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It  has  recently  been  shown  that  the  acinus  can  have  a reduced  efficiency  due  to a “screening  effect”  gov-
erned by  the  ratio  of oxygen  diffusivity  to membrane  permeability,  the  gas  flow  velocity,  as  well as  the
size  and  configuration  of  the  acinus.  We  present  here  a top to bottom  calculation  of  the functioning  of  a
machine  acinus  at exercise  that  takes  this  screening  effect  into  account.  It shows  that,  given  the  geometry
and  the  breathing  dynamics  of  real acini,  respiration  can  be correlated  to a  single  equivalent  parameter
iffusion limitation
cinus
lveolar gas
embrane permeability

that  we  call  the integrative  permeability.  In particular  we  find  that both V̇O2,max and  PAO2 depend  on  this
permeability  in a non-linear  manner.  Numerical  solutions  of  dynamic  convection–diffusion  equations
indicate  that  only  a  narrow  range  of permeability  values  is compatible  with  the  experimental  measure-
ments  of  PAO2 and V̇O2,max. These  permeability  values  are  significantly  smaller  than  those  found  in  the
literature.  In  a second  step,  we  present  a new  type  of  evaluation  of  the  diffusive  permeability,  yielding
values  compatible  with  the top  to  bottom  approach,  but  smaller  than  the  usual  morphometric  value.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Gas exchange in the pulmonary acinus involves different phys-
cochemical phenomena occurring in a dynamical and complex
eometry. The global process includes five main steps (Weibel,
984): (i) air convective flow; (ii) oxygen diffusion in air; (iii) dif-
usion through membrane and plasma; (iv) diffusion inside the red
lood cells; and finally, (v) oxygen binding to hemoglobin.

In order to understand how these phenomena combine to gov-
rn respiration at exercise, we study in some detail how the steps
i) convection, (ii) oxygen diffusion through air, and (iii) diffusion
hrough membrane and plasma interact within the dynamic of the
cinus tree structure. The physiological problem that we  quanti-
atively investigate is schematically represented in Fig. 1. In this
roblem, the acinus morphology plays an essential role: the gas
xchange units are arranged serially along the branched alveo-
ar ducts, which direct O2 toward the peripheral units while the
apillary network units are arranged in parallel.

During each breathing cycle, the proximal acinar regions always

eceive fresh air while the more distal regions located deeper
re only fed by diffusion. The transition between convection-
ominated and diffusion-dominated regions therefore moves back

∗ Corresponding author. Tel.: +33 169334725.
E-mail address: bernard.sapoval@polytechnique.edu (B. Sapoval).

569-9048/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.resp.2012.10.013
and forth periodically, constantly modifying the size of the diffusion
cell. The time-dependent diffusion cell regions may be subjected
to diffusion limitations also called diffusion screening. Diffusion
screening is the consequence of the fact that, when O2 molecules
diffuse inside the acinus, they may  cross the alveolar membrane
and be trapped by the blood. As the gas continues deeper into the
acinus, this process causes the progressive transfer of O2 into the
blood. This results in a gas that is depleted of part of its oxygen
content in the peripheral region.

In early studies, incomplete gas mixing was already assigned to
the finite diffusivity of oxygen, preventing it to evenly spread in the
acinus within an inspiration (Scheid and Piiper, 1980). In this frame,
the possible non-uniformity of the oxygen concentration was  called
stratification. The fact that the distribution of O2 partial pressure
could present a gradient was  also indicated in (Weibel et al., 1981).
The resolution of the best NMR  experimental measurements, with
pixels of order 6 mm in size, is insufficient to show concentration
gradients within the scale of an acinus (Miller et al., 2010). Lacking
direct measurements of the distribution of oxygen concentration,
the respective roles of convection and diffusion in the gas mixing
process were examined through numerical simulations (Paiva and
Engel, 1985, 1987; Dutrieue et al., 2000; Tawhai and Hunter, 2001).

These studies showed that concentration gradients might exist as
a consequence of efficient capture of oxygen by hemoglobin, the
permeability of the alveolar membrane being considered in these
models as infinite. In sharp contrast with the previous works, we

dx.doi.org/10.1016/j.resp.2012.10.013
http://www.sciencedirect.com/science/journal/15699048
http://www.elsevier.com/locate/resphysiol
mailto:bernard.sapoval@polytechnique.edu
dx.doi.org/10.1016/j.resp.2012.10.013
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List of symbols

a radius of a spherical blood cell
 ̨ partition ratio (solubility) of oxygen in the alveolar

membrane and plasma compared with the gas
˛′ partition ratio (solubility) of oxygen in an erythro-

cyte compared with plasma
ı dilation amplitude
Cg and CL oxygen concentrations in the alveolar gas and in

the membrane–plasma liquid
D diffusion coefficient of oxygen into air
DO2,H2O diffusion coefficient of oxygen into water
DM membrane conductance
De erythrocyte conductance
DLO2 lung diffusive capacity for oxygen
k(t) acinus linear dilation factor
K Krogh permeability
PAO2 average oxygen partial pressure in the acinus
PIO2 oxygen partial pressure at the entrance of the acinar

tree
PvO2 oxygen partial pressure in the venous blood
PcO2 mean oxygen partial pressure in the capillaries, used

in the Bohr equation
PaO2 oxygen partial pressure in arteries
PalvO2 (r, t) local oxygen partial pressure in the acinar space

at position r and time t
Vac outer acinar volume
SAlung total lung alveolar surface
Sclung total lung capillary surface
SAclung surface of a single acinus
�hb equivalent diffusion length (harmonic mean of the

distances between alveolar space and erythrocytes)
�I duration between the beginning of inspiration and

the arrival of fresh air into the acinus
�O2 reaction rate of hemoglobin for oxygen
U(r,t) convection velocity of air at position r and time t
Vc capillary volume
V̇O2,max oxygen consumption
W “true” diffusive permeability of the membrane and

plasma
WM morphometric membrane permeability
We erythrocyte permeability
Weq global permeability (according to the formulation of

Roughton and Forster)
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Fig. 1. Qualitative schematic of the problem that is solved numerically here: profile
of  O2 partial pressures along the airway tract during inspiration,  and along the per-
fusion pathway from the pulmonary artery to the capillary units and the pulmonary
vein. The gas exchange units corresponding to the capillary units are perfused in
parallel but ventilated in series. The input partial pressures PIO2 and the capillary
partial pressure are modulated in the acinar gas exchanger in a mutually dependent
manner. During expiration this schematic is not valid as the regions richer in oxygen
 ̋ integrative permeability (according to our model)

ill find herein that a finite membrane resistance is a key parameter
n understanding the overall oxygen transport.

In a steady state regime description of respiration, quantitative
creening effects essentially depend on two characteristic length
cales of the system, one physicochemical and the other geomet-
ical. The physicochemical characteristic is a length called �O2 ,
hich is the ratio of the diffusion coefficient of oxygen in air D to the
embrane permeability to oxygen W (W being the response to a

oncentration difference, expressed in cm/s). The geometrical char-
cteristic is the “surface perimeter” Lp: it corresponds to the average
ength of a two-dimensional planar cut of the surface (Sapoval,
994a,b; Sapoval et al., 2001). It has been shown that when �O2

s much larger than Lp the surface works uniformly. On the other
and, when Lp is larger than �O2 , oxygen cannot reach the less

ccessible regions and in consequence, the surface is only partially
ctive. In the human lung, the physicochemical length �O2 is equal
o 28 cm if one uses the admitted value of the membrane perme-
bility; the morphometric study of the human acinus yields a value
are rapidly depleted.

Courtesy of E. R. Weibel.

of Lp of about 30 cm for a 1/8 subacinus. The remarkable agreement
for several mammalian species between the value of �O2 , a purely
physicochemical length, and the value of Lp, the purely morphological
perimeter of the acini, strongly suggests that diffusion screening in
the gas might play a role in mammalian respiration (Sapoval et al.,
2001, 2002a,b; Felici et al., 2003, 2004, 2005; Grebenkov et al., 2005;
Weibel et al., 2005; Hou et al., 2010; Mayo et al., 2012).

