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Abstract
The respiratory system of mammalians is made of two successive branched structures with differ-
ent physiological functions. The upper structure, or bronchial tree, is a fluid transportation sys-
tem made of approximately 15 generations of bifurcations leading to the order of 215 = 30, 000
bronchioles with a diameter of order 0.5mm in the human lung.1 The branching pattern con-
tinues up to generation 23 but the structure and function of each of the subsequent structures,
called the acini, is different. Each acinus is made of a branched system of ducts surrounded by
alveolae and play the role of a diffusion cell where oxygen and carbon dioxide are exchanged
with blood across the alveolar membrane.2 We show in this paper that the bronchial tree
presents simultaneously several optimal properties of totally different nature. It is first energy
efficient;3–6 second, it is space filling;7 and third it is “rapid” as discussed here. It is this multi-
optimality that is qualified here as magic. The multi-optimality physical characteristic suggests
that, in the course of evolution, an organ selected against one criterion could have been later
used for a totally different reason. For example, once energetic efficiency for the transport of a
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viscous fluid like blood has been selected, the same genetic material could have been used for
its optimized rapidity. This would have allowed the emergence of mammalian respiration made
of inspiration–expiration cycles. For this phenomenon to exist, the rapid character is essential,
as fresh air has to reach the gas exchange organs, the pulmonary acini, before the start of
expiration.

Keywords : Evolution; Respiration; Mammals; Optimal Systems; Fractals.

1. INTRODUCTION

The ubiquity of branched distribution systems in
living organisms has been the subject of many
queries since about two centuries.8,9 These struc-
tures are found in various organs: arteries, kidney
and lungs where they perform different functions.
Owing to ubiquity of such systems, there exist many
studies that are not referred here that the reader
can find in the above references or on the web of
science.

They are then common but other types of net-
works do exist in living systems, such for example
brain connections. All these structures are “space
filling” in the sense that they feed the entire vol-
ume of an organ. However tree structures (loopless
networks) permit to connect a small source to a
volume10 for example the heart to the body, of
the mouth or nose to the volume of the thoracic
cage. Reciprocally, they permit to connect a vol-
ume, like that of the mammary gland to a small
exit, the papilla. In contrast, brain connections are

more of the nature of what is called complex net-
works connecting a volume to itself.

Here we concentrate on the respiratory system
of mammalians and more precisely on the tracheo-
bronchial tree. In the upper part of lung airway
system of mammalians, starting with the trachea
and down to generation 5 to 6 in the human lung,
the transport of air is governed by the Navier-
Stokes equation which also accounts for inertial
effects.11–16 Going deeper into the tree, as the total
cross-section increases the air velocity decreases to
the point that the approximation of Stokes flow
can be used to describe the aerodynamics of the
tree from typical generation range 5 to 15. The
entire tracheobronchial transport system is made of
approximately 15 generations of bifurcations lead-
ing to the order of 215 = 30, 000 terminal bronchi-
oles with a diameter of order 0.5 mm.

Our purpose here is to draw attention to some
special physical properties of the intermediate tree
from typical generation range 5 to 15. Typical
examples are shown in Fig. 1. This is the very

Fig. 1 Real cast of intermediate bronchial trees; left, human; right, rat (courtesy of E. R. Weibel).
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system that exhibits simultaneously the three types
or properties that can be considered as constituting
a “magic” ensemble. The magic lies in the fact that
a system optimized against one criterion happens
to be also optimized for a totally different crite-
rion. The three different types of optimality that
are simultaneously observed are

• energetic efficiency in fluid transport,
• geometry efficiency, and
• flight time efficiency.

Curiously this last question has not been discussed
in the past.

2. ENERGETIC EFFICIENCY

We recall briefly the formal argument to find the
best energy saving tree.16 We consider a symmet-
ric dichotomous tree as schematized in Fig. 2. The
effect of airway geometry on ventilation can be
developed as follows. Assume that from generation
(p− 1) to generation p the diameter and the length
of the airway segments are reduced by a homoth-
etic factor hp. This means that the bronchia shape
is maintained through generations. Calling R and
V the resistance and volume of a given duct, the h
homothetically reduced duct has a resistance R/h3

since this resistance is proportional to the duct
length L and inversely proportional to the fourth
power of the duct diameter d. (Although the length
over diameter ratio of the intermediate bronchia are
only of the order of 3 and end effects cannot be
neglected, this is a reasonable approximation16). In
contrast, the volume is multiplied by a factor h3 at

Fig. 2 Schematic constitution of a general symmetric
dichotomic tree. Each generation is characterized by the
lengths Ln and diameters that are reduced by an homoth-
ety factor hn. The flux in each individual branch is divided
by 2 at each bifuration, and the velocity of the fluid is Un.

each generation. After p generations, the sizes are
reduced by a factor h1 ×h2 × · · · ×hp−1 so that the
total resistance and volume of a tree with N + 1
generations (indexed 0 to N) can be written

RN = R0 +
N∑

p=1

1
2p

R0

(h1 × h2 × · · · × hp)3

VN = V0 +
N∑

p=1

2p(h1 × h2 × · · · × hp)3V0.

