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An asymptotic model of particle deposition at an airway bifurcation
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Particle transport and deposition associated with flow over a wedge is investigated as a model for particle
transport and flow at the carina of an airway bifurcation during inspiration. Using matched asymptotics,
a uniformly valid solution is obtained to represent the high Reynolds number flow over a wedge that
considers the viscous boundary layer near the wedge and the outer inviscid region and is then used to
solve the particle transport equations. Sometimes particle impaction on the wedge is prevented due to
the boundary layer. We call this boundary layer shielding (BLS). This effect can be broken down into
different types: rejection, trapping and deflection that are described by what happens to the particle’s
initial negative velocity normal to the wall either changing sign, reaching zero, or remaining negative in
the boundary layer region. The deposition efficiency depends on the critical Stokes number but exhibits
a weak dependence on Reynolds number. Deposition efficiency forSc in the range 0< Sc < 0.4 yields
the following relationshipDe ≈ (1.867S1.78

c − 0.016)sin(βπ/2) at large Reynolds numbers, whereβπ
is the wedge angle. For a specific deposition efficiency,Sc decreasesasβπ increases. The distribution
of impacted particles was also computed and revealed that particles primarily impact within one airway
diameter of the carina, consistent with computational fluid dynamics approaches. This work provides a
new insight that the BLS inherent to the wedge component of the structure is the dominant reason for
the particle distribution. This finding is important in linking aerosol deposition to the location of airway
disease as well as target sites for therapeutic deposition.

Keywords: pulmonary airways; particle deposition; deposition efficiency; wedge flow; boundary layer
shielding; surfactants; airway closure.

1. Introduction

Micro- and nano particle transport and deposition in the human respiratory system is of particular
interest in determining potential health effects of inhaled particles. These can be either harmful or
therapeutic to humans depending on aerosol material, deposition site and local concentration. Toxic
particulate matter or carcinogens are linked to lung disease while pharmaceuticals, to be used in medical

c© TheAuthor 2012. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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therapy, are being developed as part of targeted drug aerosol delivery systems (Heyder,2004). An
example of medical therapy relates to the treatment of prematurely born infants who lack sufficient
surfactant. Because of this they have stiff lungs from the elevated surface tension and unstable airways
that close by forming liquid plugs. Surfactant reduces the surface tension of the lung’s liquid lining that
stabilizes airways from closure (Halpern & Grotberg, 1993). Surfactant delivery into the lung can be
from instillation of a surfactant as a liquid bolus directly into the trachea or endotracheal tube (Avery
& Merritt , 1991;Stevens & Sinkin, 2007;Griese,1999;Jobe,1993). The instilled bolus propagates
distally into the airways as a result of fluid dynamic, surface tension and gravity forces (Halpernet al.,
1998;Andersonet al.,2004). Another delivery method is by surfactant aerosol deposition (Dhand,2004;
Ellyett et al.,1996;Mazelaet al.,2007;Lewis & McCaig,1993).

Deposition of aerosol particles in the lung is a complex process that is dependent on particle prop-
erties, geometric airway characteristics and ventilatory conditions. The complexity of the lung renders
it difficult to perform direct experimental or computational studies of airflow and particle deposition.
Instead, the respiratory airways of the lung are frequently approximated as a series of repeatedly bifur-
cating tubes and simple components of the system are considered.

A recent review of both experimental work and 2D and 3D numerical simulations of airflow and
micro- and nano particle deposition and transport in airways can be found inKleinstreueret al. (2008).
The computational fluid dynamics (CFD) literature on pulmonary aerosol deposition shows that most of
the particles land near the carina of the bifurcations within one airway diameter of it along the medial
wall of the daughter airways (Balashazy & Hofmann,1993;Balashazyet al., 1999;Kim & Iglesias,
1989;Gatlin et al.,1997;Isaacset al.,2006;De Vasconceloset al.,2011). Yet, these computations do
not examine the details of the local flow in that region. That flow has both a stagnation point and a
developing boundary layer whose thickness depends mostly on the bifurcation angle and the Reynolds
number, the ratio of inertial to viscous forces. In the present paper, a mathematical approach is used
to isolate the key features of the flow at a carina and then to investigate the physics of the deposition
behaviour and its dependence on the velocity field structure as well as particle properties. A similar
strategy has been employed byBroday(2004) who modelled the deposition of ultra fine particles by
diffusion near the carina and byPhillips & Kaye(1999) who investigated inertial particle deposition on
a surface near a stagnation point flow.

In order to isolate and simplify the complex carinal flow, we choose to model flow over a wedge
with aerosol deposition whose leading-order solution is the well-known Falkner–Skan flow (Schlichting
& Gersten,2000), without resorting to full CFD numerical simulations (Broday(2004) has compared
the streamwise velocity of the Falkner–Skan flow for a 30o wedgewith the CFD results ofComeret al.
(2001b) and shown qualitatively good agreement for inspiratory flow near the carina). This is our basic
flow regime and we extend it asymptotically to form a smooth velocity field from the inviscid to viscous
boundary layer (Saintlos & Bretteville, 2002). With our analytical solution approach to the velocity
field, we can apply the drag contribution from the velocities to a force balance on an aerosol particle in
a straightforward process. From this detailed analysis of flow and deposition to the carinal region, we
will elucidate a better understanding of a phenomenon we refer to as ‘boundary layer shielding’ (BLS).
Since most impaction occurs near the carina, it is important to understand what shielding influences are
present.