The present work shows however that the description of the
steady state regime has to be profoundly revised in order to
properly account for the role of cyclic respiration. This role has
already been studied by Paiva and Engel (1985) in a bottom-up
approach. In their approach the final transfer was  only depending
on the hemoglobin trapping resistance, neglecting the resistance
due to diffusion across the membrane and plasma. In a very recent
work, Swan and Tawhai (2011) also used a bottom-up approach
to numerically compute the advective and diffusive oxygen trans-
port assuming the usual description of oxygen trapping by blood.
They found that the heterogeneity of oxygen partial pressure was
reduced as compared to that found in the above papers in which
only the usual morphometric value of the diffusive resistance was
considered.

Here we first develop a top to bottom approach by computing
the behavior of a “machine acinus” and try to find under which con-
ditions this machine works like the real acinus.  This “machine acinus”
possesses the geometry and the dynamics of the real acinus, but
its effective permeability is a priori unknown. The goal here is to
determine the necessary value of this permeability that accounts
for both observed values of maximum oxygen consumption V̇O2,max
and average O2 acinar partial pressure PAO2 respectively. As a
result of our numerical studies, we  found a value of the perme-
ability significantly smaller than the one generally accepted. This
single permeability value allows one to accurately calculate the
oxygen capture for athletes at peak exercise. In other words, we
show that athlete’s acini work at peak exercise like our “machine
acini”.
The reason for the difference in the new permeability value,
calculated here, as opposed to the previously accepted value is
explored on the basis of the dynamics of saturation. Using the old
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alue based on the morphology approach results in a contradiction
n the time dependence of blood saturation. We  then propose a new
ottom-up approach to correct the purely diffusive component of
he permeability.

The net result of this work is that the top to bottom and the
ottom up approaches, although based on totally different concepts,
ive very close values.

. Methods: top to bottom

.1. The concept of a “machine acinus”

During respiration, both alveolar and capillary oxygen partial
ressures vary in space and time and are not directly measurable
uantities. Furthermore, as shown in the literature and below, a
niform oxygen partial pressure transversally to the capillary ves-
el during oxygen transfer cannot exist. At the acinus level, the
ituation is represented in Fig. 1. It displays at a given time the
ressure profile along the ventilation pathway from the conduct-

ng airways into the acinus, as well as in relation to the perfusion
f the capillary gas exchange units that are arranged along the aci-
ar airways. It shows that the gas exchange units are perfused in
arallel but ventilated in series. In the gas phase, PIO2 is main-
ained near the entry of the acinus during a part of inspiration (see
elow) and then gradually decreases in space as O2 is absorbed. It

s important to remember that the number of alveoli doubles with
ach generation in the acinus so that the vast majority is located in
he terminal generations that are particularly affected by diffusion
creening (Weibel et al., 2005; Haefeli-Bleuer and Weibel, 1988).

Very generally, the entire oxygen transport in the acinus (from
he transitional bronchiole to the blood) involves three different
haracteristic scales. The first scale, of the order of a centimeter,
orresponds to the spatial variations of the oxygen partial pres-
ure in the acinar airways. The second scale, slightly smaller than
ne millimeter, corresponds to the typical contact length between

 capillary and the alveolar membranes. The last scale, of the order
f a few micrometers, is the diameter of the capillary or the typi-
al size of the red blood cells. From the engineering point of view
roposed here, the second scale is considered very small compared
o the first. Consequently, the oxygen exchange can be modeled by

 point-wise boundary condition: At each point r of the alveolar
urface the entire exchange process is described by a small black
ox whose driving forces are respectively PalvO2 (r, t), the oxygen
artial pressure at point r and time t, and PvO2 , the venous oxygen
artial pressure (Fig. 1). The oxygen flow rate through a surface
lement ds at location r and time t is equal to:

˚(r, t) =  ̋ × (PalvO2 (r, t) − PvO2 ) (1)

here  ̋ is a quantity that we call integrative permeability. In that
ngineering picture,  ̋ accounts for all the complexity of the oxygen
iffusion across the alveolar membrane, the diffusion through the
lasma, and the blood equilibration saturation.

This integrative permeability  ̋ can also be interpreted as the
alue one should assign to the membrane permeability in order to
ecover the values of PAO2 and V̇O2,max, assuming that the blood acts
s a perfect sink (i.e. with neither hemoglobin resistance nor blood
aturation). From the physical point of view implemented here, the
elation between the integrative permeability  ̋ and the capillary
quilibration is considered to pertain to a black box to be opened
ater. Eq. (1) was used in a preliminary calculation of the dynamics
f the flux (Filoche et al., 2008), but without considering the value

f PAO2 necessary to permit blood saturation.

In the following, the geometrical and dynamical properties of
n average acinus are considered to be known, and we look for
he values of the integrative permeability  ̋ that allows us to
 Neurobiology 185 (2013) 625– 638 627

simultaneously explain both V̇O2,max and PAO2 values (Astrand et al.,
2003).

2.2. The convection–diffusion–permeation equations

Away from the alveolar surface, the oxygen partial pressure
at any point �r within the acinus volume and at time t obeys the
convection–diffusion equation:

∂Palv(�r, t)
∂t

−  D�Palv(�r, t) + �∇.(Palv(�r, t) �U(�r, t)) = 0 (2)

where D is the oxygen diffusion coefficient in air (0.20 cm2/s) and
U(r,t) is the gas velocity at �r  and t.

On a point of the alveolar surface, the boundary condition can
be written by equating the flux of oxygen across the alveolar mem-
brane, obtained from Eq. (1),  and the flux of oxygen coming from
the bulk, derived from Eq. (2):

D
∂Palv(�r, t)

∂n
=  ̋ × (PalvO2 (�r, t) − PvO2 ) (3)

The total flux of oxygen from air to blood during a period of time
can be expressed as:

˚ =
∫ ∫ ∫

˝(Palv(�r, t) − PvO2 )dsalvdt. (4)

The quantity PAO2 is defined here by the space average:

PAO2 (t) = 1
Vac

∫ ∫ ∫
Palv(�r, t)dV (5)

As the radius of an acinar duct and the size of an alveolus are
each about 0.025 cm,  the diffusion time of O2 from the duct into the
alveolus is of the order of 1–2 ms,  a time shorter that the drift dura-
tion on a alveolus size and negligible compared to the duration of a
respiratory cycle. This justifies that we  use a simplified model of the
acinus described as a one-dimensional tree (Paiva and Engel, 1985;
Felici et al., 2004, 2005), each branch of this tree being described as
a 1D channel. The gas exchange with blood occurs at the surface of
the channel while transport takes place along the channel both by
diffusion and convection.

For each acinar branch, a one dimensional convection–diffusion
permeation equation has to be solved:

∂Palv(x, t)
∂t

= D
∂2Palv(x, t)

∂x2
− ∂

∂x
(Palv(x, t)U(x, t))

− ˝
(

Sbr(x, t)
Vbr(x, t)

)
[Palv(x, t) − Pv] (6)

where x is the position along the branch and U is the absolute veloc-
ity of the air, and the ratio (Sbr/Vbr) measures the exchange surface
to volume ratio of the branch.

Boundary conditions at the acinus entrance are different dur-
ing inspiration, when outside air is brought to the acinus entrance,
and expiration when the gas present in the acinus is expelled, the
proximal regions being expelled at high velocity.

