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The liquid lining in small human airways can become unstable and form liquid
plugs that close off the airways. Direct numerical simulations are carried out on an
airway model to study this airway instability and the flow-induced stresses on the
airway walls. The equations governing the fluid motion and the interfacial boundary
conditions are solved using the finite-volume method coupled with the sharp interface
method for the free surface. The dynamics of the closure process is simulated for a
viscous Newtonian film with constant surface tension and a passive core gas phase.
In addition, a special case is examined that considers the core dynamics so that
comparisons can be made with the experiments of Bian et al. (J. Fluid Mech., vol. 647,
2010, p. 391). The computed flow fields and stress distributions are consistent with
the experimental findings. Within the short time span of the closure process, there
are large fluctuations in the wall shear stress. Furthermore, dramatic velocity changes
in the film during closure indicate a steep normal stress gradient on the airway wall.
The computational results show that the wall shear stress, normal stress and their
gradients during closure can be high enough to injure airway epithelial cells.

Key words: multiphase flow

1. Introduction
The lung’s airways are coated with an annular liquid film. When the ratio of

the liquid film thickness to the airway radius is sufficiently large, a disturbance in
the liquid lining can amplify and a plug can be formed that closes off the airway.
The lung volume at which this occurs is known as the ‘closing volume’. In normal
gravity, closure usually occurs in the lower airways of an upright human, since the
airway radius is compressed from the lung’s weight. In a microgravity environment,
the airway closure would tend to be more homogeneous since the lung weight is
not compressing the lower lung. The formation of the plug due to airway closure
might limit gas exchange if the closing volume is large. Furthermore, the formation
of the plug can lead to the complete collapse of the airway due to the axial draining
of ambient film fluid into the plug (Macklem, Proctor & Hogg 1970; Greaves,
Hildebrandt & Hoppin 1986). Airway closure usually happens in the small airways
near the end of expiration, often accompanied with hypersecretion or/and surfactant
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deficiency in the airway in a variety of lung diseases, such as chronic obstructive
pulmonary disease (COPD; Guerin et al. 1997), cystic fibrosis (Griese et al. 2004),
acute respiratory distress syndrome (ARDS; Baker et al. 1999), pneumonia (Gunther
et al. 1996), bronchiolitis (Dargaville, South & McDougall 1996) and asthma (t Veen
et al. 2000). During inhalation, the liquid plug in an airway propagates distally. It can
eventually rupture as the airway reopens. The transient pressure wave generated by
the abrupt reopening might be detected by a stethoscope as a crackle sound (Piirila &
Sovijarvi 1995; Rasanen & Gavriely 2005).

Modelling work by Halpern & Grotberg (1992) has shown that several forces could
contribute to airway closure, such as surface tension instability and wall compliance.
Experiments in a capillary tube were conducted by Cassidy et al. (1999) to examine
surfactant effects on airway closure. They measured the relationship between the
film thickness at various infusion flow rates of the core fluid, the instability growth
rate and the closure time. It was found that the surfactant decreased the growth
rate by 20 % and increased the closure time as well as the critical film thickness. A
review of the mechanics of airway closure is given by Heil, Hazel & Smith (2008), who
discussed both the purely fluid-mechanical ‘film collapse’ and the coupled, fluid-elastic
‘compliant collapse’ mechanism.