If Φ is the global airflow, the total pressure drop is
∆PN = RNΦ and the total dissipation can be writ-
ten Φ∆PN . This power loss can be minimised rela-
tive to (h1, . . . , hN−1) on the surface defined by the
constraint VN = Ω. The minimum of RN on VN � Ω
is characterised by the existence of a Lagrange
multiplier µ such that ∇(RN ) = µ∇Vn. This leads
to h1 = [(ΩV0)/(2NV0)]1/3 and hi = (1/2)1/3 for i
in {2, . . . , N}. Note that the factor hi = (1/2)1/3

is known for a long time under the name of the
Hess-Murray law. Note also that what is really opti-
mized here, is the energy expense per volume which
is the important criterion as such branching trees
are only feeding systems and not acting systems,
the acting system being the muscles in the body or
the acini in the mammalian lungs. The volume of
the bronchial tree is called the dead space volume
in physiology (of order 200 ml in the human lung),
as it plays no role in gas exchanges. Note that is
has been also shown that cylindrical pipes are more
efficient energetically than elliptic pipes.17 In sum-
mary the best energy saving symmetric dichotomic
tree is self-similar with a constant scaling ratio inde-
pendent of the generation. This is a clear indica-
tion that evolution has selected self-similarity for
efficiency.

3. GEOMETRIC EFFICIENCY

Consequently, the best energetic tree is a self-similar
fractal with a fractal dimension equal to D =
ln 2/ ln(1/h) or D = 3. It is interesting to note that
anatomy measurements of the real bronchial tree
has given value for h close to 0.85, not far from the
optimum.

But, reciprocally, the fractal dimension of a tree
structure is given by D = log N/ log h where N
is the number of branches at each bifurcation (or
degree of the tree) and h the scaling ratio of the
branches. So the scaling ratio that guarantees that
for N = 2 the dimension is equal to 3 is such that
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3 = ln 2/ ln(1/h) or h = (1/2)1/3. And then, under
the only hypothesis that a dichotomous tree must
be space-filling one finds that it must be the best
energy saving tree.

Note that what is called “space filling” does not
imply that the total bronchial volume is equal to
the lung volume. It means precisely that any point
chosen arbitrarily in the lung volume is close to a
small bronchiole.

4. FLIGHT TIME EFFICIENCY

A third “magic” property of this best tree is that
it exhibits optimal rapidity in providing the short-
est time for the air to travel through. This can
be seen in the following steps as follows. Let us
call t0, t1, t2, . . . , tn, the time for the flow to travel
across generation 0, 1, 2, 3, . . . , n, . . . . See Fig. 2. We
search for the smallest total time T = t0 + t1 +
t2 +, . . . ,+tn + · · · . The first step is to use a collage
argument to ensure that the fastest tree is obtained
when all these transit times are equal. For this, sup-
pose that they different, then there is one that is the
smallest. One can substitute all the longer times by
the shortest and the total time will be minimized.
So, the fastest (best tree for two way respiration)
tree is isochronous.

Now, call Ln and, Ln+1 the bronchia lengths at
generation n and n + 1 and Un, and Un+1, . . . the
associated air velocities. One has tn = Ln/Un and
we want tn+1 = Ln+1/Un+1 = tn = Ln/Un. The
flux in a generation n branch is Φn is proportional to
Un(dn)2 or Un(Ln)2. The conservation of the flux at
each branching implies Φn = 2Φn+1. Searching for
the homothety factor h that satisfies these equations
one obtains, here again: h = (1/2)1/3. In summary
the above facts indicate that there exists what can
be called a “best best” tree structure that obeys
simultaneously different criteria. From this, one can
suggest that during the course of evolution, natu-
ral selection has met the one among these criteria
that was of critical importance for survival given
the external circumstances.