During inspiration there exists a finite time �I during which the
gas reaching the acinus entrance is the dead space gas (Florens et al.,
2011). The time �I is about 0.1 s at exercise. The oxygen partial
pressure at the acinus entrance PIO2 is assumed to be constant from
time t = �I until half of the ventilation cycle time T:

P(0, t) = PIO2 k for �I ≤ t ≤ T/2  when U(0, t) ≥ 0 (7)
During exhalation, the gas present in the acinus is carried away
by the entrance velocity U(x = 0, t). So the oxygen partial pressure
at the acinus entrance at time t + dt is the pressure that existed in
the acinus at time t at a point of abscissa dx = − U(0, t)dt. In other
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Fig. 2. Dependence of the oxygen uptake V̇O2,max and the alveolar pressure PAO2

at full exercise on the integrative permeability ˝.  The dependence is not linear
due to the complex effect of the permeability value on the dynamics of diffusion-
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ords, P(0, t + dt)  = P(− U(0, t)dt, t). Subtracting P(0, t) on both sides
nd dividing by dt, one gets:

(0,  t)
∂P

∂x
+ ∂P

∂t
= 0 for t ≤ �I and t ≥ T/2, when

U(0, t) ≤ 0 (8)

.3. The ventilation in the acinar tree

In our calculations, ventilation is assumed to be only driven
y the successive dilations and contractions of the acini. The
irflow is therefore independent of the gas exchange (the gas
ressure is approximately uniform inside the acinus, the oxy-
en uptake being essentially compensated by CO2 discharge). The
onvection–diffusion equation is solved numerically using finite
ifferences, each duct being discretized into 4 cells. Inside a duct,
ach point has two neighbors that belong to the same duct while

 bifurcation point has three neighbors, one per incoming branch
see Appendix A).

At any given time, the air velocity is position dependent
long each duct. The entire air velocity map  is computed during
he breathing cycle according to flux conservation. Ventilation is
ssumed to be sinusoidal so that lengths and surfaces dilate respec-
ively as k(t) and k(t)2, k(t) being given by:

(t) =
[

1 + ı
(

1 − cos(2�ft)
2

)]1/3

(9)

Here ı is the volume dilation amplitude, and f is the respiratory
requency. The numerical implementation for computing the time
ependent velocity map  is given in Appendix B.

The value of the air pressure at the trachea is about 760 mmHg.
he air that reaches the acini is saturated with water with par-
ial pressure of about 47 mmHg. The oxygen partial pressure
t the entrance of the acinus is thus PIO2 = (760 − 47) × 0.21 ≈
50 mmHg.

The volume dilation amplitude according can be calculated from
he ventilation rate V̇E (expressed in L/min), the breathing period
, and the total lung volume Vtot:

 = Vmax − Vmin

Vmin
= (V̇ET/60)

Vmax − (V̇ET/60)
(10)

At exercise, the values of V̇E and T are 100 L/min and 2 s respec-
ively (Weibel, 1984; Astrand et al., 2003). Given that the maximal
olume Vmax attained at peak exercise is about 90% TLC, Vmax is
bout 5600 mL,  which leads to a value of ı = 1.5.

. Units

Permeabilities are usually measured in standard physiological
nits such as ml  STP per surface unit per time unit per partial
ressure unit (for instance cm min−1 mmHg−1). In the following
e will use an equivalent physical unit which measures the
ermeabilities in units of length divided by time, or velocity units.
or example, the flux ˚M across a permeable barrier (the flux being
efined as the number of molecules per unit time per unit surface),
here the concentration is Cg (g for gas) on one side of the barrier

nd 0 on the other side of the barrier, can be written as ˚M = CgW.
 simple dimensional analysis shows that the permeability W is
easured in units of length divided by time, or velocity. Indeed,

he very definition of the flux across a unit surface is ˚M = Cgū

here ū is the average particles velocity. So W (in pysical unit) = ū,

he average oxygen velocity. The usual physiological units hide
he fact that the permeability really measures an average particle
elocity. For example, the time to cross a distance ı is equal to ı/W.
convection. The values of  ̋ in the circle, or range of credibility, range from 2.8 to
4.3  �/s.

The equivalence between the physical and the physiological units
is then given by: W = 760·WSTP.

3.1. A necessary value for the integrative permeability

Numerical simulations of the above equations (detailed in
Appendix B) were run on a reference acinus of 8 generations of total
volume Vacinus = 187 mm3 and an exchange surface of one acinus
SAclung = 3930 mm2. The physiological data used for the simulations
were: PvO2 = 20 mmHg, ı = 1.5, T = 2 s, V̇E = 100 L/min, Vtlc = 6.2 L,
Vt = 3333 mL  (Weibel, 1984, p. 284); the surface-to-volume ratio in
the acinus SAclung/V is about 30 mm−1 (the volume V corresponds
to the vital capacity equal to about 70% TLC (Astrand et al., 2003)). It
accounts for the reduction of the free alveolar surface in an air-filled
acinus at 40–80% TLC (Bachofen et al., 1987). V̇O2,max is computed
assuming that the lung is made of identical acini, for a total acinar
volume of about 6 L.

Once these parameters are fixed, the total flow and the mean
oxygen partial pressure (averaged over space and time) only
depend on the integrative permeability ˝,  or, more precisely, its
product with the alveolar surface. We  have then calculated the dis-
tribution in space and time of the pressure and the flow for several
arbitrary values of ˝,  ranging from 1 �m/s  to 72 �m/s.

A striking result of our calculation is shown in Fig. 2: one can
observe that V̇O2,max is not proportional to the integrative permeabil-
ity.  From  ̋ = 72 �m/s  to  ̋ = 3.5 �m/s, the permeability is divided
by about 21 while the oxygen uptake V̇O2,max is only divided by
about 2.7. This is a consequence of the diffusion screening in a
changing convection–diffusion–permeation tree. For large enough
permeabilities, oxygen is absorbed in the proximal regions and a
large fraction of the acinus surface is inactive. A diminution of the
permeability results in a progressively larger fraction of the sur-
face being active for transfer, until the entire surface is utilized.
This compensation mechanism disappears when the total surface
is used. The marked dependency of the flow for small permeabilities
corresponds to the classical fact that a pathologic decrease of these
factors (by edema or emphysema) directly impairs the oxygen con-
sumption at exercise, in contrast with the rest situation (Sapoval
and Filoche, 2008).

Table 1

The average PAO2 is also displayed in Fig. 2 and exhibits a non-

linear behavior. The integrative permeability entirely determines
the functioning of the machine acinus (see Table 2). The ques-
tion then is: are there values of  ̋ compatible with experimental
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Table  1
Geometrical parameters of the acinar tree: per generation the length, the inner and
outer diameter and the total alveolar surface. We can see that on the three first
generations the inner diameter is larger due to the fact the alveoli do not cover the
whole duct.

Generation Length (mm)  Inner
diameter
(mm)

Outer
diameter
(mm)

Alveolar
surface
(mm2)

0 0.8 0.498 0.736 2.5
1  1.330 0.497 0.694 16.7
2 1.118  0.492 0.686 41.4
3 0.930  0.397 0.700 74.8
4  0.832 0.382 0.711 158.5
5  0.671 0.356 0.684 253.0
6  0.692 0.335 0.694 479
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Fig. 3. Determination of the necessary value of the permeability. The figure presents
a  plot of the oxygen flux V̇O2,max as a function of the average partial pressure using the
7  0.716 0.311 0.708 873
8 1.167  0.258 0.701 1563

˙ O2,max and PAO2 ? In order to find this value one can plot on the
ame graph V̇O2,max and PAO2 for various values of  ̋ (now an
mplicit variable) as shown in Fig. 3. We  have indicated on this graph
he range of credibility values of for both PAO2 (95–110 mmHg)
nd V̇O2,max (110–150 mmol/min) (West, 2008). Remarkably, only

 narrow range of  ̋ values, between 2.8 and 4.3 �m/s, allows to
imultaneously obtain both experimental V̇O2,max and PAO2 in the
xperimental credibility interval. We  choose  ̋ = 3.5 �m/s  as an

verage value.

The distribution in space and time of the local oxygen partial
ressure is shown in Fig. 4 for a value  ̋ = 3.5 �m/s. One observes

able 2
alues of PAO2 and VO2,max computed for different values of the integrative perme-
bility ˝.  For  ̋ around 3.5 �m/s, the computed values correspond to the ones me-
sured in vivo for a healthy lung (which are height, weight, gender and age depend
nt): VO2,max = 110–150 mmol/min and PAO2 ≈ 95–110 mmHg. In green, results for
he  morphometric diffusive permeability WM, in blue, results for the usual Weq and
n  red, the results compatible with physiological measurements.