Flow-induced stresses on the airway epithelial cells might lead to severe cell injury.
Gaver and colleagues (Bilek, Dee & Gaver 2003; Kay et al. 2004) experimentally
investigated cell injury during airway reopening by using an air finger moving through
a liquid-filled, parallel-plate chamber lined with cultured pulmonary epithelial cells.
Significant cell damage was found due to the mechanical stress induced by the bubble
propagation. It was also revealed that pulmonary surfactant relieves the flow-induced
stresses and, consequently, decreases cell damage. Experimental studies (Muscedere
et al. 1994; Taskar et al. 1997) on excised lungs and in vivo animal models have
shown that severe tissue damage was found in surfactant-deficient lungs due to the
repetitive airway reopening. Ghadiali & Gaver (2008) gave a review of the effects
of surface tension forces on the mechanics of airway reopening and epithelial cell
injury. Huh et al. (2007) illustrated that exposure of primary human airway epithelial
cells to liquid plug propagation and rupture led to significant cell injury. Numerical
simulations of liquid plug propagation in a rigid channel (Fujioka & Grotberg
2004, 2005; Fujioka, Takayama & Grotberg 2008) confirmed that sharp peaks in
wall stresses and stress gradients were present in the transition region of the plug
during plug propagation. In addition, experimental and numerical studies of plug
propagation in flexible microchannels (Zheng et al. 2009) predicted a higher level of
wall stresses and stress gradients along a highly deformable wall as compared to a
rigid channel wall.

Although it is well recognized that airway reopening can induce epithelial damage
from fluid forces, the same cannot be said about airway closure. Dramatic changes
in flow velocity and pressure in the film fluid during the dynamic process of airway
closure can lead to high stress and stress gradients that might damage the epithelial
cells on the airway. The capillary instability in the liquid lining of a rigid tube
was measured and simulated by Cassidy et al. (1999). Recently, Bian et al. (2010)
measured the velocity field in the film fluid. Quantifying the velocity field is critical to
understanding the flow-induced stresses on the airway epithelial cells during airway
closure and, therefore, is of great importance to sustaining the normal functions of
the lung and preventing deleterious fluid-induced stresses.

Over the last few decades, there have been several theoretical models of airway
closure (Johnson et al. 1991; Halpern & Grotberg 1992, 1993, 2003; Heil 1999;
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Figure 1. Schematic diagram of the problem: r∗ = a∗ is the airway radius, r∗ = b∗ is the
undisturbed location of the interface, and r = R∗ is the perturbed location of the interface.

White & Heil 2005). Some are based on lubrication theory and assume that the film
is thin and inertia is not important. These have been used to estimate the critical film
thickness for closure and the closure time. However, the lubrication theory models
break down when the film is no longer thin and, therefore, are not expected to
accurately describe the flow field and wall stresses when closure occurs. Campana, Di
Paolo & Saita (2004) applied two-dimensional (2-D) free-surface flow model to analyse
numerically the instability of a film lining a rigid capillary tube. Campana & Saita
(2006) studied numerically the influence of surfactant solubility on the growth rate
of the film instability in capillary tubes. Heil (1999) calculated the non-axisymmetric
wall deformations during airway closure and demonstrated that non-axisymmetric
airway collapse allows plug formation with far less fluid than that required in an
axisymmetric collapse. White & Heil (2005) demonstrated that the occurrence of the
non-axisymmetric instability may cause the formation of a liquid plug, although the
airway system is evolving axisymmetrically towards a non-closing equilibrium state
due to insufficient film fluid volume.

In the current study, a direct numerical simulation (DNS) approach is adopted to
simulate this airway closure problem. In § 2, the governing equations describing the
dynamics of a liquid layer coating the inner surface of a rigid tube with a circular
cross-section are given. In this model, the gas phase is assumed to be quiescent and
the surface tension to be constant. The description of the sharp interface method
(SIM) used to solve the fluid flow (Ye et al. 2004; Tai & Shyy 2005) appears in
§ 3. The stress balance condition is used to determine the shape and movement of
the interface at each time step. The primary flow variables and the location of the
interface are computed as well as the flow-induced normal and shear stresses, which
are then compared with the experimental results of Bian et al. (2010). Results and
discussion are given in § 4, and conclusions appear in § 5.

2. Problem description and governing equations
2.1. Problem description

Our model consists of a core fluid with viscosity µ∗
c and density ρ∗

c representing the
gas phase, which is surrounded by a thin liquid film with viscosity µ∗

f and density ρ∗
f

that coats the inner surface of a cylindrical rigid tube of radius a∗ and length L∗, as
shown in figure 1. Here, and below, the subscript ‘f ’ stands for the film and ‘c’ for
the core liquid.



