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H I G H L I G H T S

� A 2Dþ1D stream-tube placenta model
is used to describe oxygen exchange.

� Diffusion–convection equation is sol-
ved analytically to get oxygen
exchange rate.

� Two geometrical characteristics are the
most relevant: villi radius and density.

� Two independent parameter combina-
tions characterizing oxygen exchange
are identified.

� Diagrams and explicit formulas of oxy-
gen exchange efficiency are provided.
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a b s t r a c t

We propose an analytical approach to solving the diffusion–convection equations governing oxygen
transport in the human placenta. We show that only two geometrical characteristics of a placental cross-
section, villi density and the effective villi radius, are needed to predict fetal oxygen uptake. We also
identify two combinations of physiological parameters that determine oxygen uptake in a given
placenta: (i) the maximal oxygen inflow of a placentone if there were no tissue blocking the flow and
(ii) the ratio of transit time of maternal blood through the intervillous space to oxygen extraction time.
We derive analytical formulas for fast and simple calculation of oxygen uptake and provide two diagrams
of efficiency of oxygen transport in an arbitrary placental cross-section. We finally show that artificial
perfusion experiments with no-hemoglobin blood tend to give a two-orders-of-magnitude under-
estimation of the in vivo oxygen uptake and that the optimal geometry for such setup alters significantly.
The theory allows one to adjust the results of artificial placenta perfusion experiments to account for
oxygen–hemoglobin dissociation. Combined with image analysis techniques, the presented model can
give an easy-to-use tool for prediction of the human placenta efficiency.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The human placenta consists of maternal and fetal parts (Fig. 1a).
The maternal part is a blood basin which is supplied by spiral arteries
and drained by maternal veins (Benirschke et al., 2006). The fetal part
is a villous tree, inside which fetal blood goes from umbilical arteries to
the umbilical vein through fetal capillaries. Maternal blood percolates

through the same arboreous structure on the outside. Maternal blood
and fetal blood do not mix, so the gas and nutrient exchange takes
place at the surface of the villous tree, sections of which can be
observed in a typical histological 2D placental slide (Fig. 1b). Modeling
and understanding the relation between the geometrical structure of
the exchange surface of the villous tree and the efficiency of the
transport function of the placenta constitutes the central object of
our study.

Placenta models have been proposed previously (see discussions
in Aifantis, 1978; Battaglia and Meschia, 1986; Chernyavsky et al.,
2010; Gill et al., 2011). 1D models dealt with oxygen transport at the
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scale of either one single villus or the whole placenta, in both cases
imposing a flat exchange surface between maternal and fetal blood
(Bartels et al., 1962; Shapiro et al., 1967; Kirschbaum and Shapiro,
1969; Hill et al., 1972, 1973; Longo et al., 1972a,b; Power et al.,
1972a,b; Lardner, 1975; Wilbur et al., 1978; Groome, 1991); some 2D
models were used to study the co-orientation of maternal and fetal
flows (Bartels et al., 1962; Metcalfe et al., 1964; Shapiro et al., 1967;
Faber, 1969; Kirschbaum and Shapiro, 1969; Guilbeau et al., 1970;
Moll, 1972; Schröder, 1982; Battaglia and Meschia, 1986); other
models represented the placenta as a porous medium (Erian et al.,
1977; Schröder, 1982; Chernyavsky et al., 2010). A lumped element
model was also proposed to calculate 1D placental diffusing capacity
and to relate morphometric data to the efficiency of gas transport
(see Mayhew et al., 1984, 1986 and references therein). To our
knowledge, the only 3D placenta model was introduced by
Chernyavsky et al. (2010) to study how the position of venous outlets
and the existence of a central cavity influences oxygen transport in a
hemispherical porous-medium placentone model.

However, none of these models uses fine geometrical structure
of experimentally obtained placental slides (Fig. 1b) as direct input.
In a recent paper we introduced a stream-tube placenta model
(STPM; Fig. 2b), which is built upon histological placental cross-
sections (Serov et al., 2015) in contrast to previous placenta models.
In this model, cross-sections of stream tubes of maternal blood flow
(MBF) in the intervillous space of the human placenta were
reconstructed from placental cross-sections (Fig. 1b) and virtually
extended along the third dimension. Although successive cross-
sections of a stream tube obviously vary in the placenta, this
variation cannot be reproduced from a single cross-section and
was ignored in this model. Relevant physiological and geo-
metrical parameters of the model were estimated from the available
experimental data. Numerical simulations of oxygen transport for
identical circular villi were then performed and showed that the
model exhibits an optimal villi density yielding maximal oxygen
uptake. Deviations from these optimal characteristics with varia-
tions of model parameters were estimated. The obtained optimal
villi density (0.4770.06) corresponds to that experimentally
obtained in healthy human placentas (0.4670.06).

The present paper relies on the same STPM, but provides the
first approximate analytical theory of oxygen uptake in the human
placenta based on histological cross-sections. The present work
significantly develops the results of the previous study by:

� allowing for a fast calculation of oxygen uptake for arbitrary
placental cross-sections, while only circular villi were consid-
ered before;

� demonstrating explicit dependence of oxygen uptake on model
parameters and their interrelation, which could not be
obtained numerically;

� introducing two uptake efficiency indicators for which analy-
tical formulas and diagrams are provided;

� showing that accounting for oxygen–hemoglobin reaction is
important for interpretation of artificial perfusion experiments
(with no-Hb blood) and providing a method of recalculation of
the results of such experiments to account for oxygen–hemo-
globin reaction.

In the following, the construction of the analytical theory is
preceded by a full description of the geometrical model, physical
assumptions and parameters describing the human placenta.

2. The model

2.1. Model assumptions

Maternal blood arrives into the intervillous space of the human
placenta by spiral arteries (Fig. 2a). It then percolates through the
branching structure of a tree of fetal villi and leaves the intervillous
space by decidual veins. The total pattern of the MBF can be virtually
subdivided into small regions (stream tubes), each following the flow
and extending from the central cavity to a decidual vein. Each stream
tube comes into contact with numerous fetal villi, at the surface of
which mass exchange between maternal and fetal blood takes place.

