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Several transportation networks in living systems are pulsatile branching trees. Due to the alternating
character of the flow, these trees have to simultaneously satisfy two constraints: they have to deliver
the carried products in a limited time and they must exhibit a satisfactory hydrodynamic performance
in both directions of the flow. We report here that introducing a systematic branching asymmetry into
a distribution tree improves performance and robustness, both at inhalation and exhalation. Moreover,
optimizing the asymmetry level for both phases leads to a value very close to the one measured in the
human lung.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Numerous biological transportation networks are branching
trees. One can distinguish several types of trees depending on the
nature of the flow that crosses them: it can be an unidirectional
stationary flow, as in the case of the vascular venous system in
mammals, or an unidirectional pulsatile flow, as in the vascular ar-
terial system, or a bidirectional flow. A striking example of the last
case is provided by the mammalian pulmonary airway system in
which the air flow undergoes periodic oscillations: in humans, dur-
ing each breathing cycle, air enters the system during 2 seconds at
rest in order to deliver oxygen to the gas exchange units located in
the distal regions (the acini). During expiration (3 seconds at rest),
air flows out to clear the carbon dioxide brought by the venous
system. Due to the alternate character of the flow, such a system
has to simultaneously be able to deliver the carried products in a
limited time, and to present a limited aerodynamic resistance in
both directions of the flow.

The geometrical structure of the human pulmonary airway sys-
tem is that of a dichotomous branching tree. At each bifurcation,
the parent branch gives rise to two daughter branches which be-
long to a new generation [1,2]. The total number of generations
depends on the pathway in the tree and is about 23 on average
in the human lung. From the physiological point of view, the air-
way system can be schematically subdivided into two subsystems:
first, the tracheobronchial tree which is a purely conducting tree. It
starts at the trachea (generation 0) whose average diameter and
length are respectively D = 1.8 cm and L = 12 cm in the healthy
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human adult. It ends in the terminal bronchioles whose average di-
ameter is about 0.5 mm. These terminal bronchioles are located on
average around generation 15 [3]. Second, from the terminal bron-
chioles start the acini which are the gas exchange units between
air and blood. We will from now focus only on the first subsystem,
the tracheobronchial tree.

One very interesting geometrical feature of this tree is its
branching asymmetry. This means that, at every generation, each
parent airway gives rise to a larger daughter airway (the major
airway) and a smaller daughter airway (the minor airway). This
asymmetry has been extensively measured [3] and analyzed [4].
The goal of this article is to study in a realistic model of the hu-
man airway system the influence of this branching asymmetry on
the ventilation performance of the human lung, both at inhalation
and exhalation.

2. The geometrical model of the tracheobronchial tree

Regarding gas transport, the tracheobronchial tree can essen-
tially be modeled as an arrangement of cylindrical pipes defined
by their diameter and length. A fundamental step in describing
its morphology has been the introduction of the now classical
symmetric Weibel’s A model [1]. In the simplest version of this
model, the tree is likened to a hierarchical network of pipes with
symmetrical dichotomous branching and a uniform scaling ratio,
h0 = 2−1/3 ≈ 0.79 between the airway diameters of consecutive
generations. However, in order to account for the distribution of
the airway sizes at any given generation, one has to introduce a
systematic branching asymmetry at every bifurcation [2,4]. This
branching asymmetry can be characterized by two different scal-
ing ratios, h0 max = 0.88 and h0 min = 0.68. For proximal airways
(generations 1 to 4), morphometric measurements show that their
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Table 1
Parameters of the geometrical tracheobronchial tree model. D and L represent air-
way diameter and length.

Generation Scaling ratio for D Ratio L/D

h0 max h0 min

1 0.88 0.68 3.07
2 0.88 0.68 1.75
3 0.88 0.68 1.43
4 0.88 0.68 1.85
� 5 0.88 0.68 3.00

sizes significantly deviate from a general scaling [1,5,6,4] and re-
quire specific parameters.