486 C.-F. Tai, S. Bian, D. Halpern, Y. Zheng, M. Filoche and J. B. Grotberg

Initially, the film has a uniform thickness a∗ − b∗ and there is no motion in both
fluid layers. To investigate the stability of this system, R∗, the radial location of the
interface, is perturbed by a single mode with amplitude that is 1 % of the initial film
thickness,

R∗ = b∗ − 0.01 ×
(

a∗ − b∗

a∗

)
cos(2πz∗/L∗), (2.1)

where z∗ is the distance along the axis of the tube. Figure 1 also shows n, the
unit normal vector at the interface pointing towards the gas phase. In the analysis
presented below the surface tension σ ∗ at the interface is assumed to be constant.

2.2. Governing equations for the perturbed film flow

The equations governing the fluid motion in the liquids after the interface has been
perturbed from its uniform state are the following continuity and the Navier–Stokes
equations:

∇∗ · u∗
f = 0, ρ∗

f

(
∂u∗

f

∂t∗ + u∗
f · ∇∗u∗

f

)
= −∇∗p∗

f + µ∗
f ∇∗2u∗

f ,

∇∗ · u∗
c = 0, ρ∗

c

(
∂u∗

c

∂t∗ + u∗
c · ∇∗u∗

c

)
= −∇∗p∗

c + µ∗
c∇∗2u∗

c,

⎫⎪⎪⎬
⎪⎪⎭

(2.2)

where t∗ is time, u∗
i = (w∗

i , v
∗
i ) is the velocity vector, and p∗

i is the pressure. At the
interface, r∗ = R∗(z∗, t∗), there is a jump in the normal stress balanced by surface
tension:

(p∗
f − p∗

c )n = −σ ∗κ∗n + (τ ∗
f · n) − (τ ∗

c · n), (2.3)

where τ ∗
i = µi(∇∗u∗

i +(∇∗ui
∗)T) is the viscous stress tensor and κ∗ is the curvature. At

the tube wall, r∗ = a∗, no-slip and no-penetration conditions are applied:

u∗ = 0. (2.4)

Periodic boundary conditions are applied at the tube ends z∗ = −L∗/2 and z∗ = L∗/2:

u∗
i |z∗=−L∗/2 = u∗

i |z∗=L∗/2 . (2.5)

The non-dimensionalization of the equations and boundary conditions is similar to
that used in Halpern & Grotberg (1992). The characteristic length and time scales
are respectively

Lc = a∗, T =
µ∗

f a∗

ε3σ ∗ , (2.6)

where ε is the dimensionless initial film thickness:

ε =
a∗ − b∗

a∗ . (2.7)

The following dimensionless (unstarred) variables are introduced:

r =
r∗

Lc

, z =
z∗

Lc

, t =
t∗

T
, ui =

u∗
i

(Lc/T )
, pi =

p∗
i

(εσ ∗/a∗)
. (2.8)
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Consequently, the dimensionless versions of equations (2.2) and (2.3) are:

∇ · uf = 0,

(
∂uf

∂t
+ uf · ∇uf

)
= − 1

ε2Re
∇pf +

1

Re
∇2uf ,

∇ · uc = 0,
ρ∗

c

ρ∗
f

(
∂uc

∂t
+ uc · ∇uc

)
= − 1

ε2Re
∇pc +

µ∗
c

µ∗
f

1

Re
∇2uc,

(pf − pc) · n = −κ

ε
n +

1

ε2
(τ f · n) − µ∗

c

µ∗
f

1

ε2
(τ c · n),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)

where Re is the Reynolds number

Re =
ρ∗

f a∗ε3σ ∗

µ∗2
f

. (2.10)

When the core fluid is a gas with µ∗
c = µ∗

g , the dynamics of the core can be neglected
and the pressure can be assumed to be constant (Hammond 1983). The initial pressure
in the liquid film is set as zero and therefore the pressure in the gas core is pc = κ/ε,
where κ =1/R0 and R0 = 1 − ε in order to balance the surface tension. When the
gas core is assumed to be passive, the governing equations and the interfacial stress
condition can be simplified as

∇ · uf = 0,

(
∂uf

∂t
+ uf · ∇uf

)
= − 1

ε2Re
∇pf +

1

Re
∇2uf ,

(pf − pc) · n = −κ

ε
n +

1

ε2
(τ f · n).