We model one such stream tube unfolded as a cylinder of an
arbitrary cross-section containing multiple parallel cylinders of
arbitrary cross-sections and sizes, which represent fetal villi
(Fig. 2b). The shapes and locations of the villi can be taken from a
histological slide. Since we aim to base the STPM on histological
slides (Fig. 1b) which provide only one stream-tube section without
any information about the change of this section along the MBF, we
further postulate that the same shapes and locations of villi are
conserved along the stream tube. This is obviously an oversimplifica-
tion of the irregular 3D structure of the placenta, but it is the most

Fig. 1. (a) Schematic representation of the human placenta (reproduced from Gray, 1918). Basal plate (maternal side) is at the top, chorionic plate (fetal side) is at the bottom.
(b) A small fragment of a typical 2D slide of the human placenta. White space is intervillous space, normally filled with maternal blood, which has been washed away during
the preparation of the slides (some residual red blood cells are still present). Red shapes are cross-sections of fetal villi. Redder regions inside correspond to fetal capillaries
and the dark, violet dots at the perimeter are syncytiotrophoblast boundary layers. The sections have been taken in the direction from the basal plate to the chorionic plate,
and are H&E stained. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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straightforward assumption given the lack of complete 3D geome-
trical data spatially resolving all villi.

The model relies on several other assumptions:

1. Fetal blood is considered as a perfect oxygen sink.
2. MBF is considered to be laminar with slip conditions at all

boundaries (no liquid-wall friction), so that the velocity profile
in any cross-section is flat.

3. The oxygen–hemoglobin dissociation curve is linearized in the
physiological range of partial pressure of oxygen (0–60 mmHg)
observed in the human placenta.

4. Oxygen uptake occurs at the feto-maternal interface, i.e. at the
boundaries of the small cylinders, and is directly proportional
to the interface permeability and to oxygen concentration on
the maternal side of the interface.

5. In a cross-section perpendicular to the MBF, oxygen is only
redistributed by diffusion.

6. Erythrocytes are uniformly distributed in the maternal blood.
7. Oxygen bound to hemoglobin does not diffuse; only oxygen

dissolved in the blood plasma does.
8. Oxygen uptake is stationary.

The validity of these assumptions is thoroughly discussed in Serov
et al. (2015). The model also includes geometrical and biological
parameters, which are listed in Table 1. It will further be shown
that fetal oxygen uptake is determined by two parameter combi-
nations which naturally appear in the development of the theory.

3. Mathematical formulation

3.1. Time scales of the system

We identify three different physical transport processes in the
placenta, each of which operates on a characteristic time scale:
hydrodynamic blood flow through the IVS characterized by an
average velocity u and transit time τtr; diffusion of oxygen with
characteristic time τD; and equilibration between oxygen bound to
hemoglobin and oxygen dissolved in the blood plasma with char-
acteristic time τp. This last thermodynamic equilibrium is described
as equal partial pressure of oxygen in both states. The three times can
be estimated as follows:

� τtr, the transit time of blood through the IVS, is of the order of
27 s from the results of angiographic studies at term (Burchell,
1967; Serov et al., 2015).

� τD, reflecting oxygen diffusion over a length δ in the IVS is
τD � δ2=D, where D is oxygen diffusivity in the blood plasma
(Table 1). Either from calculations (Mayhew and Jairam, 2000),
or directly from normal placental sections (Fig. 1b), the mean
width of an IVS pore can be estimated as δ� 80 μm, yielding
τD � 4 s.

� τp, an equilibration time scale, which includes characteristic
diffusion time for oxygen to reach Hb molecules inside a red
blood cell (� 10 ms, see Foucquier et al., 2013) and typical time
of oxygen–hemoglobin dissociation (� 20 ms for the slowest

chorionic plate
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Fig. 2. (a) Scheme of placental blood flow and location of stream tubes in the placenta. The dashed line schematically outlines the central cavity. Curved arrows in the right
part show maternal blood losing oxygen while going from the central cavity to decidual veins percolating through the villous tree (shaded region). Curved lines on the left
schematically show stream tubes of blood flow. Our model corresponds to one such stream tube unfolded; small straight arrows show the entrance points of the model. The
exchange is not modeled in the central cavity, but only after it, in the MBF pathway. The concept that spiral arteries open into the IVS near the central cavity corresponds to
current physiological views (Benirschke et al., 2006; Chernyavsky et al., 2010). (b) Our geometrical model of one unfolded stream tube of maternal blood in a human
placentone. The cross-section of the stream tube as well as that of the fetal villi inside can be either determined from 2D histological slides or chosen arbitrary. Red arrows
show the flow of maternal blood. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Table 1
Parameters of the human placenta used in the STPM (see Serov et al., 2015 for the method of calculation of these values).

Parameter Symbol Mean7SD

Maximal Hb-bound oxygen concentration at 100% Hb saturation, mol/m3 cmax 7.3070.11
Oxygen–hemoglobin dissociation constant B 9472
Concentration of oxygen dissolved in blood at the entrance to the IVS, 10�2 mol/m3 c0 6.770.2
Oxygen diffusivity in blood, 10�9 m2/s D 1.770.5
Effective villi radius, 10�6 m re 4173
Permeability of the effective materno-fetal interface, 10�4 m/s w 2.871.1
Placentone radius, 10�2 m R 1.670.4
Velocity of the maternal blood flow, 10�4 m/s u 6
Stream tube length, 10�2 m L 1.6
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process, see Yamaguchi et al., 1985). Together these times sum
up to τp � 30 ms.

These three characteristic times are related as follows:
τp5τD ≲ τtr. This relation suggests that oxygen–hemoglobin dis-
sociation can be considered instantaneous as compared to diffu-
sion and convection; the latter two, by contrast, should be treated
simultaneously.

3.2. Equilibrium between bound and dissolved oxygen

The very fast oxygen–hemoglobin reaction can be accounted
for by assuming that the concentration of oxygen dissolved in the
blood plasma (cpl) and that of oxygen bound to hemoglobin (cbnd)
instantaneously mirror each other's changes. Mathematically both
concentrations can be related by equating oxygen partial pressures
in these two forms.

Oxygen dissolved in plasma. Because of the low solubility of
oxygen in blood, the partial pressure of the dissolved oxygen (pO2

)
can be related to its concentration (cpl) using Henry's law:

pO2
¼ khn
ρbl

� cpl; ð1Þ

where ρbl � 1000 kg=m3 is the density of blood and the coefficient khn
can be estimated from the fact that a concentration cpl � 0:13 mol=m3

of the dissolved oxygen corresponds to oxygen content of 3 ml O2=l
blood or partial pressure of 13 kPa at normal conditions (Law and
Bukwirwa, 1999), yielding khn � 7:5� 105 mmHg kg=mol for the
oxygen dissolved in blood.