The geometrical model of the tracheobronchial tree used in this
study therefore consists in a set of specific parameters for the
first generations, and relies on systematic scaling and branching
asymmetry in the intermediate bronchial tree. This model, char-
acterized by the parameters in Table 1, allows to reproduce the
airway size distributions as measured in the literature. Since all
terminal bronchioles have essentially comparable diameters (about
0.5 mm) [7,8], the branching asymmetry implies that different
pathways starting at the trachea and finishing in a terminal bron-
chiole may have different number of generations. The generation
number of the terminal airways range from 8 to 22 in the human
lung [5,3].

3. Inhalation

We first study the ventilation performance of the bronchial tree.
The criterion used to characterize this performance is the distribu-
tion of the oxygenation times of the acini. For each acinus, the
oxygenation time is defined as the duration during which fresh air
is delivered to it at inhalation. It is computed by subtracting from
the total duration of the inspiratory phase, tins (2 s), the time spent
in the extrathoracic airways, text (approximately constant and equal
to 0.47 s at rest [9]), and the transit time from the trachea to the
acinus, ttr:

tox = tins − text − ttr.

Each acinus is assumed to act as an aerodynamic pump draining
the same flow rate. As a consequence, starting from the bottom
of the tree, the flow can be computed in each airway. The time
spent in an airway is directly obtained from the flow rate and air-
way sizes. The total flow rate is considered approximately constant
during the entire inspiratory phase, with a velocity in the trachea
of about 1 m/s [7]. The total transit time from the trachea to a
terminal bronchiole is thus determined by the sum of the times to
cross each branch of the pathway leading to this terminal bronchi-
ole. This transit time has to be as small as possible to provide an
efficient ventilation of the acinus.

Using our asymmetric model, we compute the distribution of
oxygenation times in all acini. They are spread around an average
value tox = 0.67 s with a standard deviation of about 0.13 s. All
acini are thus found to receive fresh air during inspiration since all
transit times are smaller than tins − text = 1.53 s.

We now address the question of the robustness of this venti-
lation performance against anatomical variability. To account for
this variability, the scaling ratios are randomized: at each bifurca-
tion, the major and minor scaling ratios, hmax and hmin, are now
anticorrelated random variables, so that the Hess–Murray law still
holds:

h3
max + h3

min = 1.

Their average values are determined by the parameters in Table 1
and their standard deviations are taken equal to 0.10 [4]. As a
Fig. 1. Proportion of unactive acini (with oxygenation time smaller than 0.3 s) as a
function of the asymmetry level α.

consequence, all diameters and lengths are also random variables.
Computing the distribution of oxygenation times in this random-
ized tree, one obtains almost exactly the same result as for the
deterministic model. The asymmetric bronchial tree thus appears
to have an efficient ventilation performance which is also robust
against morphological variability.

Branching asymmetry tends to spread the distribution of oxy-
genation times. Wider pathways in the tree are associated to larger
transit times due to flow conservation. If the asymmetry is too
large, the transit time in some pathways will increase to a value
close to the duration of inhalation. One can therefore ask the fol-
lowing question: is there a threshold asymmetry level above which
some acini do not receive fresh air at all? To answer this question,
we introduce a parameter α which characterizes the asymmetry
level. This parameter is defined as followed:

h3
0 max = h3

0(1 + α),

h3
0 min = h3

0(1 − α).

The asymmetry level measured in the human lung corresponds to
a value of about 36% (h0 max = 0.88 and h0 min = 0.68). Thanks to
the definition of α, all bronchial trees built using such rules have
the same thoracic volume. Moreover, they have the same specific
values of the ratio L/D for the first generations (Table 1), and
the threshold diameter that determines the terminal bronchiole is
identical.

Numerical computations of the oxygen transport, achieved by
solving time dependent equations of diffusion and convection in
the acinus geometry, have shown that fresh air has to remain at
least 0.3 s in the acinus in order to achieve the gas exchange pro-
cess [10]. We have therefore computed for each asymmetry level
the number of acini which have an oxygenation time smaller than
0.3 s. In other words, these acini do not permit the oxygen transfer
between air and blood (Fig. 1). They are called unactive acini.