(µm/s)

PW AO2

(mm Hg)

V̇O2,max
(mmol/min)

72 30 344

36 38 303

24 45 273

16 54 243

12 61 221

8 73 189

4.4 92 142

4.2 94 138

4 96 135

3.8 97 131

3.6 99 127

3.5 100 125

3.4 101 123

3.2 103 118

3 105 113

2.8 107 109

2.6 109 103

2.4 112 98

2.2 114 92

2 117 86

1 134 51
various values of the integrative permeability  ̋ as an implicit parameter. The value
˝  = 3.5 �m/s  permits at the same time to recover both known values for V̇O2,max and
PAO2 .

that the pressure is far from uniform in space or time during the
respiratory cycle. It is interesting to note that the oxygen partial
pressure reaches a maximum at the end of inspiration, at half the
respiratory cycle. The general behavior of the distribution in space
of the partial pressure is reminiscent of the recent results of Swan
and Tawhai (2011),  in that there is heterogeneity of the pressure
due to diffusion screening (if the diffusion coefficient of oxygen in
air would be infinite, the pressure would be uniform). This hetero-
geneity is moderate in both cases because the surface permeability
although implemented in different manners, is smaller than the usual
membrane permeability W = 72 �m/s  (see below).

The distribution in space and time of the oxygen flow is shown
in Fig. 5. In the tree structure the surface approximately doubles at
each generation. That explains why the deeper acinar regions dom-
inate the transfer of oxygen and also displays a marked variation
during the respiratory cycle.

We have performed the same calculations in the more complex
case of an asymmetric acinus as described by Haefeli-Bleuer and
Weibel (1988),  see Appendix C. Assigning the experimental values

for oxygen partial pressure and oxygen flow in this more complex
geometry, one obtains  ̋ values ranging from 3.0 �m/s  to 3.5 �m/s.
There is however a difference between our results and the results of

Fig. 4. Spatio-temporal distribution of the local partial pressure of oxygen P(x,t),
as a function of the generation (the integrative permeability  ̋ is taken equal to
3.5  �m/s). The time t = 0 corresponds to the beginning of inspiration. Note that the
pressure increases to reach the value PIO2 only after a delay corresponding to the
time of flight of air from the mouth to the acinus entrance (located at the rear of the
figure).
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Fig. 6. Relation between the maximum oxygen flux (horizontal axis) and the venti-
ig. 5. Spatio-temporal distribution of the oxygen uptake. The acinus entrance is
ocated at the front of the figure.

wan and Tawhai (2011) in the sense that here, an asymmetric aci-
us behaves not very differently from the symmetric case. We  have
o explanation for this difference, but it may  come from a differ-
nt splitting of the convective flux between the daughter branches
n the two approaches. We  recall that in the present approach, the
ranches are themselves the pumps that drive the convection.

Also, in the real lung, there exists a distribution of acini sizes.
e have computed V̇O2,max and PAO2 in acini of different sizes. The

esults (Foucquier, 2010), not shown here, indicate that the flow at
xercise is roughly proportional to the acinus volume. This is due to
he fact that a larger acinus acts as a stronger pump. In consequence,
he global oxygen uptake in a lung of a given volume is essentially
ndependent of the size distribution of the acini. The net result of
hese computations is that, to account for experimental values of
˙ O2,max and PAO2 , the global transfer must be estimated by a value
f the integrative permeability close to 3.5 �m/s  or equivalently,
.0046 �m/s/mmHg. This value is about four times smaller than
he usually accepted value that is discussed below.

.2. Athletes acini work like the machine acinus

Experimentally, Astrand et al. (2003) have shown that the oxy-
en consumption is a function of the ventilation and that there exist
ifferences among individuals and between genders. These authors
ive measured ventilation and oxygen consumption in strong exer-
ise for athletes of both genders. Reversing our point of view, we
an now compute the oxygen consumption as a function of venti-
ation assuming a value  ̋ = 3.5 �m/s. The results displayed in Fig. 6
yellow squares) show a good agreement between the model and
he experimental values at peak exercise. The fact that the many
xperimental values are found slightly below the yellow squares
lignment can be attributed to alveolo-capillar partial pressure dif-
erence that may  appear at extreme exercise.

The conclusion is that, at peak exercise, athletes acini work
uantitatively like our machine acinus. This indirectly supports that
he concept of integrative permeability can really account for blood
aturation.

.3. Comparison with the classic physiological description of the
as-capture process

In the usual language of physiology, the overall oxygen flow rate
n the lung is usually described, after C. Bohr, as
 = DLO2 × (PAO2 − PcO2 ) (11)

here DLO2 is the “pulmonary diffusing capacity” (expressed in
l min−1 mmHg−1), PAO2 is the so-called “alveolar gas” partial
lation at extreme exercise for various individuals and genders (vertical axis). From
Astrand et al. (2003, p. 162). The yellow squares represent the results of our com-
putation keeping the value of the integrative permeability equal to 3.5 �m/s.

pressure of O2 supposed to be uniform (or averaged over gas space),
and PcO2 is the so-called oxygen partial pressure in capillary blood
averaged (a) along the capillary path from the venous blood in the
pulmonary arteriole to the venule that drains arterialized blood,
and (b) over the entire capillary system of the lung.

Since Roughton and Forster (1957), the lung diffusive capacity
is considered to be the result of two  resistances in series mea-
suring respectively diffusion and trapping. First DM measures the
conductance of the diffusion barrier from the alveolar surface to
the erythrocyte membrane, i.e. including the tissue barrier and the
plasma layer (Weibel et al., 1993). Second De measures the conduc-
tance of the complex processes within the erythrocytes comprising
diffusion and chemical reaction. The Roughton and Forster decom-
position writes:

DL−1
O2

= D−1
M + D−1

e (12)

Considerable efforts have been devoted to compute these two
components from the morphometry of the capillary system for DM
and from the chemical processes involved in hemoglobin trapping
for De. The data determining DM and De have been reviewed and
discussed in (Weibel, 1984; Vock and Weibel, 1993; Weibel et al.,
1993). One usually writes

DM = K(SAlung + Sclung)
2�hb

= KSAclung

�hb
= WM × SAclung (13)

where K is the Krogh’s diffusion coefficient, SAlung and Sclung are
the total alveolar and capillary gas exchange surfaces, respectively,
their average being defined as an effective exchange surface SAclung.
The quantity �hb is the harmonic mean thickness of the diffusion
barrier (tissue and plasma taken together). This introduces the
membrane permeability WM = K�−1

hb . The morphometric data for
estimating WM for the human lung have been obtained by Gehr
et al. (1978) and Weibel et al. (1993).  The Krogh diffusion coefficient
for tissue and plasma is taken to be K = 5.5 × 10−10 cm2/s mmHg−1.
The relevant data here is �hb = 1.1 �m,  from which one derives
WM = 0.095 �m/s  mmHg−1 or WM = 72 �m/s  in physical units.

The erythrocyte component of DLO2 is usually expressed as
De = �O2 Vc where �O2 is the reaction rate of O2 with whole blood
and Vc is the capillary volume. The estimate of the reaction rate
�O2 depends on in vitro measurements of the rate of O2 uptake by
whole blood k′

c (Yamaguchi et al., 1985; Holland et al., 1985), the

initial saturation SO2 , the temperature T, the O2 solubility  ̨ and the
hemoglobin concentration [Hb]:

�O2 = k′
c · f (T) · (0.0587˛O2 ) · (1 − SO2 ) · 0.01333[Hb]
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As O2 loading increases along the capillary, �O2 changes.
owever, according to the Bohr integration (Karas et al.,
987), it is accepted to consider an average value of �O2
long the capillary pathway for the human lung �O2 =
.5 mlO2 ml−1

blood min−1 mmHg−1.
In the following we  concentrate on the values of the permeabil-

ty and we write Eq. (1) as

 = WeqSAclung(PAO2 − PcO2 ) (14)

ntroducing an equivalent global permeability Weq. In the frame of
he Roughton and Forster decomposition one can write

−1
eq = W−1

M + W−1
e (15)

ith WM = 72 �m/s  and We = De/SAclung = �O2 · Vc/SAclung.
Using Vc = 194 mL  and taking SAclung = 122 m2 (Gehr et al.,

978; Weibel et al., 1993), one obtains We = 0.040 �m/s  mmHg−1

nd Weq = 0.022 �m/s  mmHg−1. Likewise, one obtains DLO2 =
eqSAclung = 157 mL  min−1 mmHg−1.
In summary the usual physiological approach predicts

eq = 0.022 �m/s  mmHg−1 or 16 �m/s  in physical units.