Hemoglobin-bound oxygen. The partial pressure of the
hemoglobin-bound oxygen depends on its concentration through
the Hill equation:

cbnd ¼ cmax SðpO2
Þ; SðpO2

Þ � ðkhlpO2
Þα

1þðkhlpO2
Þα; ð2Þ

where cmax is the oxygen content of maternal blood at full
saturation; khl � 0:04 mmHg�1 and α� 2:65 are coefficients of
the Hill equation, obtained by fitting the experimental curve of
Severinghaus (1979, see Fig. 3).

Equilibrium relation between cpl and cbnd can then be obtained
by substituting Eq. (1) into Eq. (2):

cbnd ¼ cmax S
khn
ρbl

cpl

� �
: ð3Þ

3.3. Diffusive-convective transport of oxygen

Diffusive-convective transport of oxygen is governed by the
mass conservation law for the total concentration of oxygen in a
volume of blood:

∂ðcplþcbndÞ
∂t

þdiv j
!

ctot ¼ 0; ð4Þ

where j
!

ctot is the total flux of oxygen, transported both by
diffusion and convection for the dissolved form and only by
convection (RBCs being too large objects) for the bound form:

j
!

ctot ¼ �D∇
!

cplþ u!ðcplþcbndÞ; ð5Þ

where u! denotes the velocity of the MBF and

∇
!� ∂

∂x
;
∂
∂y

;
∂
∂z

� �
:

Omitting the time derivative in the stationary regime, substituting
Eq. (5) into Eq. (4) and choosing z as the direction of the MBF, we

obtain

Δcpl ¼
u
D
∂ cplþcbnd
� �

∂z
;

where Δ� ∂2
∂x2þ ∂2

∂y2þ ∂2
∂z2 is the Laplace operator. Using the relation

(3) between the dissolved and bound oxygen concentrations we
then derive an equation for the unknown cpl only:

Δcpl ¼
u
D

∂
∂z

cplþcmax S
khn
ρbl

cpl

� �� �

¼ u
D

1þcmaxkhn
ρbl

S0
khn
ρbl

cpl

� �� �
∂cpl
∂z

: ð6Þ

This equation is non-linear as cpl appears also in the argument of
the derivative of the Hill saturation function S0. In a first approx-
imation, S can be linearized by assuming S0 to be constant in the
range of partial pressures of oxygen encountered in the human
placenta.

3.4. Linearization of the Hill equation

The idea of linearization is simple: to replace the sigmoid
saturation function (2) with a linear function of pO2

. Although it is
natural to make the line pass through the origin, the slope of the
line may be chosen differently depending on the range of partial
pressures in which we approximate the curve (Fig. 3). Data found
in the literature indicate that maternal blood in the IVS of the
human placenta has pO2

of about 60 mmHg (Rodesch et al., 1992;
Jauniaux et al., 2000; Challier and Uzan, 2003). We further
suppose that this partial pressure is the maximal value in the
IVS and hence delimits the range of the needed linear approxima-
tion. Fitting the experimental curve of Severinghaus (1979) in the
region 0–60 mmHg with a straight line passing through zero we
obtain a linear approximation

SðpO2
Þ � β60 pO2

; S0ðpO2
Þ ¼ β60 � 0:017 mmHg�1;

displayed in Fig. 3.
This approximation leads to the following relation between ctot,

cpl and cbnd: ctot � cplþcbnd ¼ cplB, or

cpl ¼
cbnd
B�1

¼ cmax

B�1
S pO2

� �
; where B� 1þcmaxβ60khn

ρbl
:

We emphasize here that ignoring oxygen–hemoglobin interaction
would be equivalent to setting B¼1, which would lead to a
hundred-fold underestimation of this constant (Table 1).

From Eq. (5), a linearized version of the corresponding total
oxygen flux is then

j
!

ctot ¼ �D∇
!

cplþ u!cplB: ð7Þ
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Fig. 3. Oxygen–hemoglobin dissociation curve. In the figure: (i) dots are experi-
mental data at normal conditions as obtained by Severinghaus (1979); (ii) solid
curve shows a fit of these data with the Hill equation, the coefficients being
α¼ 2:65, khl ¼ 0:04 mmHg�1; and (iii) straight dashed line is a linear approxima-
tion of the curve in the 0–60 mmHg region as discussed in Section 3.4, slope of the
line being β60 � 0:017 mmHg�1.
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Finally the partial differential equation (6) becomes

Δcpl ¼
uB
D

∂cpl
∂z

: ð8Þ

3.5. Boundary conditions

Boundary conditions should be imposed on Eq. (8):

� the boundary of the large cylinder represents the outer
boundary of a stream tube. Assuming that there is no exchange
of oxygen between different stream tubes, we consider zero
flux on its wall:

∂cpl
∂n

¼ 0;

where ∂=∂n is the normal derivative directed outside the IVS;
� uptake at the effective feto-maternal interface is proportional

to the concentration of oxygen dissolved in the maternal blood
plasma:

D
∂cpl
∂n

þwcpl ¼ 0;

where w is the permeability of the interface which accounts for
the resistance of IVS–villus and villus–capillary membranes as
well as for the diffusion in the connective tissue separating the
two membranes;

� the total concentration of oxygen in blood is uniform and
constant at the entrance of the stream tube (z¼0):

cplðx; y; z¼ 0Þ ¼ c0; 8ðx; yÞASIVS;

where c0 is oxygen concentration in the incoming blood plasma
and SIVS is the part of the stream-tube cross-section occupied by
the IVS.

3.6. Conversion to a 2D eigenvalue equation

To solve Eq. (8), we separate the coordinate z along the stream-
tube axis from the coordinates x and y in the transverse cross-
section. The general solution of Eq. (8) then takes the following form:

cplðx; y; zÞ ¼ c0
X1
j ¼ 1

ajvjðx; yÞe�μjz; ð9Þ

where fμjg are decay rates in the z-direction and fajg are weights of cpl
in the orthonormal eigenbasis fvjðx; yÞg of the Laplace operator Δxy in
the transverse cross-section. fvjðx; yÞg satisfy the following equations:

ðΔxyþΛjÞ vj ¼ 0; ð10Þ
∂vj
∂n

¼ 0 on the stream – tube boundary; ð11Þ
∂
∂n

þw
D

� �
vj ¼ 0 on villi boundaries; ð12ÞP

j
ajvj ¼ 1 in the z¼ 0 plane; ð13Þ

8>>>>>>>>><
>>>>>>>>>:
where

Δxy �
∂2

∂x2
þ ∂2

∂y2
; Λj � μ2

j þμj
uB
D
: ð14Þ

Eigenvalues fμjg, eigenfunctions fvjðx; yÞg and weights fajg are deter-
mined by Eqs. (10)–(14) for a given cross-section. In particular, from
Eq. (13) it follows that aj �

R
SIVS

vj dS, when eigenfunctions are L2-
normalized (

R
SIVS

v2j ¼ 1).