In Section2, a description of the model is given. The flow field is solved using the method of matched
asymptotics and the particle motion is determined by solving numerically a system of second-order
ordinary differential equations. Results of the current model are described in Section3, and conclusions
are given in Section4.
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2. Model description

One of the significant fluid dynamical events during inspiration is the splitting of the flow field at an
airway bifurcation. The flow encounters the airway carina, whose branch angle isβπ , and passes on
either side to the next generation in the tree, as shown in Fig.1.

The range forβ for large airways in the human lung is 1/3< β < 1/2 (Horsfield & Cumming,
1967). Two important parameters that can be used to describe the character of this flow field are the
Reynolds number, Re, the ratio of inertial to viscous forces and the Womersley number,α, the ratio of
flow unsteady acceleration to viscous effects. These are defined as

Re=
ρUD

μ
, α = D

(
ωρ

μ

)1/2

,

whereU is the average air velocity,D is the airway diameter,ρ is the air density,μ is the air viscosity
andω is the breathing frequency. The Reynolds number can range from 500 to 6800 in the larger airways
(generations 0 to 4;Ultman,1985), exceeding the critical value of 2300 required for the transition to tur-
bulent flow in a smooth circular pipe. We restrict our attention to laminar flow, but the Reynolds number
is sufficiently large so that viscous effects are not dominant except in a thin boundary layer where the
velocity changes rapidly to zero in order to satisfy the no-slip condition at the airway wall. Normally, at
high frequencies and in large airways, the Womersley numberα > 1. This would suggest that unsteady
effects need to be included and the unsteady acceleration terms in the momentum equations cannot be
neglected. However, numerical simulations byLi et al. (2007) have demonstrated that even for moder-
ately largeα ≈ 2.3, airflow patterns obtained during the inhalation phase of the breathing cycle are quite
similar to those from steady-state computations at the same mean Reynolds number suggesting that a
steady or quasi-steady approximation is reasonable provided the frequency is not high.

In CFD models of particle deposition, the parent and daughter tubes are modelled as cylinders that
are joined by a ‘transition zone’. In this region, which includes the bifurcation, the carina is usually

FIG. 1. Schematic of a bifurcation geometry, whereD is the diameter of the parent tube,L is both the distance to the initial particle
position line and the length of the daughter,βπ /2 is the branching angle andU is a characteristic velocity in the parent tube.
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FIG. 2. Definition sketch for flow over a wedge subtending an angleβπ whereδ is the boundary layer thickness. Here,d denotes
the distance from the centreline from which a particle is released, andximp is the location of particle impact on the wedge.

modelled as a sharp wedge. For more details on the impact of airway bifurcation geometry on deposition,
see, e.g. the papers byBalashazy & Hofmann(1993) andBalashazyet al. (1996). There are two flow
regimes for high Reynolds number flow over a wedge. The region along the wedge surface has a viscous
boundary layer that begins at the stagnation point and grows in thex-direction, parallel to one of the sides
of the wedge as shown in Fig.2. Flow in this region is governed by the relevant boundary layer equa-
tions. The region outside of the boundary layer is governed by inviscid fluid mechanics. It is possible to
model these two regions separately and apply the resulting fluid drag on an aerosol particle depending on
which region it is currently traversing. So a particle may start outside the boundary layer, the drag being
defined on the basis of the inviscid fluid velocity relative to the particle velocity. Then it may enter the
boundary layer and see a viscous flow regime with a new fluid velocity, and hence drag, environment.
One could patch together a particle trajectory that crosses into the boundary layer by using the inviscid
particle position at the boundary layer edge and its inviscid velocity as initial conditions to the particle
path within the boundary layer. However, there is a jump in fluid velocity at the edge of the boundary
layer with this approach. This jump is due to the boundary layer approximation such that the inviscid,
x-velocity on the wall (y = 0) must bexn, to satisfy the criteria for Falkner–Skan flow that simplifies the
boundary layer analysis into one involving a similarity variable. For the boundary layer, the same crite-
rion is applied for the boundary layer at its edge,y = δ(x). In the next section, a solution for the velocity
field is derived which is uniformly valid in the boundary layer as well as the inviscid outer region.

2.1 Problem formulation

We derive the velocity field in the two regions described above: an inner region next to the wedge wall
where viscous effects are important and an outer region that is dominated by inertial effects.
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2.1.1 Velocity field

Outer region.The dimensionless Navier–Stokes and mass conservation equations are

u
∂u

∂x
+ v

∂u

∂y
= −

∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)

,

u
∂v

∂x
+ v

∂v

∂y
= −

∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)

, (2.1)

∂u

∂x
+
∂v

∂y
= 0,

wherex and y arescaled on the characteristic length, taken to be the parent tube diameter,D, as in
Fig. 1; u and v are scaled on the characteristic velocity in the parent tube,U and p is scaled onρU2,
whereρ is the fluid density. The Reynolds number is Re= ρUD/μ, whereμ is the fluid viscosity and is

assumed to be large. Letε = 1
/√

Reand pose the expansions (Van Dyke, 1975;Saintlos & Bretteville,

2002)

u(x, y)= ũ0(x, y)+ εũ1(x, y)+ O(ε2),

v(x, y)= ṽ0(x, y)+ εṽ1(x, y)+ O(ε2), (2.2)

p(x, y)= p̃0(x, y)+ ε p̃1(x, y)+ O(ε2).