⎫⎪⎬
⎪⎭ (2.11)

The non-dimensionalization introduced in (2.8) is appropriate during the initial
stages of the instability. We chose a capillary pressure scale using the normal-stress
boundary condition, and a viscous capillary scale for the velocity by balancing the
pressure and viscous terms in the axial momentum equation. The time scale was
obtained from the kinematic boundary condition. These scalings have been used by
lubrication theory models that can accurately capture the onset of the closure event
but not the ultimate pinch-off. It should be pointed out that the exact equations and
boundary conditions that are solved using the DNS approach could have been non-
dimensionalized using a set of scales that is relevant during the pinch-off (closure)
event when inertia becomes important. Numerically, this is not important since none
of the terms in the Navier–Stokes equations and the boundary conditions are being
neglected. Some post-processing can be done to investigate what happens near the
closure event.

3. Numerical method
3.1. The sharp-interface method

A DNS technique is adopted to directly simulate the moving interfacial problem
in this study. In the earlier development of computational multiphase flow, some
researchers adopted the curvilinear grid system (Ryskin & Leal 1984). This approach
is simple but not easy to apply. In order to describe the deformation of an interface
between different phases, a very powerful grid generation is required and, further, the
grid has to be updated frequently to obtain the convergent solution and therefore it is
computationally intensive. Also, this approach is not good if the interface undergoes
a large deformation since the mesh can be greatly distorted, making it difficult to
obtain an accurate solution.
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In recent multiphase computations, several Cartesian grid methods have been
introduced such as the sharp-interface method (Tai & Shyy 2005), the immersed-
boundary method (IBM; Peskin 1977), the volume-of-fluid method (VOF; Hirt &
Nichols 1981) and the level-set method (LSM; Osher & Fedkiw 2003). On the basis of
the computational framework, sharp-interface and immersed-boundary methods are
classified under the mixed Eulerian–Lagrangian category and level-set and volume-
of-fluid methods are in the Eulerian category (Shyy 1994).

In the airway closure problem, high resolution of solutions (primary variables) near
the interface is necessary. The initial perturbation and the induced initial interfacial
velocity are both very small, with the order of magnitude of the initial interfacial
velocity being approximately 10−5. In order to accurately catch this small quantity,
the SIM is selected in this study to avoid the error that can come from the poor
resolution of primary variables near the interface.

In the SIM, the Cartesian grid is designed as a background mesh, and explicit
interfaces are used to describe the shapes of the objects on the background grid.
The interfacial dynamics associated with the moving/fixed boundaries needs to be
considered simultaneously. In the mixed Eulerian–Lagrangian approach, the interface
is constructed by a sequence of marker points. With these marker points, the shape
and location of the interface are determined by designated interpolation procedures,
while the overall fluid flow is computed on the fixed Cartesian grid. In the SIM, the
interface is treated explicitly with zero thickness, in accordance with the continuum
mechanics model. The primary variables at the interface are computed via the
interfacial conditions. The SIM defines the relations between the background grid
and the interface. The key elements of the SIM are listed in the next three subsections.

3.1.1. The fixed Cartesian grid and fractional step method

The computational framework is built on an Eulerian Cartesian grid to facilitate
the field equation computation. For each phase domain, a finite-volume, fractional
step method (Ferziger & Peric 1996) is used to numerically integrate the governing
equations in that phase.