3.7. General expression for oxygen uptake

According to the mass conservation law, oxygen uptake up to
length L is equal to the difference between oxygen flow coming
into the system at z¼0 and oxygen flow leaving the system at z¼L.
Using Eqs. (7) and (9) one can derive an explicit dependence
of oxygen uptake on the stream-tube length:

FðLÞ ¼
Z
SIVS

j
!

ctot � n
!

z

� 	



z ¼ 0

dS�
Z
SIVS

j
!

ctot � n
!

z

� 	



z ¼ L

dS

¼ c0
X1
j ¼ 1

a2j DμjþuB
� 	

1�e�μjL
� �

; ð15Þ

where the definition of fajg has been used. This is an exact
expression for oxygen uptake, into which the geometrical struc-
ture of the placental cross-section enters through the spectral
characteristics fμjg and fajg. Our goal now is to simplify this
expression and to identify the most relevant geometrical and
physiological parameters that determine oxygen uptake.

4. Approximate analytical solution

4.1. Form of the approximation

A quick analysis of Eq. (15) shows that F (L) is a smooth
monotonous curve which is linear at small lengths and exponentially
saturates at large lengths. In a first approximation, Eq. (15) can then
be replaced by an expression which has the same behavior at these
limits:

FapðLÞ ¼ Að1�e�αLÞ; ð16Þ
where A and α are two parameters: A is oxygen uptake at L-1
(equal to the total incoming oxygen flow), and α is the mean decay
rate of oxygen concentration with stream-tube length. We will now
relate A and α to the parameters of the model.

4.2. Uptake at the infinite length

Large lengths are characterized by saturation when all incom-
ing oxygen is transferred to the fetal blood.

An exact expression for the saturation limit can be obtained
from Eq. (15) as L-1:

F1 ¼ c0uBSIVSþc0D
X1
j ¼ 1

a2j μj; ð17Þ

where the identity
P1

j ¼ 1 a
2
j ¼ SIVS, resulting from Eq. (13),

was used.
Note that the flow in Eq. (17) includes two contributions:

convective flow (the first term) and diffusive flow along the z-axis
(the second term). It turns out that the second term is much
smaller than the first one, so that Eq. (17) can be simplified by
omitting the diffusive term:

F1 � A¼ c0uBSIVS: ð18Þ
This approximation is justified by the following arguments:

1. Relative roles of convection and diffusion in a hydrodynamic
problem are described by the Péclet number, which is the ratio
of characteristic times of diffusive and convective transport to
the same distance δ: Pe¼ uδ=D. Large Péclet numbers (Peb1)
indicate predominant convective transport, whilst small values
signify prevalence of the diffusive transport.
For the human placenta, the ratio u=D is of the order of
105 m�1 (see Table 1), which yields that Peb1 for lengths
δb10 μm. As the characteristic length of the stream tube is
L0 � 1:6 cmb10 μm, we conclude that diffusion along the
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stream tube can be omitted as compared to convection. At the
same time, diffusion in the cross-section cannot be ignored as it
is the only in-plane mechanism of oxygen transport.

2. Since 99% of oxygen is bound to hemoglobin in red blood cells
(RBC), and RBCs are too large to diffuse, the error from ignoring
the diffusive transport term in F1 does not exceed 1% in terms
of oxygen content.

Mathematically, the simplification we have used can be written
as

μj5uB=D; ð19Þ
so that Eq. (14) becomes μj �ΛjD=ðuBÞ. It should be noted that
statement (19) does not contradict with the fact that fμjg grow to
infinity with eigenvalue number j. In fact, each μj contributes to
the final expression with a weight aj, which diminishes with j.
Eq. (19) should be then understood as only valid for all eigenvalues
that have significant contributions aj.

Oxygen uptake (15) can then be approximated as

FðLÞ � c0uBSIVS 1�
X1
j ¼ 1

a2j
SIVS

exp � D
uB

ΛjL
� �0

@
1
A: ð20Þ

4.3. Average concentration decay rate

Using Eq. (18) and comparing Eq. (20) with the approximate
form of oxygen uptake (16), one obtains the following definition of
the average concentration decay rate α:

αðLÞ � �1
L
ln

X1
j ¼ 1

a2j
SIVS

exp � D
uB

ΛjL
� �0

@
1
A: ð21Þ

In this formula, α depends explicitly on L and implicitly on the
cross-sectional geometry. Our goal now is to extract the main part
of this implicit dependence. For this purpose, we integrate Eq. (10)
over the IVS in the cross-section (SIVS). We further apply the
divergence theorem (Arfken et al., 2005) to transform the integral
over the IVS to an integral over its boundary (Ptot, which includes
the perimeter P of the absorbing boundary of the villi and that of
the outer boundary of the stream tube in a cross-section):

Λj ¼ �
R
Ptot

∂vj=∂n dPR
SIVS

vj dS
¼w

D

R
Pvj dPR
SIVS

vj dS
¼ wP

DSIVS

� �
q2j ; ð22Þ

where boundary conditions (11) and (12) were used to remove the
contribution from the non-absorbing boundary and

q2j �
1
P
R
Pvj dP

1
SIVS

R
SIVS

vj dS

is the dimensionless ratio of the mean value of the eigenfunction
vj over the villi boundary to its mean value in the IVS.

In the first approximation, the coefficient wP=ðDSIVSÞ in Eq. (22)
describes the dependence of Λj on the cross-sectional geometry.
Introducing qj and the dimensionless length ℓ Lð Þ �wPL=ðuBSIVSÞ
into Eq. (21), we transform it into

α¼ wP
uBSIVS

κðLÞ; where κðLÞ � � 1
ℓðLÞln

X1
j ¼ 1

a2j
SIVS

exp �ℓðLÞq2j
� 	0

@
1
A
ð23Þ

is a dimensionless coefficient depending on L and the cross-
sectional geometry and containing fine details of a given villi
distribution and shapes, which are ignored by the integral para-
meters P and SIVS. Fig. 4a shows the dependence of κðLÞ on villi
density (ϕ� 1� SIVS=Stot ¼ Svil=Stot, the part of the cross-section
occupied by fetal villi) as calculated numerically for a stream-tube
of circular cross-section filled with circular villi. One can see that
in a first approximation, κðLÞ can be considered as independent of
the cross-sectional geometry in a wide range of biologically
relevant stream-tube lengths. For each L, the value of κ can be
determined from Fig. 4b. For the average stream-tube length
(L0 ¼ 1:6 cm, Table 1), κ � 0:35. Using Eqs. (18) and (23), the
approximate oxygen uptake (16) can then be rewritten as