In addition, it is convenient to introduce a stream functionψ̃ such thatu = ∂ψ̃
∂y andv = − ∂ψ̃

∂x . Then

the continuity equation is automatically satisfied. As with the other dependent variables, we expressψ̃
as a power series inε

ψ̃(x, y) = ψ̃0(x, y)+ εψ̃1(x, y)+ O(ε2). (2.3)

Outer region, O(1).The leading-order system is the inviscid Euler equations and the continuity equation
or the Laplace equation for the stream function since the vorticity is 0 at this order. The forms are

ũ0
∂ũ0

∂x
+ ṽ0

∂ũ0

∂y
= −

∂ p̃0

∂x
,

ũ0
∂ ṽ0

∂x
+ ṽ0

∂ ṽ0

∂y
= −

∂ p̃0

∂y
,

(2.4)
∂ũ0

∂x
+
∂ ṽ0

∂y
= 0,

∇2ψ̃0 =
∂2ψ̃0

∂x2
+
∂2ψ̃0

∂y2
=

1

r

∂

∂r

(

r
∂ψ̃0

∂r

)

+
1

r 2

∂2ψ̃0

∂θ2
= 0,

wherer =
√

x2 + y2 and θ = tan−1
( y

x

)
. The solution to the velocities at this order must comply

with the requirement for a similarity solution to the boundary layer flow, i.e. the Falkner–Skan flow
(described below), that
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ũ0(x, y = 0)= xn,
(2.5)

ṽ0(x, y = 0)= 0.

Thesolution to the Laplace equation (2.4) that satisfies these wall conditions is

ψ̃0 =
1

n + 1
r n+1 sin((n + 1)θ), (2.6)

wheren = β
2−β or β = 2n/(1 + n). Therefore, the leading-order inviscid velocity components are

ũ0(x, y)= r n cos(nθ),
(2.7)

ṽ0(x, y)= −r n sin(nθ).

The pressure field is obtained from Bernoulli’s equation:

p̃0 = −
1

2
(ũ2

0 + ṽ2
0) = −

1

2
r 2n. (2.8)

As an example,n = 1 (β = 1) yields inviscid stagnation point flow. Under these circumstances, (2.7)
simplifies to the familiar form̃u0 = x, ṽ0 = −y. Also, whenn = 0 (β = 0), the result is uniform and
parallel flow over a flat plate such thatũ0 = 1, ṽ0 = 0. The bifurcation angle range of 1/3< β < 1/2
corresponds to 1/5< n < 1/3.

For the matching procedure, we will need the expansions of (2.7) and (2.8) in the limity → 0, which
are

ũ0(x, y)= xn −
n(n − 1)

2
xn−2y2 + O(y4),

ṽ0(x, y)= −nxn−1y +
n(n − 1)(n − 2)

6
xn−3y3 + O(y5), (2.9)

p̃0 = −
1

2
x2n −

n

2
x2n−2y2 + O(y4).

Inner region.We rescale the vertical coordinate by defining the inner variable asY = y/ε to retain the
viscous effects in a boundary layer next to the wall. The dependent variables in the boundary layer are
given by the expansions

u(x,Y)= U0(x,Y)+ εU1(x,Y)+ O(ε2),

v(x,Y)= ε[V0(x,Y)+ εV1(x,Y)+ O(ε2)], (2.10)

p(x,Y)= P0(x,Y)+ εP1(x,Y)+ O(ε2).

Inner region, O(1). The leading-order system is

U0
∂U0

∂x
+ V0

∂U0

∂Y
= −

∂P0

∂x
+
∂2U0

∂Y2
,

0= −
∂P0

∂Y
, (2.11)

∂U0

∂x
+
∂V0

∂Y
= 0,
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whose solution is the Falkner–Skan flow

U0(x,Y)= xn f ′(η),

V0(x,Y)= −
1

2
x(n−1)/2[(n + 1) f (η)+ (n − 1)η f ′(η)], (2.12)

P0(x,Y)= −
1

2
x2n,

where f (η) satisfies

f ′′′(η)+
n + 1

2
f f ′′ + n(1 − f ′2)= 0,

(2.13)
f (0)= 0, f ′(0)= 0, lim

η→∞
f ′(η)= 1,

andη = x(n−1)/2Y is the similarity variable. The limiting forms off (η) asη → 0, ∞ are needed for
matching, and they are

f (η)
η→0

=
λn

2
η2 −

n

6
η3 + O(η5), f (η)

η→∞
= η + νn + EST, (2.14)

where EST are exponentially small terms. The constantsλn andνn canbe determined, respectively, by
numerically evaluating

λn = lim
η→0

f ′′(η),

(2.15)
νn = lim

η→∞
( f (η)− η).

Outer region, O(ε). The O(ε) equations in the outer region are

ũ0
∂ũ1

∂x
+ ũ1

∂ũ0

∂x
+ ṽ0

∂ũ1

∂y
+ ṽ1

∂ũ0

∂y
= −

∂ p̃1

∂x
,

ũ0
∂ ṽ1

∂x
+ ũ1

∂ ṽ0

∂x
+ ṽ0

∂ ṽ1

∂y
+ ṽ1

∂ ṽ0

∂y
= −

∂ p̃1

∂y
, (2.16)

∂ũ1

∂x
+
∂ ṽ1

∂y
= 0,

∇2ψ̃1 = 0.

TheO(ε) pressure correction is derived from Bernoulli’s equation and is given by

p̃1(x, y) = −(ũ0(x, y)ũ1(x, y)+ ṽ0(x, y)ṽ1(x, y)). (2.17)

Becauseof the matching requirements described below asy → 0, ψ̃1 takes the form

ψ̃1 = Cr m+1 cos((m + 1)θ), (2.18)

 at U
niversity of A

labam
a on February 29, 2012

http://im
am

m
b.oxfordjournals.org/

D
ow

nloaded from
 

http://imammb.oxfordjournals.org/


8 of 26 J.R. ZIERENBERGET AL.

whereC andm areconstants to be determined. Therefore, the O(ε) velocity corrections obtained from
(2.18) are

ũ1 = −C(m + 1)r m sin(mθ),
(2.19)

ṽ1 = −C(m + 1)r m cos(mθ).