It is found that all acini are supplied with fresh air (which
means 0% of unactive acini) when the asymmetry level is smaller
than a critical threshold value which is about 35%. Above this
value, the number of acini unable to transfer oxygen to the blood
during inspiration significantly rises. Interestingly, this threshold
value almost exactly corresponds to the branching asymmetry level
measured in the human lung (α = 36%). It has already been re-
ported in a previous article that branching asymmetry contributes
to reduce the aerodynamic resistance of the tree in the Poiseuille
flow approximation [11]. This first study at inhalation seems to
indicate that evolution has adjusted the asymmetry level at its
maximum value allowing to feed all terminal units with fresh air.
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4. Forced expiration

At expiration, the total quantity of the air previously inhaled
has to be exhaled in a limited time in order to renew it with
fresh air. However, exhalation is not the symmetric counterpart
of inhalation: due to the pressure exerted by the diaphragm and
the elastic energy stored in the respiratory muscles, the compliant
properties of the airways now play a major role. The flow pat-
tern in the tree is then the result of a complex interplay between
the flexible airway structure and the applied pressure distribution.
In extreme conditions, as in forced exhalation, the system exhibits
non-linearities that may lead to important inhomogeneities in the
flow distribution.

In particular, forced expiration maneuvers can be seen as a sig-
nature of the behavior of the compliant bronchial geometry. This
explains why they have been used for many years to test lung
function [12]. During these maneuvers, the most common pro-
cedure consists in recording the maximal expiratory flow-volume
(MEFV) curves. To assess the role of branching asymmetry at exha-
lation, we have simulated these curves using a 1D model in each
branch of the bronchial tree.

Two fundamental equations are used to describe the mechani-
cal behavior of an individual airway at expiration.

First, the airway compliance is modeled using Lambert’s equa-
tions [13] which relate the local airway diameter D to the local
transmural pressure P , the latter being the difference between
the internal airway pressure and the external pleural pressure as-
sumed uniform. We also assume that all airways are intrapleural
excepted the trachea that is treated as semi-intrathoracic. In Lam-
bert’s model, the parameters are defined for each generation. In
the asymmetric tree, this cannot be done as such since airways
of very different diameters and compliances can be found at the
same generation. We therefore introduce a generalized version of
this model in which Lambert’s parameters do not depend on the
airway generation but on the airway diameter. The pleural pres-
sure is taken equal to the difference between the alveolar pressure
and the static recoil pressure. Both pressures are modeled accord-
ing Polak’s model [14]. The alveolar pressure depends on patient’s
effort through the maximal expiratory pressure Pm and the time
constant of the expiratory muscles τ .

Second, the gradient of transmural pressure dP/dx along the
airway is computed using the 1D model introduced by Lambert et
al. for a steady and incompressible flow [13]:

dP

dx
= − f

1 − v2

c2

= − f

1 − 2v2ρ
D

(dD
dP

) . (1)

Here, f is the dissipative pressure loss per unit distance, D the
local airway diameter, v the local flow velocity, c the local wave
speed, and ρ the air density. It has to be noted that f , D , v , and
c all vary along the airway. The local dissipative pressure loss f (x)
is linked to the diameter D by:

f (x) = 128ηΦ

π D4
(1.5 + 0.0035 Re) (2)

where η is the air viscosity, Φ the flow in the airway, and Re is
the Reynolds number [15].

One of the important features appearing in these MEFV curves
is expiratory flow limitation (EFL) [16]. Several mechanisms are re-
sponsible for the EFL: first, the wave-speed mechanism introduced
by Dawson and Elliot in 1977 [17]. The fluid velocity cannot be
larger than the propagation speed c of pressure waves along the
airway wall. Indeed, one can see in Eq. (1) that the pressure gradi-
ent dP/dx dramatically increases when the fluid velocity is close to
the wave speed. Second, a combination of the viscous loss of pres-
sure and of the pressure loss due to convective acceleration [18].
Modeling forced expiration in the entire tree is computation-
ally complex: it requires to numerically solve in each airway the
differential equation (1) using expression (2) for f . This is usually
achieved by numerical integration [13,14,19]. All these equations
are coupled by flow continuity equations at each bifurcation of
the tree, the pressure drops at the bifurcation being assumed here
to be negligible [19]. On total, this means solving about 60,000
coupled highly non-linear differential equations, at each time step
of the expiration [13,14]. For that reason, previous studies have
simplified the tree geometry in order to reduce the number of dif-
ferential equations, the symmetric Weibel’s A model being there
the most popular model used [13,20]. All airways are thus assumed
to be identical at each generation. Computing the flow in the en-
tire tree at forced expiration comes down to numerically integrate
15 equations, one for each generation.

