(E) reproduces the behavior of the
average participation ratio over the entire energy band,
correctly predicting the location of the pseudo-mobility
edges separating the well-localized from the delocalized
states. These delocalized states have an harmonic-like
form with random phase changes. Consequently, their par-
ticipation ratios fluctuate around 2L/3. Accordingly, δ(E)
reaches a plateau at 2L/3 in the energy range correspond-
ing to effectively delocalized states signaling that the dual
landscapes have no minima below the threshold level in
this energy range.

In the regime of strong disorder all states become well
localized with no pseudo-mobility edges within the band of
allowed energies. The average size δ(E) also captures such
strong localization, although near the center of the band it

Fig. 5: (Color online) Participation ratio (circles) and δ(E)
(crosses), the latter corresponding to 2/3× the average size of
the confining subregions for eigenfunctions of energy smaller
than E (see below). In order to reduce the stochastic fluctua-
tions, both quantites have been averaged over 100 realizations
of the random potential. Left panel: weak-disorder regime
(V = [2t; 2.5t]). Notice that the average size of the confining
subregions closely follows the main trends of the participation
number in the whole energy spectrum; right panel: strong-
disorder regime (V = [2t; 10t]). The length δ(E) computed
using the two potentials u and u∗ capture the strong localiza-
tion of the eigenstates.

signals a weaker localization, a fact already well known in
the literature [12]. This behavior reflects the fact that the
continuous Laplacian operator does not properly describe
all features of the discrete tight-binding Hamiltonian near
the band center.

One can compare our approach to the semi-classical pic-
ture by assessing the value of the parameter η classically
defined as the ratio V0/E0 between the typical depth of
the wells created by the random potential and the typical
fundamental energy of a quantum particle in a well [13].
In our case, the correlation length of the random poten-
tial is the lattice parameter (a = 1). With our unit choice,
this gives E0 = �

2/(2ma2) = 1. Therefore the parameter
η corresponds to the potential amplitude (Vmax −Vmin) in
our discrete model. In the regime of strong disorder (large
η, fig. 5, right) all states are well localized. In the first
half of the energy band they localize around minima of
the potential and in the second half around maxima. In
this regime of strong disorder, our localization landscape is
quite rough with minima and maxima following closely the
respective maxima and minima of the original potential.
This is fully consistent with the semi-classical approach.
In the weak-disorder regime (fig. 5, left), the states be-
come less localized, and the particle does not experience
the detail of the disordered potential but a smoothed effec-
tive potential. Our approach allows determining exactly
the energy range and the location of the localized states.
The scheme of delocalization arising from the merging of
subregions provides a new interpretation of the effective
delocalization transition taking place in finite chains with
weak disorder.

Conclusions. – In summary, we have shown here that
the localization of one-particle eigenstates satisfying a dis-
crete time-independent Schrödinger equation is in reality
governed by a pair of dual landscapes, u and u∗, a priori

invisible to the naked eye, respectively acting on the

47001-p4



Dual landscapes in Anderson localization on discrete lattices

regimes of low and high energies. We demonstrated that
the appropriate Dirichlet problem whose solution unveils
the landscape of localization has distinct forms near the
bottom and the top of the energy band. Using the symme-
tries of the tight-binding Hamiltonian, the landscape con-
fining the high energy states is found to be the solution
of an alternate Dirichlet problem with a new potential.
Although a full geometrical interpretation of Anderson
localization has yet to be found, these dual landscapes
signal the localization subregions in both energy regimes,
a task that had not been successfully achieved in prior
studies aiming to provide a geometrical analysis for this
phenomenon.

The distinct confinement strengths of the hidden land-
scapes were used to introduce a new measure of the
localization length. We showed that, despite its approxi-
mate nature, the average size of the confining subregions
δ(E) captures well the main dependence of the localiza-
tion length within the range of allowed energies, especially
in the regime of weak disorder at which δ(E) clearly sig-
nals the location of the pseudo-mobility edges separating
well-localized from effectively delocalized states.

The present scenario opens a totally new perspective
to the geometric interpretation of Anderson localization
in discrete lattices based on the hidden landscapes u and
u∗. Specifically, in 2 or 3 dimensions, one can extrapo-
late that u will remain as the low energy landscape while
u∗ has to be replaced by a collection of landscapes, each
corresponding to one boundary of the first Brillouin zone
of the lattice. This approach also raises a number of new
questions that remain to be addressed. Could it be possi-
ble to unify the present description based on several dis-
tinct landscapes into a wave-vector–dependent landscape
scenario valid for the whole energy band? Can these land-
scapes signal resonant delocalized states that are usually
depicted by discrete tight-binding models with correlated
disorder [14–17] or inter-particle interactions [18–22]? In
this context, it would be very interesting to assess how
these interactions can distort the landscapes. New an-
alytical and numerical efforts along these directions will
certainly contribute to unveil a new geometrical picture of
the Anderson localization in all discrete lattices.
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Appendix: control inequality for a discrete

Schrödinger operator. – We present here the math-
ematical proofs of the main inequalities, in particular

eq. (3), controlling the wave function in the discrete case.
The arguments are fairly straightforward, but it is impor-
tant that they are proved directly in the discrete scenario
(rather than appealing to approximation by a continuous
model).