For instance, the fact to be an energy saving dis-
tribution system was probably of primary impor-
tance for the circulation of a viscous fluid like blood
whereas viscous dissipation in the aerial bronchial
tree of mammalian is only a small part of the work
for breathing in air due to the very small air viscos-
ity as compared to that of blood. If primordial ani-
mals with one-way blood circulation were aquatic,
there arterial system could have evolved towards

energetic efficiency creating the basis for a sub-
sequent aerial cyclic respiration. Note that if the
bronchial tree has a short flight time for respiration
at rest it will also be efficient for respiration at exer-
cise where the velocity of air is 10 times higher than
at rest.2

Note also that for a given pressure drop, if the
structure is blown up by a constant factor the flight
time will diminish but this is at the expense of the
dead space volume. So the optimization of the flight
time is a specific constrain by itself.

Another specific property of such a magic
tree is that the hydrodynamic resistance between
successive bifurcations is constant, such that the
pressure drop between bifurcations is also constant.

5. SOME REMARKABLE
PROPERTIES OF THE
MAMMALIAN RESPIRATORY
ACINUS AND WHY DO
MAMMALIANS NEED A
DISTRIBUTION TREE
FEEDING SMALL ACINI

Each termination of the bronchial tree, called
a bronchiole, feeds an acinus, the gas exchange
unit for respiration but also a mini-pump for air.
This in itself could also be qualified as magic as
two totally different functions, gas exchange and
mechanical pumping, are provided by the same
organ.

But as, for mechanical reasons, the membrane
must have a minimal strength then a minimal thick-
ness and consequently a finite resistance for gas
diffusion.18 The acinus surface must then be large
enough to provide enough oxygen to the blood.
A human acinus is shown in Fig. 3. Several param-
eters govern the global oxygen uptake: air velocity
at the acinus entry, oxygen diffusivity in air, alveo-
lar membrane permeability, blood hemoglobin con-
tent and its reaction rate with oxygen, and, last
but not least, the morphology of the system plays
an essential role.19 So, the proximal acinar regions
receive fresh air through the terminal bronchioles.
But the more distal acinar regions, those that con-
tain the major exchange surface that are deeper
than the location of the convection/diffusion tran-
sition, are fed only by diffusion. These regions may
then be submitted to diffusion limitations or screen-
ing. Qualitatively, diffusion screening is the conse-
quence of the fact that, when O2 molecules diffuse
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Fig. 3 Human pulmonary acinus (courtesy of E. R.
Weibel). The scale marker is 1 mm. The acinus entry is the
end of the transitory bronchiole (tb) and one can observe the
first alvedae on the respiratory bronchiole (rb).

inside the acinus, they may hit the alveolar mem-
brane and may be trapped by the blood. The gas
may then be progressively depleted from its oxygen
content due to diffusion screening. This problem has
been solved in Ref. 19.

The flux depends on the relative values of two
lengths: Λ, and the so-called “surface perimeter”
Lp. The length Λ is the ratio D/W of the diffu-
sion coefficient of oxygen in air, D by the mem-
brane permeability, W .20 It is of purely physico-
chemical nature and its value is around 28 cm in
the human lung. The “surface perimeter” Lp is the
ratio of its area S by its diameter, the diameter
being that of the smallest sphere embedding the
irregular surface. If Λ is larger than Lp the surface
works uniformly whereas when Lp is larger than Λ,
oxygen cannot reach the less accessible regions and
the surface is only partially active. The morpho-
metric study of the human acinus yields a value
of Lp ≈ 30 cm for a 1/8 sub-acinus a remarkable
agreement also found for the acini in several mam-
malian species.19 It strongly suggests that screening
plays a role in mammalian respiration and that lung
design is adjusted to cope with this problem. But,
at the same time, it indicates that too large acinus,
in which Lp � Λ(O2), would be poorly working and
this is the reason why the lungs are not made of a
single very large acinus but are instead constituted
of the 30,000 small acini in the human lung,21 all
supplied by the efficient branched conducting air-
ways described above.

6. TREE OPTIMALITY IN REAL
LIVING SYSTEMS?

One should first discuss the fact that real struc-
tures are found to be somewhat different from the
ideal structures presented above. This has been doc-
umented in the case of the human intermediate
bronchial tree where the scaling ratio is more, when
averaged, of the order of 0.85 than the optimal value
0.79. In that sense this part of the bronchial tree
has a slightly too large dead space volume at the
benefit of a better conductance robustness towards
geometrical variability.7 This also constitutes a pro-
tection against mild forms of asthma. In the strict
sense, its fractal dimension is then larger than 3 but
this is permitted because the tree is finite. From
the point of view of the transit time, the value 0.85
would increase significantly the transit time if the
real splitting was exactly dichotomous.

This is however compensated by the fact that for
the upper branches h is smaller than 0.79. Also, it
is known that the real geometrical splitting is not
symmetric,22–24 giving rise to a smaller daughter
with h < 0.79 and a large daughter with h > 0.79
or a more rapid and a more slow branch at each
bifurcation. It has been shown in Ref. 7 that this
could be at the benefit for the global conductance,
which is less sensitive to bronchia constriction than
the symmetric tree. This indicates that the “aver-
aged” value of 0.85 does not describe properly the
complicated effects of succession of rapid and slow
bronchia.