Inner region, O(ε). The O(ε) inner problem is given by

U0
∂U1

∂x
+ U1

∂U0

∂x
+ V0

∂U1

∂Y
+ V1

∂U0

∂Y
= −

∂P1

∂x
+
∂2U1

∂Y2
,

0= −
∂P1

∂Y
, (2.20)

∂U1

∂x
+
∂V1

∂Y
= 0.

In order to solve the inner problem at O(ε), we need to provide boundary and matching conditions.
For the matching between the inner and outer regions, we need the limit of the inner solution asY → ∞:

lim
Y→∞

u(x,Y)= xn + ε lim
Y→∞

U1(x,Y)+ O(ε2),
(2.21)

lim
Y→∞

v(x,Y)= −εnxn−1Y − ε
(n + 1)

2
νnx(n−1)/2 + O(ε2),

andthe outer solution asy → 0

lim
y→0

ũ(x, y)= xn + ε lim
y→0

ũ1(x, y)+ O(ε2),

(2.22)
lim
y→0

ṽ(x, y)= −nxn−1y + ε lim
y→0

ṽ1(x, y)+ O(ε2).

Equatingthe limits for each velocity component leads to

lim
Y→∞

U0(x,Y)= lim
y→0

ũ0(x, y) = xn,

lim
Y→∞

U1(x,Y)= lim
y→0

ũ1(x, y), (2.23)

lim
y→0

ṽ1(x, y)= −
(n + 1)νn

2
x(n−1)/2.

Now we are in a position to determine uniquely the O(ε) outer problem and provide some of the
additional boundary conditions required to solve the O(ε) inner problem. From (2.19), we must have
ṽ1 → −C(m + 1)xm asy → 0. Thus,C = 1

2(n + 1)νn, m = 1
2(n − 1) onapplying (2.23). So the O(ε)

outer velocities are

ũ1(x, y)=
(n + 1)

2
νn sin

(
1 − n

2
θ

)
r (n−1)/2,

(2.24)

ṽ1(x, y)= −
(n + 1)

2
νn cos

(
1 − n

2
θ

)
r (n−1)/2.
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We note that̃u1 → 0 asy → 0, which provides a boundary condition on the O(ε) inner problem.
The O(ε) outer pressurẽp1(x, y) → 0 asy → 0 sinceũ1 → 0 andṽ0 → 0 asy → 0. Therefore,

P1(x,Y) = 0 (2.25)

becausẽp1(x, y) and P1(x, Y) mustmatch at the edge of the boundary layer andP1 is independent of
Y according to (2.20). The remaining velocity equations in (2.20) yield a third-order system of linear
homogeneous partial differential equations for (U1, V1). Its boundary conditions (inY) are also homo-
geneous sinceU1(x,0) = 0, that is and limY→∞ U1(x,Y) = 0, and V1(x, 0) = 0. Hence, both O(ε)
inner velocity components are zero, that is

U1(x,Y) = V1(x,Y) = 0.

Finally, we construct a uniformly valid composite solution by adding the inner and outer solutions
up to O(ε) and subtracting the values obtained due to the matching (so that they are not added twice).
For the velocity components, these are given by

ucomp= U0(x, y)+ ũ0(x, y)− ũ0(x, 0)+ εũ1(x, y),
(2.26)

vcomp= ṽ0(x, y)+ ε[ṽ1(x, y)+ V0(x,Y)− ṽ1(x, 0)+ nxn−1Y].

We define the composite velocity vector asucomp = (ucomp, vcomp).

2.2 Particle motion

An important parameter that plays a role in characterizing particle deposition is the Stokes number.
According toHeyder(2004), total deposition is defined to be the probability that a particle is deposited
in one of the airways. The mode of deposition is dependent on particle size and weight and the flow
conditions. For nano-sized particles that have diameters<0.1μm, the primary mechanism for deposition
is diffusion, while small micron particles, with diameters ranging from 0.1μm to 1μm, are deposited
mostly by sedimentation in the distal airways. Inertial impaction becomes the dominant mechanism for
larger and heavier particles with diameters>1μm, primarily in the upper airways. The Stokes number
is defined as the ratio of particle inertia to particle drag:

S =
mU

CdD
=
ρpd2

pU

18μD
,

wherem is the particle mass,ρp is its density,Cd = 3πμdp is the Stokes drag coefficient anddp is the
particle diameter. Most of the previous investigations have considered a range of Stokes numbers from
0.02 to 0.3 (see, e.g.Zhanget al.,2002). This is a reasonable range for particles with 16 dp 6 10μm
and0.56 ρp 6 5 g/cm3 thatare transported in the larger airways, such as generation three where the
Reynolds number is of the order 1000 and the flow is laminar.

Scaling time onD/U , the equations of motion for an aerosol particle, whose position is at (xp(t),
yp(t)), are

S
d2xp

d t2
= ucomp(xp, yp)−

dxp

dt
,

(2.27)

S
d2yp

dt2
= vcomp(xp, yp)−

dyp

dt
,
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wherelinear particle drag has been assumed andS is the Stokes number that has been defined above.
The influence of non-linear drag following the methodology outlined inComeret al. (2001a),Zhang
& Kleinstreuer(2002) andYalcin et al. (2007), which includes a linear regime for small local particle
Reynolds number, Rep, and a non-linear regime for large particle Reynolds number was found to be
negligible in which Rep = ρ|ucomp− up|dp/μ, whereucomp is the composite air velocity (see (2.26))

andup =
(

dxp
dt ,

dyp
dt

)
is the particle velocity. This is due to the small particle Reynolds numbers present

in the current study where the difference between the fluid velocity and particle velocity is small since
particle motion for only one generation as represented by a wedge is considered and the initial particle
velocity is assumed to equal the fluid velocity at the starting point upstream from the wedge.