Fap Lð Þ ¼ c0uBSIVS 1�exp � wPL
uBSIVS

κ Lð Þ
� �� �

: ð24Þ

4.4. Dimensionless geometrical parameters

In Eq. (24), both geometrical parameters P and SIVS depend on the
size of the analyzed region. To facilitate physical analysis of the
approximate solution and its comparison to experimental data, we
identify two geometrical characteristics of a placental cross-section
that are independent of the size of the region:

� The fraction of the cross-section occupied by fetal villi, which we
define as the ratio of the total area of villi in a cross-section to
the total area of the cross-section: ϕ� Svil=Stot.� The effective villi radius, which we define as
re � 2Svil= P � 2ϕSIVS=ðPð1�ϕÞÞ. In morphometric studies, the
inverse parameter 2=re ¼ P=Svil is known as “villi surface
density”. For circular villi of radius r, re � r. The mean value
of re for the human placenta can be found in Table 1.

Substitution of these definitions into Eq. (24) gives

ζðγ;ϕÞ � Fapðγ;ϕÞ
F0

¼ ð1�ϕÞ 1�exp �γðre; LÞ
ϕ

1�ϕ

� �� �
; ð25Þ
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Fig. 4. Dependence of κðLÞ on the stream-tube cross-sectional geometry for circular villi in a circular stream tube (Fig. 8). (a) Dependence of κðLÞ on villi density ϕ� Svil=Stot
in a large range of stream-tube lengths. Here Svil is the area of the cross-section occupied by fetal villi, Stot is the total area of a cross-section, and L0 is the average stream-tube
length (see Table 1). One can see that in the first approximation, κðLÞ may be assumed independent of villi configuration. (b) Dependence of κðLÞ averaged over ϕ on the
stream-tube length L. Dashed vertical line denotes the average stream-tube length L0.
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where

γðre; LÞ �
2wκ
uBre

L; F0 � c0uBStot: ð26Þ

The physical meaning of F0 follows from its definition: it is the
maximal oxygen flow entering a stream tube that would be
achieved if no villi obstructed the IVS of the stream-tube. The
incoming flow in the presence of villi is F1 � F0ð1�ϕÞ. Note that γ
includes information on the average villus shape through the
parameter re, and that F0 is independent of the cross-sectional
geometry. Normalized oxygen uptake ζðγ;ϕÞ � Fap=F0 (which we
will call oxygen extraction efficiency) is plotted in Fig. 5a. The
physical meaning of γ is discussed later.

4.5. Optimal cross-sectional geometry

Looking at Fig. 5a and expression (25) for oxygen uptake, it is
natural to ask what are the “optimal” values of the parameters ϕ
and γ that maximize oxygen uptake at a given stream-tube length.
Fig. 5a clearly shows two trends:

� For any fixed value of ϕ, larger γ provides larger uptake.
� For any fixed value of γ, there exists some intermediate value of
ϕ: 0oϕoptðγÞo1 that maximizes oxygen uptake. This optimal
value ϕoptðγÞ tends to diminish with γ.

Note that from definition (26) it follows that in terms of cross-
sectional geometrical parameters, an increase of γ corresponds to a
decrease of the effective radius re. Fig. 5a can then be interpreted
in the following way: it is more efficient to have many small villi
than fewer big villi occupying the same area. This prediction can be
understood if one considers the fact that small villi have more
absorbing surface per unit of cross-sectional area.

However, in the human placenta, re cannot be infinitely small (and
hence γ infinitely large). Indeed, villi possess an internal structure (e.g.,
fetal blood vessels) to transport the absorbed oxygen to the fetus. The
decrease of re below some value is likely making the villi less efficient
in transporting the already absorbed oxygen. This argument is
supported by an experimental observation that in the terminal and
mature intermediate villi of the human placenta (the smallest villi),
blood vessels normally occupy the main part of the internal volume.
The mean radius of these smallest villi is r� 25–30 μm (see Table 28.7
in Benirschke et al., 2006) and is not reported to significantly vary
within the same placenta or between different placentas (Benirschke
et al., 2006). At the same time, villi density may exhibit significant

spatial fluctuations within the same placenta as well as between
different placentas (Bacon et al., 1986).

It is then reasonable to reformulate the initial question of
optimization of the cross-sectional geometry as which villi density
provides the highest oxygen uptake for a given effective villi radius
re. Mathematically, it is the question of finding the maximum of
F against ϕ for a fixed γðreÞ.

4.6. Optimal villi density

Under the constraint of fixed γ, Eq. (25) implies the existence of
maximal uptake at a certain villi density. The reasoning is the
following:

� Fðϕ¼ 0Þ ¼ 0, because the condition ϕ¼ 0 means no feto-
maternal interface and hence no uptake.

� Fðϕ¼ 1Þ ¼ 0, because fetal vessels occupy the entire cross-
section of the stream tube and the incoming MBF is zero as it
does not have space to flow.

� F40 for 0oϕo1, which corresponds to the fact that the
placenta transfers oxygen from mother to fetus for intermediate
villi densities. Hence, there always exists a maximal oxygen uptake
FmaxðLÞ at a certain villi density 0oϕoptðLÞo1 for any γðreÞ.

Here we have used F and not Fap symbol for oxygen uptake to
underline that these arguments are general and are valid not only
for the approximate flow, but for the exact flow as well.

The optimal villi density can then be obtained by solving the
equation

∂Fapðϕ; LÞ
∂ϕ






ϕ ¼ ϕopt

¼ 0

or exp γ
ϕopt

1�ϕopt

 !
¼ 1þ γ

1�ϕopt
: ð27Þ

One can note that Eq. (27) is an explicit equation for ϕopt as a
function of γ only. As a consequence, it does not require any
eigenvalues calculation.