In the case of the arterial blood system, it is the
opposite; the scaling ratio is a little smaller at the
benefit of the quantity of blood.25 The quantity of
blood was the criterion driving Hess and Murray in
their derivation of the optimal value h = (1/2)1/3.
This value has been found to be a good descriptor of
the hierarchy of vessels in plants when their role is
uniquely to transport water and do not play simul-
taneously a mechanical role.26

One should also comment that real bronchial
trees are generally found to be asymmetric, prob-
ably as a consequence of their growth in a natural
non-symmetric environment.24–26

There are other consequences of the magic of
these tree structures. First, their performances
strongly depend critically on the h value.16 Second,
the extreme sensitivity of the final distribution to
defects. This is for instance the question of the final
distribution of a given air flux entering the tree if
the dichotomic splitting of the flux is not strictly
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equal to 1/2 and 1/2 but for instance 1/2 + α and
1/2−α. Let us suppose that at the next bifurcation
a similar splitting occur. Then, between the four
daughter branches, one will find fluxes as (1/2+α)2

and (1/2−α)(1/2+α) twice and (1/2−α)2 and so
on. This is a multiplicative process and it provides
after n bifurcations a strongly uneven distribution
of the flux between (1/2 + α)n and (1/2 + α)n with
fractal correlations in space. Such a distribution is
called multifractal27,28 and its main characteristic
is the strong unevenness of the fluxes reaching the
final branches. In other words it is inherent to a tree
distribution system to create unequal distribution
of the fluxes. This means that, to really be efficient
distributive systems these “magic” trees have to be
regulated. This is known for arteries. In the lung, it
could be the role of the smooth muscle found around
the bronchia. There is then, along with the physical
performances of these magic trees, the necessity of
an adapted physiological control of its functioning.

7. A PHYLOGENETIC POINT OF
VIEW INDUCED BY PHYSICS,
WHAT CAME FIRST?

A first observation that one can draw from the
above facts is that the same system may favour
simultaneously different types of use because it is
efficient for different properties. And an obvious
question is: during evolution, what came first?

Before suggesting an answer one should mention
that several systems have been already found to be
used by living systems for very different functions.
The general idea is the role of tinkering in evolu-
tion.29 One example is the RuBisCO enzyme that
is used for sulfur metabolism.30 An other example
is the crystallin genes issued from chaperone-like
proteins.31 Such findings have been developed in
recent years as a concept called “the book as a
paperweight” by Danchin.32 The same processes
are also known as gene sharing33 or acquisitive
evolution.

Here, we discuss the purely physical properties
of the bronchial tree and try to answer the ques-
tion: what came first between energy, geometry, and
time performances? We suggest that, between these,
space-filling geometry came first. In life there are
essentially two transport mechanisms, diffusion and
forced convection. Diffusive transport is effective at
small scales like cellular scales for diffusion in liq-
uids. But at the scale of an organ, and even more
at the scale of an animal, diffusion is far too slow

to bring nutrients at the speed necessary to sup-
port life. On the other hand, it is the volume of
the organs that have to be fed. The transport sys-
tem has then to be space filling. There are only
two types of space-filling geometries: a network, or
a tree. Both exist but the tree is more efficient from
the energetic point of view. So, the suggestion is
that tree distribution systems have been selected
together with the growth of multi-cellular systems
or animals.

To have an energy saving distribution system was
probably of primary importance for the circulation
of a viscous fluid-like blood. In primordial aquatic
animals with one-way blood circulation, the arte-
rial system would have necessarily evolved towards
energetic efficiency.

In contradistinction, under normal conditions,
the viscous dissipation in the aerial bronchial tree
of mammalian is only a small part of the work for
breathing in aerial respiration because the viscosity
of air is negligible as compared to the viscosity of
blood. But once the genetic material was available
it could have been used for creating the basis for
a subsequent aerial, two-way respiration, i.e. mam-
malian respiration. So the phylogenesis that physics
suggests starts from space filling, and then follows
energetic efficiency to be finally used for the aerial
respiration of mammals.

Although this does not constitute a proof, the
visual observation of Fig. 4 suggests that the same
genetic material could have been at work in the
growth of arteries and bronchia.

Fig. 4 Small bronchia and bronchioles and pulmonary
arteries in the human lung. The pulmonary arteries trans-
port veinous blood but here they have been coloured in red.
(Courtesy of E. R. Weibel).
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