Our interest is to follow a set of particles that start along a diameter of the parent airway. We choose
a diameter that is at a distanceL = 3D from the wedge vertex at its nearest point as shown in Fig.2.
The particle starts at a distance,d, from the centreline, andd will have values 06 d 6 D/2, assuming
symmetry of the flow. Then the initial position scaled onD is

xp(0)= −3 cos

(
βπ

2

)
+ γ sin

(
βπ

2

)
,

(2.28)

yp(0)= 3sin

(
βπ

2

)
+ γ cos

(
βπ

2

)
,

whereγ = d/D so that 06 γ 6 0.5. We assume that the initial particle velocity is equal to the fluid
velocity at that point,

dxp

dt
(0)= ucomp(xp(0), yp(0)),

(2.29)
dyp

dt
(0)= vcomp(xp(0), yp(0)).

The initial normal component of velocityucomp ∙ n, wheren is the unit normal vector to the wall, is
plotted in Fig.3 as a function ofγ , the distance from the centreline, for two different values ofβ
corresponding to wedge angles of 60◦ (β = 1/3)and 90◦ (β = 1/2).The velocity is observed to increase
with distance from the centreline and with wedge angle.

2.3 Particle motion in inviscid flow

In order to evaluate the influence of the boundary layer on particle motion for flow over a wedge, the
inviscid velocity component is considered instead of the composite velocity in the above particle motion
equations. As previously shown in (2.7) for inviscid flow, the velocity components are

uinviscid = ũ0(x, y) = r n cos(nθ),
(2.30)

vinviscid = ṽ0(x, y) = −r n sin(nθ).

The special case of stagnation point flow, withn = 1, has been previously studied byTaylor (1940),
who found that there is a critical Stokes number of 1/4 below which impaction does not occur. This
special limit is derived by solving a second-order linear differential equation that is obtained by sub-
stituting the inviscid velocity field (2.3) into (2.27).Phillips & Kaye(1999) extended Taylor’s work by
considering the effect of a viscous boundary layer on this critical Stokes number.
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PARTICLE DEPOSITION AT AN AIRWAY BIFURCATION 11 of26

FIG. 3. The normal component of velocityucomp ∙ n along initial particle location given by (2.28), where 06 γ 6 0.5. Arrows
adjacent to each curve indicate the appropriatey-axis. Here,n is the unit normal vector to the wall.

2.4 Method of solution

The Falkner–Skan equation (2.13) was solved following the methodology developed byAsaithambi
(2004). In this method, a coordinate transformation maps the semi-infinite domain into a finite domain.
The transformed equation is then approximated using second-order finite differencing and the resulting
non-linear system of equations is solved iteratively. In order to solve the particle motion equations (2.27),
it is necessary to know the composite velocities (2.26) at any position. This requires one to interpolate
the solution of the Falkner–Skan equation, which needs to only be solved once. The particle motion
equations are then solved using a Runge–Kutta solver.

3. Results

3.1 The flow field

In Figs. 4–7, we show some velocity profiles computed using the method described above for repre-
sentative wedge angles and Reynolds numbers and the differences between the inner region and outer
region flow fields. The difference between Figs.4 and5 (and Figs.6 and7) lies with the value ofx, the
distance along the wedge measured from the vertex scaled by the tube diameterD. As is well known,
the boundary layer thickens with increasingx due to the increased friction, and hence there is a larger
discrepancy between the inviscid tangential component of velocityu0 and the composite component
ucomp as shown in Fig.5(a) compared to that shown in Fig.4(a). Figures also indicate a small discrep-
ancy between the composite solution and the inviscid solution outside the boundary layer if only the
leading-order inviscid solution is used.
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12 of26 J. R. ZIERENBERGET AL.

FIG. 4. (a) Tangential,u and (b) normal, v, components of velocity across the boundary layer and into the outer region atx = 0.1
for β = 1/2 and Re= 100. Here, (u0, v0) and (U0, V0) are the leading-order inviscid and boundary layer velocities, and (ucomp,
vcomp) is the composite velocity.

However, this difference is significantly diminished if the two-term inviscid solution is used instead.
Of significance for particle deposition on the wedge surface is the normal velocity component, vcomp.
For some values ofβ, e.g.β = 1/2, vcomp is negative for allY = y/ε as shown in Figs.4(b) and5(b),
while for other values ofβ, such asβ = 1/3, vcomp is positive near the wall (Figs.6(b) and 7(b)).
Therefore, forβ = 1/3, particles may be pushed away from the wall.

In order to follow the motion of an aerosol particle, (2.27) is solved numerically subject to the initial
conditions given by (2.28) and (2.29). As shown in Fig.3, the initial normal velocity component is
almost uniform.

The effect of the wedge angle on the particle trajectory near the wedge for Re= 100, log(S) =
−0.62 andγ = 0.05 is shown in Fig.8. The outer edge of the boundary layer, i.e. the boundary layer
thickness, is also shown. This is the distance from the wall to a point where the velocity is 99% of the
free stream value.

Only one line is shown for the boundary layer, though in actuality the boundary layer thickness
increases with decreasing wedge angle. However, for the range displayed in Fig.8, the lines for all
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PARTICLE DEPOSITION AT AN AIRWAY BIFURCATION 13 of26

FIG. 5. (a) Tangential and (b) normal components of velocity atx = 1 for a wedge withβ = 1/2 and for Re= 100.

wedge angles lie approximately on top of each other. In all instances, particle impaction is not observed,
but instead the particle passes to the next generation. This is due to the influence of the boundary layer
and a phenomenon that we describe as BLS is observed, whereas for a purely inviscid flow, particle
impaction would result in all instances.