.4. Resolving or not the differences between the integrative
ermeability and the physiological approach

.4.1. Relation between the integrative permeability and the
true” permeability

By definition, the “true” permeability W is the transport coeffi-
ient that would produce a flow  ̊ across the unit surface when a
onstant concentration difference (C1–C2) is applied between both
ides of the surface

 = ˚

(C1 − C2)
(16)

As stated before, the integrative permeability  ̋ plays the role of
 calibration constant because it is determined by fitting the sim-
lation results with the measured values of the oxygen flux. Its
alue then takes into account the effect of progressive blood satu-
ation in which (C1 − C2) is not constant (see for instance Scheid and
iiper, 1989). In blood, PO2 steadily increases as blood traverses the
apillary network and become equilibrated with the local alveolar
AO2 before being discharged into the pulmonary veins with PaO2 .
inking  ̋ to W requires a hypothesis on the progressive saturation
long the capillary. At peak exercise, one can postulate that, in first
pproximation, the PO2 in capillary blood linearly increases from
vO2 to PAO2 along the capillary length. In such a situation one
ould have W ≈ 2  ̋ = 7.0 �m/s. The factor 2 is a minimum value

hat is obtained for a full use of the capillary network to achieve
aturation, a reasonable hypothesis at extreme exercise. For an
xponential saturation (Scheid and Piiper, 1989) with a time con-
tant equal to 1/W,  the factor 2 would correspond to a 13% shunt
ffect. There exists then a difference between the usual physiolog-
cal value Weq = 16 �m/s  and the value W ≈ 2  ̋ = 7.0 �m/s  derived
rom the present analysis. Hereafter we discuss the causes for this
iscrepancy.

Of course, this is a simplified and idealized picture of respiration
f athletes at peak exercise in the sense that perfusion is supposed
o perfectly match oxygen trapping with a unique time constant,
ven though transit times are known to be distributed (Hogg et al.,

994; Presson et al., 1994).

The basic question to discuss is how blood equilibrates in time.
his has been the subject of an immense literature. In the following,
e do not solve the problem, but we recall a few basic concepts

hat lead to the idea that the purely diffusive component has been
ignificantly overestimated in the morphometric approach.
 Neurobiology 185 (2013) 625– 638 631

3.4.2. Dynamics of the blood oxygen equilibration process: the
Roughton and Forster mechanism in the time domain

The trapping of oxygen by blood cells occurs through several
successive steps, namely:

1- Alveolar oxygen has to be dissolved at the interface between
the gas and the membrane considered to be essentially made of
water.

2- The dissolved oxygen has to diffuse across the membrane and
the plasma layer to reach the surface of the erythrocytes.

3- Oxygen is exchanged across the thin RBC membrane.
4- Oxygen diffuses across a very thin plasma layer to reach the first

hemoglobin molecules.
5- Finally, oxygen has to be trapped by the hemoglobin molecules.

Each of these steps occurs over different time durations,
which makes essential the distinction between on the one hand,
extremely rapid, “local” processes across interfaces and on the
other hand, macroscopic diffusion speed and capture which finally
govern equilibration.

Let us first recall the nature of the dynamical process that
leads to the oxygen equilibrium between different phases usually
described by their solubility. Solubility is often measured in mol
per mmHg, but we prefer here to express it through the equivalent
“Oswald partition ratio”. The partition ratio of a species A, here oxy-
gen, between a gas and a liquid is the dimensionless ratio  ̨ of the
concentration of A in the liquid CL to concentration Cg in the gas:

 ̨ = CL

Cg
(17)

In a kinetic description of thermal equilibrium between phases,
the value of the partition ratio results from the equilibration
between the flux of oxygen being trapped by the liquid, and the flux
escaping it. If we call Wg→L and WL→g the respective rates (proba-
bility per unit time) for a molecule to be trapped or to escape the
liquid, equilibrium is reached when

CLWg→L = CgWL→g (18)

which means that the partition coefficient  ̨ = CL/Cg can be written
as

CL

Cg
=  ̨ = Wg→L

WL→g
(19)

Eq. (19) represents the equality between the partial pressures on
both sides of the interface. The fact that this oxygen partition ratio
is of order of 2.4 × 10−2 for water means that the probability for an
oxygen molecule to leave the liquid is around 1/(2.4 × 10−2) = 42
times larger than the probability for an oxygen molecule in the gas
to be trapped by the liquid. But trapping or escape of oxygen is a
molecular process with characteristic times of the order of 1–10 ps.
Therefore, the concentration in the membrane at the alveolar mem-
brane interface can be considered as instantaneously equilibrated
according to the partition ratio.

The second step listed above is oxygen diffusion from the inner
surface of the alveolar membrane toward the surface of red blood
cells. A standard result for the diffusion across a parallel layer of
thickness ı is the flux across the unit surface: ˚M = Cg˛DO2,H2O/ı.
The quantity W = ˛DO2,H2O is the Krogh’s diffusion coefficient (note
that ˛DO2,H2O should not be called diffusivity, as it does not describe
the diffusion inside a single medium).

Now, one should consider two  different times. First, the time
TD for a diffusing particle to cross a distance ı in a homogeneous

media is of the order TD = ı2/DO2,H2O. With ı of order 1 micron
and DO2,H2O = 30 × 10−6 cm2/s, TD is of order 0.3 ms, much shorter
than the time spent by the blood inside the capillaries. However
the time to diffuse on a length ı of order 1 micron from the gas is
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ig. 7. Oxygen partition ratio as a function of the oxygen partial pressure in the
lasma.

/W = TD/  ̨ of order 12 ms  (the process is slowed down by the large
scape probability).

Note that the description of the dynamical process above
ndicates that the role of plasma recirculation is negligible in
ransporting oxygen because the recirculation times should be
ompared with the ordinary diffusion time of order 0.3 ms.  This
s due to the fact that recirculation does not affect the molecular
ayer in the membrane from which oxygen tends to escape into the
lveolar gas.

At the interface between the plasma and the red blood cell, the
olecular process, step 3, is again very rapid. But now oxygen is
uch more “soluble” in the red blood cell than in the plasma. The

orrect local boundary condition at the interface between plasma
nd the interior of the cell should be written as CRBC,i/Cplasma = ˛′,
here ˛′ is the partition ratio between plasma and RBC. It can be

omputed from the number of Hb molecule per cell, the number of
xygen sites per Hb molecule, the Hill saturation curve and the RBC
olume. It is now a number much larger than 1. This means that,
nside a blood cell, an oxygen molecule has very little probability
f escaping to the plasma. Due to the non-linear character of the
ill curve, the partition ratio between plasma and RBC is also non-

inear as shown in Fig. 7. Note that the product ˛˛′ is of order 3 (for
rterial blood) in agreement with the known fact that the oxygen
ontent of 1 l of blood and 1 l of air are close for an hematocrit of
0%.

The next step, 4 as listed above, corresponds to the diffusion
ime to reach Hb molecules. It is of order of (rRBC)2/DRBC where
RBC is of order the radius of the cell (around 3 �m)  and DRBC the
iffusion coefficient of oxygen inside the RBC, of order 10−5 cm2/s.
ne obtains a duration around 10 ms,  again smaller than the time

pent by the blood within the capillaries.
Finally, for step 5, one should take into account the finite reac-

ion speed of oxygen with hemoglobin but the experimental values
re at most of order 20 ms  for the slowest process (Yamaguchi
t al., 1985). In summary, the time required to transfer oxygen
rom alveolar gas to hemoglobin could be of order 50 ms,  again

 time shorter than the time spent by blood in the capillar-
es.