The substitution x� γϕopt=ð1�ϕoptÞ reduces Eq. (27) to the form
γ ¼ gðxÞ, where gðxÞ � ex�x�1, and its solution can be represented
as x¼ g�1ðγÞ. Although the inverse function g�1ðγÞ does not have an
explicit representation, its form can be easily calculated once and
then the tabulated values can be used in practice. Returning to the
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Fig. 5. Diagrams of oxygen extraction efficiency ζðγ;ϕÞ � Fap=F0 (a) and villi density efficiency ηðγ;ϕÞ ¼ Fap=Fapmax (b) as functions of villi density ϕ and the dimensionless
parameter γ. The plus symbol marks the parameters γ � 1:4 (Section 6.1.1) and ϕ� 0:46 (Serov et al., 2015) expected on the average in a healthy human placenta (κ ¼ 0:35).
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definition of x, one obtains ϕopt as a function of γ:

ϕoptðγÞ ¼
1

1þ γ
g�1ðγÞ

: ð28Þ

The function ϕoptðγÞ (Fig. 6a) can be used to calculate an optimal villi
density for a placental region if γ is known for this region. Substitu-
tion of the last result into Eq. (25) gives the corresponding maximal
uptake:

FapmaxðγÞ
F0

¼ γ
1�expð�g�1ðγÞÞ

γþg�1ðγÞ : ð29Þ

From the asymptotic behavior of g(x) at small and large x, we
obtain the following asymptotic formulas for ϕopt and Fapmax=F0:

ϕoptðγÞC
1

1þ
ffiffiffiffiffiffiffiffi
γ=2

p ; γ51

lnðγÞ=γ; γb1

8><
>:

FapmaxðγÞ
F0

C

1�e�
ffiffiffiffi
2γ

p

1þ
ffiffiffiffiffiffiffiffi
2=γ

p ; γ51

1�1=γ
1þ lnðγÞ=γ ; γb1

8>>>><
>>>>:

ð30Þ

Fig. 6 shows that these asymptotics accurately approximate ϕoptðγÞ
and FapmaxðγÞ=F0 not only in the limits of γ51 and γb1, but for all
γ. For instance, it can be calculated that if small-γ asymptotic is
used for γr3 and large-γ asymptotic is used for γ43, the
maximal relative error of the second formula of Eq. (30) is less
than 4%. In other words, we obtained simple explicit approxima-
tions for the optimal villi density ϕopt and the normalized maximal
oxygen uptake Fapmax=F0 as functions of a single parameter γ.

4.7. Villi density efficiency

Basing on the optimal villi density and the maximal uptake
introduced in the previous section, one can define a quantitative
measure of optimality of villi density in a given (not optimal)
geometry.

If the given geometry is characterized by the parameters ðγ;ϕÞ,
its villi density efficiency can be defined as the ratio of oxygen
uptake in this particular geometry to the maximal value, which
can be obtained with the same γ (Fig. 6b):

ηðγ;ϕÞ � Fapðγ;ϕÞ
FapmaxðγÞ

¼
ð1�ϕÞ 1�exp �γ

ϕ
1�ϕ

� �� �

ð1�ϕoptðγÞÞ 1�exp �γ
ϕoptðγÞ

1�ϕoptðγÞ

 ! !: ð31Þ

Fig. 5b presents the villi density efficiency ηðγ;ϕÞ in a physiological
range of ðγ;ϕÞ and at L¼ L0.

Following the comment after Eq. (30), Eq. (31) can be rewritten
as

ηðγ;ϕÞC

ð1�ϕÞ 1�exp �γ
ϕ

1�ϕ

� �� �
ð1þ

ffiffiffiffiffiffiffiffi
2=γ

p
Þ

1�e�
ffiffiffiffi
2γ

p ; γr3

ð1�ϕÞ 1�exp �γ
ϕ

1�ϕ

� �� �
ð1þ lnðγÞ=γÞ

1�1=γ
; γ43

8>>>>>>>><
>>>>>>>>:

with a maximal relative error of 4%. Note that the last equation
does not require calculation of ϕopt and is an explicit function of γ
and ϕ.

Note finally that the optimality indicators ζ and η play different
roles. Oxygen extraction efficiency ζ (Fig. 5a) indicates the fraction
of the maximal possible incoming oxygen flow F0 that is absorbed
by a given cross-sectional geometry. The higher is the value of ζ,
the higher is the absolute value of fetal oxygen uptake. At the same
time, villi density efficiency η (Fig. 5b) shows how far the villi
density of a given cross-section is from its optimal value for a fixed
γðreÞ. The higher is the value of η, the closer is fetal oxygen uptake
to the maximal value for the given villi radius re.

5. Results

Fig. 7 shows that fetal oxygen uptake predicted by the analy-
tical equation (25) agrees well with numerically calculated results
(Serov et al., 2015) in wide ranges of stream-tube lengths (L) and
villi densities (ϕ). Fig. 7a demonstrates the existence of maximal
oxygen uptake corresponding to an optimal villi density for each
stream-tube length. The value of κðLÞ was determined from Fig. 4b
for each considered length L. These results were calculated for the
same geometries as in our earlier numerical simulation (Fig. 8). We
emphasize that numerical simulations with identical circular villi
are shown only for the purpose of validation. The proposed
analytical theory, which uses only villi density and the effective
villi radius (re) as geometrical information, is applicable to villi of
arbitrary shapes and sizes. The agreement of analytical curves with
numerical points shows that for uniform villi distributions, know-
ing villi density and the effective villi radius is enough to predict
the oxygen uptake.

Variations of the parameter γ in analytical expressions for
optimal villi density and maximal uptake (Eqs. (28) and (29))
can be interpreted in terms of changes of individual parameters of
the model, other parameters being fixed. For example, optimal villi
density and maximal uptake can be plotted as functions of MBF
velocity (Fig. 9a and c) or stream-tube length (Fig. 9b and d). An
agreement between the plotted curves and numerical results of
Serov et al. (2015) can be observed.

Fig. 6. Analytical predictions of the optimal villi density (a) and of the normalized maximal uptake (b) as functions of γ (solid lines). Small γ asymptotics are shown by circles;
large γ asymptotics are shown by triangles. Dashed lines marks γ � 1:4 observed in a healthy human placenta (see Section 6.1.1).
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Fig. 7. Oxygen uptake of a single placentone as a function of geometrical parameters. Solid lines correspond to the analytical approximation; symbols reproduce the results
of numerical simulations of Serov et al. (2015). (a) Oxygen uptake as a function of villi density ϕ for three lengths L: L0=3, 2L0=3, and L0. For each of these lengths, the
corresponding value of κ was determined from Fig. 4b: κ � f0:46;0:39;0:35g for L¼ fL0=3;2L0=3; L0g respectively. MBF velocity u¼ 0:6 mm=s was used. It can be observed that
peak uptake moves to smaller villi densities for larger stream-tube lengths L. Note that in the analytical theory oxygen uptake is calculated directly for the radius R, whereas
in the numerical simulation oxygen uptake is calculated for Rnum and then rescaled to the placentone radius R by multiplying by R2=R2

num. Note also that the numerical curves
do not go beyond the villi density ϕ� 0:75 because there exists a maximal packing density of circles in a large circle, and numerical results cannot be calculated beyond that
density (see Specht, 2009). The analytical theory, on the contrary, does not rely on particular shapes or distributions of villi, but operates only with villi density and the
effective villi radius, thus allowing the results to be calculated for villi densities beyond this limit (although in the region of ϕ40:75 villi cannot be circular, the same re is
maintained). (b) Oxygen uptake as a function of stream-tube length L for a fixed villi density ϕ. Small deviations of the theory from the numerical results seen in the figure
are explained by the fixed κ¼ κðL0Þ � 0:35 used for all lengths. Various symbols represent villi densities of Fig. 8.