The BLS effect can be broken down into three different types: rejection, where the particle enters
the boundary layer with a negative normal component of velocity (vp < 0) and is kicked back (with
vp > 0) passing to the next generation; trapping, where the particle enters the boundary layer with vp <
0 but later vp = 0 so that the particle does not leave the boundary layer and passes to the next generation
and deflection, where the particle approaches the boundary layer with vp < 0 and continues to only
have vp < 0 and passes on to the next generation. All three instances are observed in Fig.8 where
rejection occurs forβ = 1/3 and 5/12, trapping forβ = 1/2 and deflection forβ = 7/12. The trapping
(β = 1/2) case is shown again in Fig.9. In addition, the trajectory followed by a particle using the two-
term inviscid velocity field and the displacement thickness are displayed. The displacement thickness is
defined as the distance by which streamlines that lie just outside the boundary layer are displaced and is
given by the following formula:
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14 of26 J. R. ZIERENBERGET AL.

FIG. 6. Tangential and (b) normal components of velocity atx = 0.1 for a wedge angle withβ = 1/3 and for Re= 100.

δ =
∫ ∞

0

(
1 −

U0

ũ0

)
dy = −ενnx(1−β)/(2−β). (3.1)

Once the particle enters the boundary layer, the trajectories followed by a particle using the full
composite solution and the two-term inviscid solution begin to deviate, with the two-term inviscid
solution trajectory closely tracking the displacement thickness. Figure10 shows the streamlines using
the composite, the leading-order inviscid and the two-term inviscid solutions. Outside the boundary
layer, the three cases agree as expected, but inside it, the two-term inviscid streamlines have a positivey
component of velocity. Therefore, it can be inferred that the two-term inviscid velocity field component
must be responsible for turning they-velocity component from negative to positive in the rejection
cases.

3.2 Particle deposition

The particle deposition efficiency represents the ratio of the number of particles deposited in an airway
to the total number entering the airway. Particle deposition efficiencies are computed as follows, where
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PARTICLE DEPOSITION AT AN AIRWAY BIFURCATION 15 of26

FIG. 7. (a) Tangential and (b) normal components of velocity atx = 1 for a wedge withβ = 1/3 and for Re= 100.

a uniform particle distribution in the parent airway is assumed. Choosing a value ofγ = γ0, where
0 6 γ0 6 0.5, sets the initial particle position. Then we select a value for the Reynolds number, Re,
and search for the smallest value of the Stokes numberS that causes the particle to impact the wall at
ximp 6 3. In the lung application, the airway length is typically three times the diameter, so a particle
that does not impact within this distance goes on to the next generation and its wedge flow. This value
of S is the critical value,Sc(γ 0) and all particles withγ < γ 0 whenS = Sc (γ 0) will also land on the
wall. That makes the ratioγ0/0.5 equal to the deposition efficiency,De, for this value ofSc. Deposition
efficiencies are discussed later.

Mapping of the different BLS effects inβ – Sparameter space forγ = 0.005, 0.05 and 0.25 is shown
in Fig. 11 for (a) Re= 100, (b) Re= 500 and (c) Re= 1000. The impact lines separate particles that
impact (above line) from particles that pass to the next generation (below line) for purely inviscid flow
and flow when the boundary layer is considered.

BLS occurs in between these two impact lines and is characterized into rejection, trapping and
deflection regions. The dot-dash line (∙−∙− ) separates the rejection and trapping regions, while the
dot-dot-dashed line (∙ ∙−) separates the trapping and deflection regions. Rejection is observed for small
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FIG. 8. Effect of wedge angle on particle trajectory for Re= 100, log(S) = −0.62,γ = 0.05, where the different types of BLS
can be observed: rejection (β = 1/3 and 5/12), trapping (β = 1/2) and deflection (β = 7/12). The dotted line represents the outer
edge of the boundary layer, i.e. the boundary layer thickness.

FIG. 9. Effect of velocity on particle trajectory for Re= 100, log(S) = −0.62,γ = 0.05,β = 1/2, where the trajectories of a
particle subject to the composite velocity versus the two-term inviscid velocity are compared.

β with γ near the centre of the parent airway (γ = 0.005 and 0.05) forS slightly smaller thanSc and
is detected for nearly all cases of Re investigated with the exception of Re= 100 where only trapping
is observed forγ = 0.005. Forγ = 0.05, the area of the BLS characterized by rejection and deflection
decreases with increasing Re, while the trapping region increases. Forγ = 0.25, the area of the BLS
characterized by trapping decreases, while the deflection region increases with Re. Only deflection is
observed forγ = 0.25 and Re= 1000. As Re increases, the inviscid solution is approached and the BLS
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FIG. 10. Streamlines for composite velocity, two-term inviscid velocity and inviscid velocity for Re= 100.

region decreases. While not shown, the separation of the BLS effects for Re= 1500 is similar to that
obtained for Re= 1000 (Fig.11(c)).

Figure12 shows the effect of the Stokes number on the particle trajectory near the wedge forβ
= 1/3, Re= 100 andγ = 0.05 as well as the location of the outer edge of the boundary layer and
displacement thickness. There is a criticalS above which the particle hits the wall. This happens when
log(S) = −0.54. For a slightly lighter particle, with log(S) = −0.55, the particle almost hits the wall,
but the positive normal component of fluid velocity near the wall causes the particle to gradually move
away from the wall. This velocity effect is even more significant at smaller values ofS. The boundary
layer offers a shielding effect that results in rejection. Particle trajectories and the outer edge of the
boundary layer and displacement thickness for a larger wedge angle,β = 1/2, are shown in Fig.13. For
this angle, the normal component of velocity is always negative, but a sufficiently light particle does not
hit the wall in the rangex 6 3. Instead particles are trapped in the boundary layer wherevp = 0.