It is interesting to note that, because oxygen is much more sol-
ble in RBC than in plasma, as soon as oxygen molecules reach
he RBC surface they are trapped there so that the concentration
n the plasma near a cell is maintained close to 0 (or more pre-
isely to the concentration of oxygen in the venous plasma). This
act should last during a significant fraction of the equilibration
ime.

But perhaps the most important result of the above discussion

s the general fact that, during the beginning of equilibration, the
ime scale is ı/v = ı/WM. If the accepted values �hb = 1.1 �m and

M = 72 �m/s  mentioned above are correct, the slope in time of
Fig. 8. Schematic of the computation of the diffusive flux between a flat interface
and  a spherical blood cell.

blood saturation should start with a slope equal to 1.1/72 = 15 ms.
There is then a contradiction between the values deduced from
the usual morphometric approach and the fact that blood is equili-
brated in a much longer time, suggesting that the classical value of
WM may  be overestimated.

At this point we are faced with the question of why the diffusive
permeability should be smaller than usually considered. To enter
this question we first discuss a case study for which exact results
can be drawn from existing literature.

3.4.3. A case study: transfer from a flat alveolar space toward a
“spherical blood cell”. Toward a bottom-up approach to the value
of the diffusive permeability?

The value of the purely diffusive component of the lung dif-
fusing capacity has been the subject of many studies (Federspiel,
1989; Weibel et al., 1993; Franck et al., 1997; Hsia et al., 1995, 1997
and the references therein). The problem is to solve the steady-
state diffusion equation �C  = 0 (Laplace equation) with boundary
conditions C = 1 on the diffusion source, and C = 0 on the blood
cell surfaces. The above authors have used finite element meth-
ods calculations to evaluate the diffusive capacity of spherical and
parachute shaped RBC cells in cylindrical capillaries.

There is however an enlightening case on which we wish to
attract attention. It is the case of a planar membrane and a spherical
RBC of radius a at distance � (Fig. 10). Indeed, Maxwell (1873) gave
an exact solution for an exactly equivalent Laplacian problem, the
capacitance of a capacitor with a planar electrode and a sphere of
radius a at distance � (Fig. 8):

C = 4�ε0aF(a/�)  with F(a/�) =
+∞∑
n=1

sinh(ln A)
sinh(n ln A)

and

A = 1 + �

a
+
[(

1 + �

a

)2
− 1

]1/2

(20)

The corresponding solution for the diffusing capacity between a
planar membrane and a spherical blood cell is then, assuming that
oxygen diffusivities are the same in the membrane and the plasma,
and replacing ε0 by ˛DO2 :
Dcell = 4�a˛DO2,H2OF(a/�) (21)

Eq. (22) is complicated, but, when the distance � is much smaller
than the radius a, one can show that F(a/�) behaves as a linear
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Fig. 9. Dependence of the diffusive capacity toward a spherical blood cell. One
observes that a factor 10 in the distance modifies the diffusive value only by a factor
40%. The inset picture, obtained through 3D FEM calculation, displays the concen-
tration map  coded in color from 1 (dark red) to 0 (dark blue). The figure illustrates
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he  fact that the entire surface of the blood cell is used for transfer as the local flux
n the surface is approximately proportional to the inverse of the thickness of the
ark blue layer.

unction of ln(a/�). Thus the diffusivity of a single spherical cell

epends very slowly on the distance between the cell and the planar
ource (Crowley, 2008). This is illustrated in Fig. 9 in which one
bserves also that the value of F(a/�) is of order 1. So, in a first

ig. 10. Color map  of the oxygen concentration around biconcave blood cells. Top:
iluted cells corresponding to small hematocrit. One observes that the local flux
proportional to the inverse thickness of the dark blue layer) is less uniformly dis-
ributed than in the case of a sphere in the inset of Fig. 9. Bottom, when the cells are

ore concentrated, which corresponds to large hematocrit or to clusters, the lateral
urfaces between narrowly spaced cells are inactive.
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approximation, the value Dcell,∞ = 4�a˛DO2,H2O (for � infinite) is a
“universal” order of magnitude. Note that, if one wishes to recover
the usual dimensional formulation of a diffusive capacity, surface
divided by distance, one could attribute a surface of the order of the
surface of the half sphere: S = 2�a2, and a “mean” distance of order
� = a/2, so that the conductance would be Dcell = ˛DO2,H2O(S/�) =
˛O2 DO2,H2O(2�a2)/(a/2) or again 4�a˛O2 DO2,H2O.

The most significant qualitative conclusion of this example is
that the very slow dependence of the flow on the distance to the
wall implies that a large fraction of the surface is used for transfer.
This is illustrated in the inset of Fig. 9 which displays a color map
of the spatial distribution of the concentration of oxygen around a
spherical blood cell maintained at zero concentration and placed
between two  parallel membranes. This is the result of 3D finite
elements calculation of steady-state diffusion. One observes that
the flux near the surface, proportional to the inverse thickness of
the dark blue layer (local gradient) around the sphere, varies only
slowly around the surface perimeter. The value of this cell diffusive
capacity is Dcell,∞ = 1.42 × 10−9 cm3 s−1 for a = 2.7 �m.  Note that this
value corresponds to a single membrane.

This is to be compared to previous results in the literature:

- Federspiel (1989) has used FEM to compute RBC DMO2
in capillaries in various circumstances (distance, hemat-
ocrit, etc.). For diluted RBC (small hematocrit) he found a
value DM,RBC = 2 × 10−9 cm3 s−1 compared to be compared to
2 × Dcell,∞ = 2.84 × 10−9 cm−1 s−1.

- Hsia et al. (1995) used FEM to compute RBC DMCO in capillaries in
various circumstances (distance, hematocrit, etc.) for parachute
shaped RBC but using the Roughton and Forster decomposition to
take care of Hb saturarion. Correcting for solubility and diffusivity
their result is DM,RBC = 1.2 × 10−9 cm−1 s−1.

- Franck et al. (1997) also used FEM to compute RBC DMO2 in
capillaries in various circumstances (distance, hematocrit, etc.)
for parachute shaped RBC. For diluted RBC (small hematocrit)
they obtain a value DM,RBC = 3.3 × 10−9 cm3 s−1 of the same order.

Note that a value of 10−9 cm3 s−1 would correspond to a time
constant to fill a RBC volume (90 �m3) equal to 0.9 s, which is of
the right order of magnitude if saturation is obtained in 2 or 3 time
constants.

It is beyond the scope of the present work to discuss the reasons
for the differences between these results, computed in somewhat
different circumstances, but it is of interest to note that they
resulted in the same order of magnitude. These authors also men-
tion that a large fraction of the surface is used for transfer. This is also
observed in Fig. 10 for biconcave RBC. One observes that the local
flux is large at top and bottom of the cells, and reaches a small sur-
face, in contrast with the smaller flux on the larger lateral surfaces.
There is however a (small) difference between the diffusing capaci-
ties of a biconcave blood cell and that of a spherical cell of the same
volume. We  write the diffusive capacity of a single biconcave cell
as

Dcell = 4�a˛DO2,H2OF(a/�)˙(�) (22)

where we have added a shape factor ˙(�) that weakly depends on
the distance �. The comparison of the flow computed for a bicon-
cave cell and a spherical cell gives, respectively

∑
(�) = 0.70, 0.74,
0.76 for � = 0.5, 1, 1.5 �m. Of course, the alveolar surface itself is not
flat but as the diffusive flux reaches a large fraction of the eryth-
rocyte surface this should not modify significantly the value of the
permeability.
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Fig. 11. Global diffusive permeability as a function of the hematocrit for equally
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paced biconcave blood cells. Square, crosses and diamonds respectively correspond
o  t = 0.5, 1, and 1.5 �m.  One observes a saturation effect for large hematocrit which
s  due to the screening of diffusion fluxes illustrated in Fig. 10,  bottom.