Let us denote by ∆D the discrete Laplacian, that is, for
u := (u1, . . . , uL)⊥ (colon vector) we write

(∆Du)i := ui+1 + ui−1 − 2ui. (10)

Given a potential Vi defined at each site, we consider the
Schrödinger-type operator −t∆D + W such that

(−t∆D + Wu)i := −t(ui+1 + ui−1 − 2ui) + (Vi − 2t)ui

= −t(ui+1 + ui−1 − 2ui) + Wiui, (11)

where t > 0 and W = (W1, . . . , WL)⊥ is such that Vi ≥ 2t
for all i and hence, Wi ≥ 0 for all i. Clearly, the operator
−t∆D + W can be identified with multiplication from the
left by a matrix A with values Aii = 2t+Wi, i = 1, . . . , L,
on the main diagonal, Wi,i−1 = −t, i = 2, . . . , L, Wi+1,i =
−t, i = 1, . . . , L − 1 on lower and upper diagonal, and 0
otherwise.

Lemma 1. (Maximum principle). Let t > 0 and W ≥ 0
as above. If ((−t∆D+W )u)i ≥ 0, i = 1, . . . , L, and u(0) =
u(L + 1) = 0, then ui ≥ 0 for all i = 1, . . . , L. Moreover,

if there exists an i0 such that ((−t∆D + W )u)i0 > 0 then

ui > 0 for all i = 1, . . . , L.

Proof. We prove by contradiction. Let us assume that
there is a minimum “inside” the domain, that is, there
exists i0 such that ui0 ≤ ui0+1 and ui0 ≤ ui0−1. Then
ui+1 + ui−1 − 2ui ≥ 0. But ((−t∆D + W )u)i ≥ 0, hence,
t(ui+1 + ui−1 − 2ui) ≤ Wiui. Hence, ui ≥ 0, but we
assumed that it was a minimum and hence, that it was
below the boundary values equal to zero. This is a con-
tradiction. We conclude that the minimum could not be
“inside” the domain and hence, that all interior values of
u are non-negative.

In order to show strict positivity, it is enough to demon-
strate that if ui0 = 0 at some i0, then ((−t∆D+W )u)i = 0
for all i. To this end, let us assume that ui0 = 0 at some
1 ≤ i0 ≤ L. Since it cannot be a local minimum, the val-
ues of ui0−1, ui0+1 must be smaller or equal than ui0 = 0.
Since they cannot be below zero, we have ui0−1, ui0+1 = 0.
Continuing in this fashion, we conclude that u0 ≡ 0 and
hence, ((−t∆D + W )u)i = 0 for all i, as desired.

Lemma 2. (Positivity). For the matrix A associated with

the operator −t∆D + W as above, the inverse exists and

every entry of the inverse is strictly positive.

This is an analogue of the positivity of the Green
function.

Proof. Let ((−t∆D + W )u)i = fi, i = 1, . . . , L, u0 =

uL+1 = 0. In matrix notation, A	u = 	f . Then uj =

(A−1f)j =
∑L

k=1
(A−1)jkfk. If we take 	f as a vector

47001-p5
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with 0 entries except for 1 in the l-th place, then uj =
(A−1)jl. By (the second statement of) Lemma 1, all uj ,
j = 1, . . . , L must be strictly positive, as desired.

Lemma 3. (Inequality (3) in the discrete case). Let

((−t∆D+W )ψ)j = λψj , j = 1, . . . , L, ψ0 = ψL+1 = 0,

where the operator is defined as in (11) with t > 0 and it

is assumed that W = V − 2t ≥ 0. Then

|ψj |

maxk |ψk|
≤ λuj , for all j = 1, . . . , L,

where u solves

((−t∆D + W )u)j = 1, j = 1, . . . , L, u0 = uL+1 = 0.

Proof. This is a simple consequence of the Lemmas above.
Indeed, using the positivity established in Lemma 2,

ψj =(λA−1ψ)j = λ

L
∑

k=1

(A−1)jkψk≤λ max
k

|ψk|

L
∑

k=1

(A−1)jk

= λ max
k

|ψk|uj .

Lemma 3, applied, as above, with W = V −2t, furnishes
inequality (3) in the main manuscript of the paper for the
discrete model, and respectively, treats the lower-energy
modes. To address the higher-order ones, we apply the
transform ψj = eiαjϕj , j = 1, . . . , L, α ∈ R. Note the
change of notation: from now on, i is the imaginary unit.
Then the eigenfunctions of (−t∆D+W ) = (−t∆D+V −2t)
as above, denoted by ψ, are transformed into the “enve-
lope” functions ϕ satisfying the following equation:

−t(eiαϕj+1 + e−iαϕj−1) + Vjϕj = λϕj .

The choice α = π, optimal for studying the eigenfunctions
at the high end of the band gap, yields

t(ϕj+1 + ϕj−1) + Vjϕj = λϕj ,

or, as discussed in the paper,

−t(ϕj+1+ϕj−1−2ϕj)+(Vshift−2t−Vj)ϕj =(Vshift−λ)ϕj ,

where Vshift is chosen to ensure that Vshift − 2t − Vj ≥ 0.
Zero Dirichlet boundary conditions on ψ trivially yield

zero Dirichlet boundary conditions for ϕ, and hence,
Lemma 3 yields the following corollary.

Corollary 4. (Inequality (3) for the dual landscape). Let

((−t∆D+W )ψ)j = λψj , j = 1, . . . , L, ψ0 = ψL+1 = 0,

where the operator is defined as in (11) with t > 0. Let

furthermore ϕj denote the envelopes of ψj, defined via

ψj = eiαjϕj, j = 1, . . . , L. Then for any choice of Vshift

such that Vshift − 2t − V ≥ 0, we have

|ϕi|

maxj |ϕj |
≤ (Vshift − λ)u∗

i , for all i = 1, . . . , L,

where u solves

((−t∆D + W ∗)u∗)i = 1, i = 1, . . . , L, u0 = uL+1 = 0,

with W ∗ = Vshift − 2t − V ≥ 0.
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