Fig. 8. Villi distributions for which oxygen uptake was calculated in Serov et al. (2015). Number of villi (N) and the corresponding villi density (ϕ) are displayed above each
case. The analytical theory was applied to the corresponding ϕ with re given in Table 1. Maternal blood flows in the white space in the direction perpendicular to the cross-
sections.

Fig. 9. Dependence of the optimal villi density (a) and the maximal oxygen uptake (c) on the MBF velocity at a fixed length L0 (Table 1) for a single placentone. Dependence
of the optimal villi density (b) and the maximal oxygen uptake (d) on stream-tube length at a fixed MBF velocity u (Table 1) for a single placentone. Solid curves represent
analytical results, while filled circles correspond to numerical simulations for circular villi (Fig. 8). Dashed curves show analytical results in blood with no hemoglobin (B¼1,
as in artificial perfusion experiments). Straight dashed lines indicate the expected average MBF velocity u and stream-tube length L0 (Table 1). Step growth of numerical
results seen in (a) and (b) is explained by discrete changes of villi density in the numerical simulations due to discrete changes in the number of villi in the cross-section.
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All four plots in Fig. 9 feature a dashed black curve representing
a fictitious case of blood having no hemoglobin but transporting
only oxygen dissolved in the blood plasma. Mathematically, this
case is described by oxygen–hemoglobin dissociation parameter
B¼1, which is about 100 times smaller than that for blood with
Hb. As predicted by Eq. (28), the no-Hb curves for optimal villi
density have the same shape but are shifted by two orders of
magnitude as compared to those for normal blood.

6. Discussion

6.1. Parameters γ and F0

6.1.1. Values
Taking πR2 as the total area of the cross-section, parameters

from Table 1 and κðL0Þ � 0:35 for the average stream-tube length
L0 � 1:6 cm (Fig. 4b), from Eq. (26) one can estimate the values of γ
and F0 which characterize a “healthy” regime of our placenta
model: γ � 1:4, F0 � 3 � 10�6 mol=s. The obtained average value of
γ together with the average villi density ϕ� 0:46 (Serov
et al., 2015) are marked by crosses in the diagrams in Fig. 5. One
can see that the theory predicts that an average placenta extracts
around 35% of the maximal possible incoming oxygen flow F0
(Fig. 5a), and that this value is close to the maximal one for the
given effective villi radius (Fig. 5b). Although 35% seems to be a
low value, note that oxygen extraction efficiency of 100% is never
achievable since in the presence of villi only a part of the flow
unobstructed by villi (F0) can be transferred to the fetus.

To have predictive power, γ and ϕ need to be measured for
different healthy as well as pathological placentas over the whole
exchange region. Such measurements require development of image
analysis techniques, which could automatically determine these
characteristics for histological placental slides. Such measurements
have not yet been performed and present an important perspective to
this study. At the same time, because of the lack of experimental
information about several other parameters (namely, u, w, and L) in
each studied placenta, correlations of changes of γ and ϕ with
changes of fetal development characteristics (such as birth-weight,
placenta weight or their ratio) are expected to be of more practical
use than absolute values of γ and ϕ. Note finally that the optimal
geometry and maximal uptake may change for non-slip boundary
conditions; further studies are required to clarify this point (for
discussion see Serov et al., 2015).

6.1.2. The optimal villi density: the parameter
The two parameters γ and F0 play different roles. According to Eq.

(27), γ alone determines the optimal villi density, while F0 together
with γ determines the maximal oxygen uptake (Eq. (29)). A clear
physical interpretation of γ can be obtained by rewriting (26)
as

γ ¼ L=u
Bre=ð2wκÞ

¼ τtr
τe

;

where τtr � L=u is the transit time of maternal blood through the
placenta (while it flows along a stream tube of length L with an
average velocity u) and τe � Bre=ð2wκÞ is oxygen extraction time
of a placental cross-section. As a consequence, γ can be under-
stood as a quantitative measure of balance between two oxygen
transport mechanisms: the longitudinal convective flow and the
transverse diffusion. In other words, γ describes the level of
adaptation of the geometry of the cross-section and uptake para-
meters to the incoming MBF. Large values of γ (γb1) mean that
oxygen is quickly transferred to the fetal circulation at the
beginning of the stream-tube and is rapidly depleted, so that
poor in oxygen maternal blood flows through the remaining part.

Thus, this remaining part does not function efficiently. Small
values of γ (γ51) mean that maternal blood passes too quickly
through the placenta as compared to the oxygen extraction time,
so that a considerable part of the incoming oxygen flow may not
be transferred. One can then speculate that transport of oxygen is
the most efficient in the placentas, for which γ is of the order of 1.
γ � 1:4 calculated from the model parameters suggests that a
healthy placenta may indeed function optimally.

6.2. The analytical theory

The advantages of the analytical solution over the numerical
one are numerous:

1. Oxygen uptake can be estimated for a histological cross-section
of arbitrary geometry.

2. The villi density ϕ and the effective villi radius re are shown to
be the only geometrical parameters necessary to predict oxy-
gen uptake of a rather uniform villi distribution in a placental
cross-section (see Figs. 7 and 9). These two parameters allow
for a simple application of the theory to distributions of villi of
arbitrary shapes. The validity of the theory in the case of
strongly non-uniform villi distributions remains to be investi-
gated.
Finer details of villi distributions which produce differences
between numerical and analytical results in Figs. 7 and 9, are
“stored” in the coefficient κ. This coefficient encompasses not
only the details of villi distributions, but also determines the
strength of their influence on oxygen uptake at a given length L.
In other words, it quantitatively describes the fact that in each
geometry, different regions of the IVS are not equivalent due to
random distribution of villi, and that with length L, oxygen in
some regions is exhausted faster than in other regions. How-
ever, the dependence of κ and α on L is rather weak as can be
seen in Fig. 7b, in which FapðLÞ is plotted for all lengths with the
same κ ¼ κðL0Þ � 0:35. In the first approximation, κ can hence
be considered independent of L.