.4.4. From one blood cell to the value of the permeability
If there are on average NRBC red blood cells par alveolar unit

urface, the permeability is equal to

 = 4�a˛DO2,H2ONRBCF(a/�)˙(�) (23)

f the permeability is simply proportional to the number of red blood
ells. We  now evaluate the number of RBC in front of a unit sur-
ace (1 cm2) using the values admitted in the literature. There are
80 cm3 of blood in front of a surface of order 130/2 m2 which
mounts to 2.8 × 10−4 cm3 of blood per cm2 of alveolar surface.
he volume of a blood cell is of the order of 100 �m3. It would then
e possible to pack 2.8 × 106 RBC in front of 1 cm2 if the hematocrit
t, or packed cell volume (PCV), or erythrocyte volume fraction

EVF), would be 100%. It is normally about 48% for men  and 38%
or women, but some authors have given a value of hematocrit in
he capillaries around 20% so that NRBC would be of on the order of
.6 × 105 (McWhirter et al., 2009).

Following Eq. (23), large values of the hematocrit would increase
he permeability if diffusive flux toward the blood is proportional to
t. There are results in the literature (Federspiel, 1989; Franck et al.,
997; Hsia et al., 1995, 1997) showing that when Ht is of order
0–40%, screening effects appear and reduce the flux per cell in
greement with the flux as illustrated in the bottom panel of Fig. 10.

The dependence of permeability on the hematocrit based on
ur FEM calculations of the flux for bi-concave cells is shown in
ig. 11 for three values of the distance � = 0.5, 1, and 1.5 �m.  For the
hree values of �, the permeability is strongly non-linear and one
bserves a saturation of the permeability; for example for � = 1 �m,

 = 10.5 �m/s  for about HT > 30%.
It is striking that the purely diffusive resistance under the

xtreme circumstance where RBC internal diffusion and trapping by
b are infinitely fast may  be one order of magnitude smaller than
hat was considered before. The fact that the diffusive resistance
ight be larger than that considered in the morphometric approach

as already been discussed in several publications (Franck et al.,
997; Fung, 1997; Albrecht et al., 1979; Watson et al., 1987; Hsia
t al., 1995, 1999; Hsia, 2002; Tamhane et al., 2001).
If now, in a conservative Roughton and Forster approach, we
ompute the global permeability by combining the inverse perme-
bilities as in Eq. (15), we obtain: Weq = 7.8 �m/s. The time to reach
he hemoglobin molecules at a distance of order ı = 2 �m is of the
 Neurobiology 185 (2013) 625– 638

order of 0.25 s, close to the time spend by blood to flow through
capillaries at extreme exercise.

In addition, if the hematocrit is too large, blood cells can aggre-
gate and build clusters (Zavorsky et al., 2004; Calbet et al., 2008;
McWhirter et al., 2009). This phenomenon has been observed in
many recent micrographs of capillaries and recent hydrodynamics
studies of blood cells, considered as vesicles. In that situation, part
of the cell surface will be lost for oxygen transfer. Note also that the
real value of the hematocrit inside the capillaries during respiration
is not experimentally accessible.

The evaluation of W given above accounts, although in a differ-
ent manner, for the dependence of the lung diffusive capacity on
Vc (capillary volume): the larger Vc the larger the number of blood
cells NRBC adjacent to the alveolar membrane, and the larger the
purely diffusive permeability.

3.4.5. Implications of our results and relation to experiment
One should note that, in the description of the functioning of

the machine acinus, there is no need to consider the concept of
the diffusing capacity DLO2 . The question arises only when one
wishes to use the notion of a capillary pressure (that cannot be
measured directly) to relate the integrative permeability to the true
permeability, also a quantity that cannot be measured experimen-
tally.

This last question however disappears in the case of the diffus-
ing capacity of NO: DLNO (Guénard et al., 1987). In the case of NO
the affinity for hemoglobin is so large that the hemoglobin resis-
tance (second term in the Roughton and Forster formulation) can
be neglected so that DLNO = DMNO. This quantity has been mea-
sured (Zavorsky and Murias, 2006) and the experimental value
of DMNO yields an estimated value for DMO2 around 9 �m/s, after
adaptation to account for the change in solubility and diffusivity.
What is important here is that, contrary to oxygen, the (Zavorsky
and Murias, 2006) experiments are single breath in which there is
no dynamical screening. This is close to the value 10.5 �m/s  men-
tioned above. This may  be considered direct evidence that the
diffusion term for oxygen is a factor 7 smaller than that deduced
from the usual morphometric approach (it is possible that the dif-
ference between the value 10.5 �m/s  deduced from our approach
and the value 9 �m/s  deduced from Zavorsky is due to a possible
resistance to NO transfer of the red cell membrane). This fact has
been discussed recently (Borland Colin et al., 2010), but we can-
not make a conclusion on this issue because the analysis in this
paper was performed using the Roughton and Forster decomposi-
tion.

4. Summary and discussion

In this work, we have computed the gas exchange dynamics in
a breathing machine acinus under the condition that it reproduces
the measured physiological requirements, namely the value of the
oxygen flux and the averaged alveolar pressure that allow for blood
equilibration. The most relevant result of our work is that, even for
the simplified functioning of this machine acinus, the oxygen flux
is not proportional to the permeability as formerly suggested by
the Bohr expression. This is due to the complex behavior of the
dynamics of the diffusion–convection–permeation flow during the
respiratory cycle.

The oxygen partial pressure in the alveolar space was found

to be heterogeneously distributed in space and time. This could
modify the evaluation of saturation as the partial pressure is
found to drop below 100 mmHg  during a significant fraction of the
cycle.
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Our calculations gives a quantitative prediction of the depend-
nce of the oxygen consumption on vital capacity in good
greement with experiments for athletes at peak exercise.

The factor that governs the dynamics of the acinus function-
ng is the value of the permeability. Only a narrow range of
ermeability values is compatible with DMO2 values that allows
or blood saturation. There is, however, a discrepancy of order 2
etween the value of the permeability that is required to justify
oth V̇O2,max and PAO2 and the classic value in the literature. This is
he necessary conclusion from the top to bottom study of oxygen
xchange.

In a bottom-up approach to the computation of this diffusive
ermeability, we have given a new formulation based on totally
ifferent inputs, namely the size of the red blood cells and the
ematocrit, plus correction factors of order 1 that depend on the
BC shape and distance to the alveolar space. The conclusion of this
ew approach is that the usual way to compute the diffusive part of
he permeability using the harmonic mean of the distance between
he alveolar space and blood cells leads to an overestimation of this
iffusive component.

A striking result is that the permeability values, on the one hand
educed from the top to bottom calculation of the dynamics of the
espiratory cycle, on the other hand deduced from our bottom-up
pproach, are very similar and that they also are in good agreement
ith the ones deduced from DLNO measurements.

Of course, each of these independent facts could be criticized in
he sense that they rely on various different parameters that cannot
e really known perfectly, but the general agreements lends con-
dence to both calculations. The net result is that the permeability

s smaller that usually accepted and this is due to the fact that its
iffusive component was previously significantly overestimated.

More generally, the qualitative but general conclusion pre-
ented leads one to re-examine several aspects of the common
nderstanding of respiration:

The dynamics of respiration play an essential role. The system
response is not a linear function of the usual parameters, like the
permeability for example, and it is not clear at this stage how
one should define the functioning of an equivalent steady state
system that could be described by a Bohr type of formulation.

 The steady state Bohr approach that is aimed at describing an
average of the respiratory cycle should be re-examined on sev-
eral points. First, it formulates the oxygen flux as a function of an
alveolar and capillary pressure that cannot be measured. Second,
blood is a complex fluid made of two components, plasma and
erythrocytes that are not in chemical equilibrium during oxy-
gen capture. Because these components are not in equilibrium
there does not exist, even locally, a “blood oxygen partial pres-
sure”. This is shown in Fig. 10 displaying the spatial variation of
the oxygen concentration in the capillary. A single blood oxy-
gen partial pressure does exist in the venous and arterial blood,
because both components, plasma and RBC, are equilibrated, but
not during gas exchange.