We show here that in fact, Eq. (1) can be exactly integrated
assuming that the average Reynolds number along an airway can
be estimated using the average effective diameter (D in + Dout)/2:

〈Re〉 = 4ρΦ

ηπ
( D in+Dout

2

) (3)

D in and Dout are the inlet and outlet airway diameters. Eq. (1)
therefore rewrites:

dP

dx
= −(

1.5 + 0.0035〈Re〉) 8πηΦ

π2

16 D4 − Φ2 2ρ
D

dD
dP

. (4)

Since 〈Re〉 and Φ are constant along the airway, the only varying
quantities are P and D . This differential equation can then be ex-
actly integrated along the airway:

π2

16

out∫
in

D4(P )dP − 2ρΦ2

out∫
in

dD

D

= −(
1.5 + 0.0035〈Re〉) × 8πη

out∫
in

Φ dx (5)

which also writes:

π2

16

(
g(Pout) − g(P in)

) − 2ρ Φ2 ln

(
Dout

D in

)

= −(
1.5 + 0.0035〈Re〉)8πηΦL (6)

where P in and Pout are the transmural pressures at the airway
inlet and outlet and L is the airway length. The function g(P ) is
determined by the relation between the airway diameter and the
transmural pressure [13] and is defined as follows:

g(P ) =
P∫

0

D4(P ′)dP ′. (7)

Moreover, it has to be underlined that in the case of the Lambert’s
model of collapsible airways [13], this function g(P ) can also be
integrated analytically. For a different model, it might be necessary
to tabulate it. In all cases, thanks to the expression obtained in
Eq. (6), computing the pressures and diameters in the entire tree
now only requires solving about 60,000 coupled non-linear scalar
equations, which is a feasible goal.

To compute forced expiration, one imposes the atmospheric
pressure at the top of the tree and an identical pressure, the alve-
olar pressure at all outlets of the tree. In the computations shown
here, we restrain ourselves to trees of 13 generations on average.
This is equivalent to assume that the pressure at the outlet of air-
ways of generation 13 is about the same as the alveolar pressure,
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Fig. 2. Left: Asymmetric tree: influence of patient’s effort on flow-volume curves. A: Pm = 24 kPa and τ = 0.2 s; B: Pm = 18 kPa and τ = 0.25 s; C: Pm = 12 kPa and
τ = 0.3 s. Right: MEFV curves for the asymmetric (solid line) and symmetric (dashed line) trees.
the airflow resistance of peripheral airways being small compared
to that of the central airways [12]. This assumption can be gener-
alized to an asymmetric tree: the pressure at the outlet of airways
with a diameter equal to the average diameter of airways of gen-
eration 13 is the alveolar pressure. For the extrathoracic airways,
the pressure drop is calculated using [14].

We use a quasi-static approach which means that a steady-state
flow is computed in the entire tree at each time step of the ex-
halation. The entire non-linear system, whose unknowns are the
pressures P in and Pout, and the flow Φ in each airway, is solved
using Newton–Raphson technique. Once the system is solved for
a given time step, new conditions (lung volume, alveolar pressure,
elastic lung recoil, pleural pressure) are applied and new flows are
calculated in the entire bronchial tree. Time steps are by default
0.01 s and are adapted in order to obtain a stable solution.