3. The efficiency of oxygen transport in a given placental cross-
section can be estimated by means of oxygen extraction effi-
ciency ζ and villi density efficiency η plotted in Fig. 5. For these
two quantities, simple analytical formulas and diagrams are
provided, which allow for comparison of different placentas or
placental regions once the parameters ϕ and γ are calculated
for them. To have predictive power, the efficiency estimations
provided by the model need to be studied for correlations with
independent indicators of placental exchange efficiency, such
as placenta shape, placenta weight, placenta-fetus birth-weight
ratio (Misra et al., 2010; Hutcheon et al., 2012) or pulsatility
indices determined by Doppler velocimetry in the umbilical
cord or maternal vessels (Todros et al., 1999; Madazli et al.,
2003), which were demonstrated to vary between normal and
pre-eclamptic pregnancies or pregnancies complicated by fetal
growth restriction.

4. The analytical theory suggests that oxygen uptake in the
human placenta is rather robust to changes of villi density.
Indeed, the diagram in Fig. 5a shows that placental villi density
can vary by about 10% around the optimal value with the villi
density efficiency η staying in the 90–100% interval. Far from
the optimal villi density, η tends to decrease faster.

5. One can to analyze the consequences of neglecting oxygen–
hemoglobin reaction on the predictions of oxygen uptake and
the optimal villi density of a placental region. Moreover, the
theory gives a method of recalculation of the results obtained
for no-Hb blood in artificial placenta perfusion experiments
into those for normal blood. Imagine that at the end of an
artificial perfusion experiment with no-Hb blood, one obtains
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the total oxygen inflow ~F in into the placenta, fetal oxygen
uptake ~F and the average villi density ϕ from histomorpho-
metry of the same placenta (note that ~F in and ~F differ from F in
and Fwhich would have been obtained for normal blood). From
these data one can calculate ~F 0 ¼ ~F in=ð1�ϕÞ (see the discussion
of Eq. (26)) and then ~γ as a root of Eq. (25) (with Fap replaced by
~F ). These values can be recalculated for blood containing Hb:
γ ¼ ~γ=B and F0 ¼ ~F 0B, where B� 94 (Table 1), and can be
substituted into Eq. (25) to give oxygen uptake F in the same
placenta for blood containing Hb. One can see that oxygen
uptake in a no-Hb perfusion experiment gives on the average a
hundred-times underestimation of the real uptake. Finally, the
values of γ and ϕ for the given placenta can be compared with
the diagram in Fig. 5b to determine how far the geometry of
the region is from the optimal one. Note that this recalculation
introduces a small error as in no-Hb case the diffusive part of
the total flow, which is omitted in Eq. (17), becomes important.

6. The computation time is reduced since calculations of eigen-
functions and eigenvalues of the diffusion equation are not
required. Note that due to long computation time, numerical
simulations of Serov et al. (2015) had to be performed on a
smaller placentone radius Rnum and then rescaled to the radius
R by multiplying oxygen uptake by R2=R2

num. This constraint
does not apply to the analytical theory. In particular, good
agreement between both approaches justifies the rescaling of
results performed in the numerical calculations.

Note finally that the derivation of Eq. (26) implies that, strictly
speaking, P is not the total perimeter of the villi, but the effective
absorbing perimeter of the villi (i.e. only its part that is directly in
contact with the IVS). In the case of well-separated villi, there is no
difference between the two definitions. However, it is not always
the case in placental cross-sections. For instance, in Fig. 10b one
can see several isolated groups of villi, inside which villi lie so
close to each other, that there is virtually no IVS left between
them. Parts of the villous boundary which are not in contact with
large parts of the IVS are then screened from participating in
oxygen uptake, and hence should not be accounted for in the
effective absorbing perimeter of the villi. This remark can be
understood by considering the fact that oxygen diffuses in the
IVS, and only parts of the villous boundary that are in contact with
the IVS will participate in the uptake. In the case of well separated
singular villi, the entire perimeter is absorbing. A schematic

description of this situation is shown in Fig. 10a. Note finally that
in our model the screening effect is implicitly taken into account
by the diffusion equation (10).

7. Conclusions

In the present work, an analytical solution to the diffusion–
convection equation governing oxygen transport in the human
placenta has been developed. Oxygen uptake was calculated for an
arbitrary cross-sectional geometry of the stream tubes of maternal
blood. It was shown that for a rather uniform spatial distribution
of villi in a placental cross-section, only two geometrical char-
acteristics, villi density ϕ and the effective villi radius re, are
needed to predict fetal oxygen uptake.

It was also demonstrated that all the parameters of the model
do not influence oxygen uptake independently, but instead form
two combinations: (i) the maximal oxygen inflow of one placen-
tone F0 and (ii) the ratio γ of the transit time of maternal blood
through the IVS and the oxygen extraction time. These two
parameters together with villi density determine oxygen uptake.
Analytical formulas and diagrams were obtained which allow for
oxygen uptake calculation and quantitative estimation of the
efficiency of oxygen transport of a given placental region based
on measurements of ϕ and re.

Finally, a fictitious case of blood containing no hemoglobin was
analyzed to study oxygen transport in artificial placenta perfusion
experiments. It was demonstrated that artificial perfusion experi-
ments with no hemoglobin tend to give a two-orders-of-magnitude
underestimation of the in vivo oxygen uptake. A method of recalcula-
tion of the results of artificial perfusion experiments to account for
oxygen–hemoglobin dissociation was proposed.

Once combined with image analysis techniques, the proposed
analytical theory can be the mathematical ground for a future tool
of fast diagnostics of placenta efficiency based on histological
placental slides.
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Fig. 10. Illustration of the difference between the total villous perimeter and the effective absorbing villous perimeter. (a) Example of an isolated group of villi. In the shaded
villi group, some parts of absorbing villi boundaries are inefficient as they are screened by other villi from the outside of the isolated group, where the main reservoir of
oxygen is supposed to be. The effective absorbing perimeter of the group is close to the perimeter outlined by the dashed line. This perimeter of the IVS surrounding the villi
can be several times smaller than the total perimeter of the villi in the shaded group. Note also that adding a new villus into such group (the villus outside the shaded group)
does not increase the effective absorbing perimeter proportionally to the increase of the total villous perimeter. In the example in the figure, the new perimeter (the dotted
contour) has approximately the same length as the old one. (b) Illustration of the same concept in a histological slide of the human placenta. Two dashed contours show the
effective absorbing perimeters of two groups of villi, which are considerably smaller than the total perimeters of villi in the groups. Discussion of similar screening concepts
can be found in Sapoval et al. (2002), Felici et al. (2005), and Gill et al. (2011).
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