 In the same spirit the notion of the “lung diffusive capacity” may
be dubious because it links a quantity that can be measured, the
oxygen flow, to an ill-defined “capillary pressure” and to aver-
aged partial pressures that cannot be measured.

 The Roughton and Forster formulation, in the sense that it pro-
poses an interpretation in terms of a “steady state” respiration
picture should also be re-examined. Though this may  appear a
bold assumption, our approach qualitatively suggests that exper-

iments interpreted through the Roughton and Forster model
could give inconsistent results. The present work implies that
the blood hematocrit percentage plays a role not only in De but
also directly in DM.
 Neurobiology 185 (2013) 625– 638 635

5 Furthermore, the Roughton and Forster decomposition supposes
that the surfaces of the blood cells remain at the same concentra-
tion during oxygen transfer. But this has no real justification as
suggested by the case of the spherical cell: if the overall diffusion
currents reach a large fraction of the cell surface, there must be a
distribution of diffusion paths that reach the cell. Between them,
some are short (and rapid) and reach a small fraction of the sur-
face while the majority is longer (and thus slower) and reach
a larger fraction of the surface, making the real dynamics more
complex than implied by the Roughton and Forster model. On
the other hand, as stated above, the diffusion inside the eryth-
rocyte is rapid, with a tendency to equalize the oxygen partial
pressure in the interior of the RBC. Future studies of the com-
plete time dependence of the diffusion process with the trapping
dynamics should be performed through numerical simulations.
Similar calculations could be done for other gases of interest such
as the example of NO discussed below.

6 In addition, during the time spent by erythrocytes in the capillar-
ies, much of the system is moving and changing shape, in
particular the RBCs shapes. The real situation is so complex that
a realistic computation of the diffusive permeability is not fea-
sible at this time. However, it seems a priori reasonable to use
a single breath measurement of DLNO because the cyclic role of
respiration does not play a role and the RBC could be modeled
as a sink for NO (see however Vaughn et al., 2000; Borland Colin
et al., 2010). In particular the difference between rapid and slow
diffusion paths should play no role for NO because a single breath
measurement is essentially a steady state experiment. The agree-
ment mentioned above between the WM values deduced from the
bottom-up approach of the diffusive permeability, and the value
deduced from DLNO measurements refers to a steady state regime.
Thus the extrapolation from DLNO to the DMO2 of Roughton and
Forster could be difficult because the transfer and capture of oxy-
gen is dynamic.

7 In respiration, besides anatomy and respiratory cycle, there exists
only three quantities that can be really known, the oxygen partial
pressure in air (that can depend on altitude), the venous partial
pressure and the measured oxygen flow. We  suggest that the
Bohr equation should be replaced by

 ̊ = DL′
O2

· (PIO2 − PvO2 ).

This new lung diffusive capacity DL′
2 is of course a closed “black

box” that contains all the respiration complexities but is now
defined only from measurable quantities. We  believe that the
opening of this new black box should result from numerical stud-
ies of the dynamics of the complete saturation process for the various
gas of interest, O2, CO, and NO. From our point of view, it is far from
clear that the results of the dynamics could be accurately expressed
as two steady state resistances in series. This should be the object
of future work.

8 The same methodology can be applied to the study of the res-
piration at rest where the situation is more complex. Several
possible factors have to be considered: reduced cardiac output,
different venous oxygen saturation and possible hypoxic vaso-
constriction in the regions with small oxygen partial pressure.
The study of the dynamical effects on respiration at rest will be
published elsewhere.
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ppendix A. Numerical methods

The transport equations inside the acinus are discretized
hrough a finite differences method:

• For a point inside a branch:
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The time-dependent part of the equation is solved using a
rank–Nicholson scheme. For a point inside a branch, the discrete
rift-diffusion equation therefore writes:
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nd for a bifurcation point:
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ppendix B.

The time being discretized in small time steps �t,  the air velocity
rites

i(t)Ai(t) = �Vi

�t
(B1)

⎧⎪⎪⎨
⎪⎪⎩

Ui(t) = (d/dt)[k(t)	i(t =
(k(t)dout,i

Ui(t) = (d/dt)[k(t)	i(t =
(k(t)dout,i
here Ai(t) is the hydrodynamic cross-section at time t of the alve-
lar duct at site i and �Vi is the change in acinar volume distal
o the site i during the time �t.  We  use the hydrodynamic cross-
ection due to the presence of the alveoli along the ducts (Tsuda
 Neurobiology 185 (2013) 625– 638

et al., 1995). This assumes the presence of a hydrodynamic flow
inside a portion of each alveolus.

Measurements have shown that, in first approximation, only
the ducts follow the alternating volume change during the respira-
tory cycle whereas the alveolar sleeve shows only small changes
(Bachofen and Schürch, 2001). So the duct lengths and cross-
sections including alveoli dilate as k(t) and k(t)2 where k(t) is given
by:

k(t) =
[

1 + ı
(

1 − cos(2�ft)
2

)]1/3

(B2)

The dilation of the alveolar surface during the respiratory cycle is
significantly smaller than that of the external volume (Bachofen and
Schürch, 2001). This is the reason why we  assume, in first approx-
imation, that the diameter of the alveolus is time-independent. So,
the effective cross-section Ai(t) depending on the hydrodynamic
diameter writes⎧⎪⎨
⎪⎩

Ai(t) = �

4

[
k(t)dout,i(t = 0) − 3

4
(dout,max,i − din,max,i)

]2

if g < 3

Ai(t) = �

4

[
k(t)dout,i(t = 0) − 1

2
(dout,max,i − din,max,i)

]2

if g ≥ 3

(B3)

where dout,i(t = 0) is the external diameter of the duct i at the
beginning of the cycle, dout,max,i is the external diameter at 100%
TLC, and din,max,i is the internal diameter at 100% TLC. These last
two parameters are time-independent. The distinction between
the cases g < 3 and g ≥ 3 comes from the fact that the ducts of the
first three generations are just partially covered by alveoli (Haefeli-
Bleuer and Weibel, 1988). Similarly, the volume Vi(t) writes

Vducts,i(t) = �

4
k(t)	i(t = 0)

×
[
k(t)dout,i(t = 0) − (dout,max,i − din,max,i)

]2
(B4)

The velocity is then deduced

t)dout,i(t = 0) − (dout,max,i − din,max,i)]
2]

0) − (3/4)(dout,max,i − din,max,i))
2

if g < 3

(t)dout,i(t = 0) − (dout,max,i − din,max,i)]
2]

0) − (1/2)(dout,max,i − din,max,i))
2

if g ≥ 3

(B5)

Appendix C. Role of the acinar asymmetry

The real acinar geometry consists of a branching tree including
up to 11 generations with both topological and geometrical asym-
metries. In our model, these two  asymmetries are described using
two types of parameters:

- The first parameter, called interruption probability and denoted
p, accounts for the probability of terminating a pathway; at each
new possible bifurcation, there is a probability 1 − p of continu-
ing a segment and p of stopping it. In their complete description
of several human acini, Haefeli-Bleuer and Weibel (1988) have
shown that terminal ducts are found in the tree structure from the
7th generation onward. This topological asymmetry is modeled
by imposing a generation-dependent value of this parameter p in
our model geometry: p is very small at generations 7 and 8 and
larger in generations 9 and 10.

- The second parameter corresponds to the relative standard
deviation of the branch size and diameter distribution at each
generation. The geometry of our model acinus is randomized

using Gaussian distributions.

All these parameters are fitted to the detailed experimental
data found in Haefeli-Bleuer and Weibel (1988).  In this realistic
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eometry, we consider that the average of the inner diameter is
pproximately constant equal to 0.5 mm from generation 0 to 2, due
o the small number of alveoli. It abruptly decreases from 0.4 mm
t the 3rd generation, where the alveoli become more abundant, to
.25 mm at the 11th generation.

The detailed account of these computations is out of the scope
f the present paper. It can be found in Foucquier (2010).  The net
esults of the computation of the convection–diffusion–permeation
quations in these more realistic acini are values of the
ntegrative permeability comprised between  ̋ = 3.0 �m/s  and

 = 3.5 �m/s.
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