We have studied here two different geometrical models of the
bronchial tree, one symmetric and one asymmetric. The asymmet-
ric bronchial tree model is obtained using Table 1; the symmetric
model is obtained from the exact symmetrization of the asymmet-
ric one using at each bifurcation a single scaling ratio h0 defined
by: h3

0 = (h3
0 max + h3

0 min)/2. Such a symmetrization allows to keep
the same dead space volume (i.e. the same inner volume) for both
geometrical models. In both cases, the fixed airway diameters thus
obtained are used as maximal airway diameters that enter the
relations D(P ) from Lambert’s model. The airway lengths are as-
sumed to be constant during forced expiration and equal to the
lengths computed by the geometrical model.

Fig. 2(left) presents the simulated flow-volume curves for var-
ious patients’ efforts in the asymmetric tree. In our model, the
effort intensity modifies the maximal expiratory pressure Pm and
the time constant of the expiratory muscles τ which determine
the alveolar pressure: Pm and τ decrease when the patient’s ef-
fort decreases. As we can see on Fig. 2, the first parts in all curves
are effort dependent: the peak flow increases for larger effort. On
the other hand, the second parts are effort independent: above a
given expired volume, air flow does not increase when increas-
ing the driving pressure. Our model reproduces both characteristic
parts of the MEFV curves, in good agreement with classical mea-
surements [16,12]. Fig. 2 (right) is a comparison of MEFV curves
for both symmetric and asymmetric tree structures. One can ob-
serve that the branching asymmetry does not seem to have any
influence on the MEFV curves in a healthy bronchial tree.

We now investigate the behavior of altered bronchial trees un-
der forced expiration. The chosen alteration is aging: it is modeled
here by introducing a local modification of the mechanical prop-
erties of the small airways. A senile lung presents an increase of
compliance that affects the smallest airways much more than the
largest ones. The elastic recoil forces also decrease so that the
smallest airways (which are the more compliant) are not com-
pletely open and tend to have a smaller maximal diameter [21].
Fig. 3. MEFV curves for asymmetric (solid line) and symmetric (dashed line) senile
bronchial trees.

Moreover, aging has also global effects on the lung behavior dur-
ing forced expiration. Residual volume is increased [22] as well as
tissue resistance [23]. The static recoil pressure depends also on
age since the pulmonary compliance is increasing with age [24,
25]. Fig. 3 shows the MEFV curves computed for both symmet-
ric and asymmetric senile lungs. Both structures present a reduced
peak flow and a flow collapse after the peak flow as reported by
Gibson et al. [26] and Babb et al. [27]. However, the observed
flow collapse is much larger in the symmetric case than in the
asymmetric one. From a detailed examination of the flow distri-
bution in the entire tree, it appears that the asymmetry creates
airways of very different sizes at every generation which prevents
the uniform collapse that occurs in the symmetric tree. Asymmetry
therefore allows to better preserve the ventilation performances of
the tracheobronchial tree even when the mechanical properties of
the structure are altered.

It has to be noted here that obstructive pathologies such as
Chronic Obstructive Pulmonary Disease (COPD) or emphysema
have very similar mechanical effects to those of aging. Therefore, it
is very likely that the protective role of the branching asymmetry
observed in the senile lung would also exist in these diseases.

5. Conclusion

In conclusion, the branching asymmetry measured in the hu-
man airway system appears to provide improved performance and
robustness, both at inhalation and exhalation. At inhalation, the
asymmetry provides a robustness against anatomical variability.
Moreover, using a simple ventilation model, we show that, in or-
der to supply all acini with fresh air, the asymmetry level has to
be smaller than 35%. Interestingly, this happens to almost exactly
correspond to the branching asymmetry measured in the human
lung. At forced expiration, we developed a 1D non-linear compliant
model that permits to compute the flow and pressure distributions
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in any bronchial tree, symmetric or asymmetric. By comparing
MEFV curves, we show in this case that branching asymmetry im-
proves the performance in senile or pathological lungs. From the
point of view of evolution, one can therefore consider the asym-
metry measured in the human airway system as optimal: it is large
enough to provide a protection against obstructive pathologies at
expiration, but not too large in order to preserve the oxygen sup-
ply at inhalation.
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