Deposition efficiencies forβ = 1/3 andβ = 1/2 are shown in Figs.14 and15, respectively, for
0.025< Sc < 0.4. The deposition efficiency appears to be an exponential function of the critical Stokes
number with a very small dependence on Reynolds number. For a given Re, the deposition efficiency
curve forβ = 1/3 is shifted to the right of that forβ = 1/2. The dependence onβ is discussed later
in this section. We have also compared our current results for deposition efficiency with those obtained
from a computational model (Leeet al.,1996) and from experiments (Kim & Fisher, 1999).Leeet al.
(1996) provide computational data for 2D ducts with a branching angle of 45◦ (β = 1/2). The ducts had
a square cross-section, and the ratio of parent to daughter duct cross-sectional area was 1.252. Kim &
Fisher(1999) used a more realistic 3D model to represent the third, fourth and fifth airways generations.
In their model, the branching angle was 30◦ (β = 1/3) and the ratio of parent tube to daughter tube
diameter was approximately 1.2.

Care must be taken with the definition of the velocity scale in the Stokes number when making
comparisons. In our model, the initial starting position of the particles is three parent tube diameters
from the carina, and the velocity is almost uniform. However, in the other models (Lee et al., 1996;
Kim & Fisher, 1999), the particles are inserted at the inlet to the parent tube where the fluid velocity
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FIG. 11. Mapping of BLS inβ - Sparameter space withγ = 0.05, 0.25 and 0.5 into rejection, trapping and deflection regions for
(a) Re= 100, (b) Re= 500 and (c) Re= 1000. The impact lines separate particles that impact (above line) from particles that
pass to the next generation (below line) for purely inviscid flow and flow when the boundary layer is considered. The dot-dash
line ( ∙−∙− ) separates the rejection and trapping regions while the dotted line (∙ ∙−) separates the trapping and deflection regions.

is prescribed to be parabolic. The mean velocity near the carina is smaller than that at the inlet since
the cross-sectional area is larger near the carina. LetA1 andA2 be the total cross-sectional areas of the
parent and daughter tubes. ThenA1 = πD2

1/4 andA2 = 2πD2
2/4, whereD1 andD2 are the diameters

of the parent and daughter tubes, respectively. By mass conservation,ū1A1 = ū2A2, whereū1 andū2
are the mean velocities in the parent and daughter tubes. Therefore, the ratioū1/ū2 is given by
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FIG. 12. Effect of Stokes number on particle trajectory for Re= 100,β = 1/3 andγ = 0.05.

FIG. 13. Effect of Stokes number on particle trajectory for Re= 100,β = 1/2 andγ = 0.05.

ū1

ū2
=

A2

A1
= 2

(
D2

D1

)2

.

For the 2D computational model ofLeeet al. (1996), the ratio of inlet mean velocity to mean velocity
near the carina is approximately 1.28, while for the 3D model ofKim & Fisher (1999), this ratio is 1.4.
In Fig. 14, a function relating deposition efficiency to Stokes number used byKim & Fisher (1999) to
fit their experimental data has also been plotted. This function is of the form
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FIG. 14. Dependence of deposition efficiency on the critical Stokes number and the Reynolds number forβ = 1/3.

FIG. 15. Dependence of deposition efficiency on the critical Stokes number forβ = 1/2.

De = 1 −
1

aStb + 1
,

wherea = 12.68 andb = 1.819. In Fig.15, for the wedge angle withβ = 1/2, we have included
several data points joined by straight lines (as in Fig.4 of Leeet al.,1996). The original data fromLee
et al. (1996) andKim & Fisher (1999) have been altered to account for the different definitions of the
Stokes number as described above. Agreement is reasonably good between our model and the 2D model
(Lee et al., 1996). The discrepancy between our model and the curve fit based on the experimental
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data ofKim & Fisher (1999) can be attributed to several factors besides the difference in the flow
rates. It has been previously established that the type of inlet velocity profile can have a significant
impact on the deposition efficiency no matter what computational model is used (Zhanget al., 1997).
More significantly, in the experiments and in the 3D computational models, the velocity field is 3D and
secondary flows exist in the vicinity of the carina. Also, in our model, the velocity field does not satisfy
the no-slip condition at the outer wall and a simpler model for particle motion is used.

Comeret al.(2000) fit their deposition efficiency data with a functionDe that depends on the critical
Stokes number and the Reynolds number in the following way:

De(Sc,Re)= A(1 + cSb
c )e

mRe, (3.2)

where 0< De< 1. FormRe� 1, we can expand the exponent and find that

De(Sc,Re)≈ A(1 + cSb
c )(1 + mRe). (3.3)

We apply the non-linear least squares method to the data shown in Figs.14 and15 and determine the
coefficients (A, b, c, m) in (3.3). Forβ = 1/3, we find that

(A, b, c,m) = (−0.0036,1.47,−174.33,0.00017),

while for β = 1/2, we find that

(A, b, c,m) = (−0.026,1.64,−40.26,0.00014).

The data show that 0.0076 mRe6 0.26, so the assumptionmRe� 1 is consistent. Equation (3.3) can
be rearranged in the following way:

log

∣
∣
∣
∣
De

A

∣
∣
∣
∣ = log |1 + cSb

c | + log |1 + mRe| ≈ log |1 + cSb
c | + mRe. (3.4)

To check how well (3.4) fits the data, we show in Fig.16scatter plots ofDeversus log|1+ cSb
c | + mRe

for two wedge angles, withβ = 1/3 andβ = 1/2, respectively.

FIG. 16. Scatter plot showing how well deposition efficiency data fit (3.4) for (a)β = 1/3 and (b)β = 1/2. The parametersb, c
andm are given in the text.
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FIG. 17. Deposition efficiency versus the log of the critical Stokes number for different wedge angles for Re= 1500 and inviscid
flow.

The dependence of the deposition efficiency on the wedge angleβπ for Re = 1500 is shown in
Fig. 17. The corresponding deposition efficiency for inviscid flow is also shown for comparison. For the
smallest critical Stokes numbers investigated (logSc ≈ −0.65), the influence of wedge angle on depo-
sition efficiency is almost negligible. While for larger critical Stokes numbers, the deposition efficiency
curve shifts to the left with increasing wedge angle. For particle motion in stagnation point flow (β = 1),
the deposition efficiency is approximately a linear function of the critical Stokes number.

In addition to the fit used above for fixed Re, see (3.2), we include a dependence onβ (Cai & Yu,
1988):

De(Sc, β) = A(1 + cSb
c ) sin(βπ/2). (3.5)

The above equation can be rearranged in the following way:

log |De/A| = log |1 + cSb
c | + log | sinβπ/2|.

We use non-linear least squares to find the coefficientsA, b andc. For the data shown in Fig.17 with
Re= 1500

A = −0.016, b = 1.78, c = −116.7.

As shown in Fig.18, this functional form forDe fits our data reasonably well. Agreement between
deposition efficiency data for other Reynolds numbers and (3.5) is also good (with coefficientsA, b and
c depending on the choice of Re).

The relative distribution of particles deposited on the airway wall due to impaction for Re= 1500
and log S = −0.473 is shown for a 60◦ wedge in Fig.19(a) and for a 90◦ wedge with log(S) =
−0.434 in Fig.19(b). Theximp intervals used are constant with the exception of the last interval that
is smaller due to the maximumximp location. The corresponding deposition efficiencies areDe = 0.15
andDe= 0.2, respectively. As shown, the particles primarily impact near the airway carina, i.e. wedge
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FIG. 18. Collapse of deposition efficiency data with respect to the critical Stokes number and the wedge angle for Re= 1500.

FIG. 19. Relative distribution of location of particle deposition for (a)β = 1/3 and (b)β = 1/2 for Re= 1500.

tip, with a greater number for the 90◦ wedge angle. For these parameters, there is a criticalximp be-
yond which impaction does not occur and instead the remaining airborne particles travel to the next
airway generation. This critical distance occurs at or very nearximp ∼ 1, i.e. the particles impact within
one airway diameter of the carina as has been noted in complex CFD calculations (Balashazy & Hof-
mann,1993;Balashazyet al.,1999;Kim & Iglesias, 1989;Gatlin et al., 1997;Isaacset al.,2006). Our
model retains this very important feature and suggests that what is observed in full CFD approaches for
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FIG. 20. Relative distribution of location of particle deposition for inviscid flow (a)β = 1/3 and (b)β = 1/2.

deposition near the carina can be explained from a detailed study such as ours with an analytical solution
and BLS.

The relative impacted particle distribution for inviscid flow is shown for a 60◦ wedge in Fig.20(a)
and for a 90◦ wedge in Fig.20(b) with deposition efficiencies ofDe = 0.184 andDe = 0.248, respec-
tively. The Stokes numbers in Fig.20 are the same as those shown in Fig.19. As before, the particles
primarily impact near the carina, but in contrast to the viscous case, there is also particle impaction
along the entire airway length (0< ximp 6 3). So BLS as discussed above protects, the distal two-thirds
of the airway length from exposure to particles.

4. Conclusion

Particle transport and deposition associated with flow over a wedge has been investigated as a model
for particle transport and flow in the vicinity of an airway bifurcation carina. We identified three forms
of BLS that prevent a particle from impacting at a generation, so they pass on to the next. Rejection
requires a strong enough positive normal fluid velocity in the boundary layer to turn the particle around.
This mechanism is more prevalent, then, at smaller wedge angles that have this feature. Deflection, on the
other hand, is more a function of the boundary layer thickness when there is a weaker positive normal fluid
velocity. In that case, the particle is still advancing towards the wall but cannot traverse the full thickness of
the boundary layer in time to impact. Note that thicker boundary layers accompany larger wedge angles.
It should be noted that deflection or trapping at a small wedge angle can occur for sufficiently heavy
particles at high Reynolds numbers (Re> 100), while lighter particles for the same wedge angle will be
rejected. Trapping is an intermediate situation that has contributions from both mechanisms.

We would like to stress that our focus here was to describe the BLS effect that occurs once particles
are fairly close to the carinal wall and not to present a detailed model of the airflow through the lung’s
airways. In actuality, flow through the airways is 3D and far more complicated with secondary flow
existing that cannot be captured in the present 2D study. Other limitations of the present model include
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the investigation of a single airway bifurcation that does not consider the outer wall or subsequent
airways and the assumption of a uniform non-transient inlet velocity. Yet, our results are similar to
the CFD studies that include tube (3D or 2D) bifurcation geometries (parent and daughter tubes) in
terms of deposition distribution. So our work provides a new insight that the BLS inherent to the wedge
component of the structure is the dominant reason for the deposition distribution that is focused within
one airway diameter of the carina. Our approach lends itself to further investigations. It is worthwhile
pointing out that in our recent work (De Vasconceloset al., 2011), we have shown using a 3D CFD
model that the particle capture process in a particular generation can be essentially independent of the
capture in other airways despite the fact that airway particle deposition is a complex process.
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