3.1.2. The Lagrangian moving sharp-interface algorithm

Within the fixed-grid framework, the sharp interface is identified and tracked by
separate marker points to form the Lagrangian portion of this method. The interface
can be either a fixed solid boundary (such as the tube wall) or a moving phase
boundary (such as the gas–liquid interface). With a moving phase boundary, the
motion of the interface is tracked through the translation of the marker points over
the stationary Cartesian grid. These marker points are connected by quadratic curve
fitting, which is employed to capture the deformation and movement of the sharp
interface. The overall solution is obtained by matching the mass and momentum
fluxes from both phases at the sharp interface. Figure 2 gives an illustration of
a moving interface. Initially, a maker point, M0

n , is located on the interface. The
location of the interface (that is the marker points) is determined using an iterative
process. At each time step, the maximum number of iterations is assigned to be 200.
The superscript m represents the iteration counter, with m =0 denoting the initial
condition at a particular time step. The subscript n represents the current time. The
governing equations in each phase are solved and the intermediate primary variables
are obtained. These intermediate primary variables are used to compute the residual
of the stress balance equation, Πm

n . The displacement of the interface is assumed to
be proportional to this residual. The intermediate displacement, �Xm

n , location, Xm
n ,
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Figure 2. Adjustment of the interface in SIM.

and interfacial velocity, um
n,int , are computed as follows:

�Xm
n = Πm

n βn,

Xm
n = Xm−1

n + �Xm
n ,

um
n,int =

Xm
n − X0

n

�t
,

⎫⎪⎪⎬
⎪⎪⎭

(3.1)

where β is a relaxation factor which is of the order of 10−4 in this study, Πm
n is the

residual of the interfacial condition and X0
n is the initial position at the current time

step. This displacement pushes M0
n to M1

n on the intermediate interface. The governing
equations are solved again to find another residual of the stress balance condition,
and the shape of the interface is adjusted again based on this new residual. These
operations are repeated until finally the residual of the interfacial condition is less
than 10−3 and the residual of the solver of the governing equations is less than 10−6.
Once both conditions are satisfied, the interfacial velocity for the next time step can
be obtained,

u0
n+1,int =

X0
n+1 − X0

n

�t
, X0

n+1 = Xm
n , (3.2)

where X0
n+1 is the location of the marker point at the next time step.

3.1.3. The cut-cell scheme

A cut-cell scheme developed in Ye et al. (2004) is used to handle irregular
intersections between an interface and the Cartesian grid line. Some cells containing
the interface are cut and form non-rectangular cut cells. Special methods are needed to
treat these cut cells. In the interface region, the grid is recombined to form irregularly
shaped cells by the cut-cell scheme. Consistent interpolation formulae are chosen for
estimation of the fluxes along any of the cell surfaces. In this research, the shapes of
the cut cells can be triangles, trapezoids and pentagons. Figure 3 is an example of the
grid system featured in SIM. The entire Cartesian grid system becomes a mixed-type
grid system at the interface constructed by rectangular cells not involved with the
interface and cut cells containing the interface.

Details related to the fractional step method within the finite-volume framework,
the cut-cell scheme, the moving interface algorithm and the interfacial tracking can
be found elsewhere (Ye et al. 2004). The current method is globally second-order
accurate. For all the numerical simulations given in the next section, a 80 × 540 grid
is used. Each case takes approximately 120 CPU h on an Intel� E5430, 2.66 GHz
CPU.
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Parameters Values

ε 0.19, 0.23, 0.27
L 6.8
Re 0.56, 1.0, 1.61

Table 1. Values of the dimensionless parameters used in this study.

Cartesian grid system

Interface

Cut cells

Rectangular cells

Figure 3. The mixed rectangular and cut-cell grid in SIM.

4. Results and discussion
In this study, the following dimensional parameters are selected for the airway

closure model:

a∗ = 0.065 cm, L∗ = 0.44 cm, ρ∗
f = 1.0 g cm−3, σ ∗ = 20 dyn cm−1

µ∗
f = 0.13 poise.

}
(4.1)

This set of the dimensional parameters can represent the dimensions of the airway
at generation 10 in the adult lung (Crystal 1997). Our chosen value for the viscosity
of the liquid is higher than that of water because we assume that the liquid is a
mixture of the mucus and serous fluids found in the lung’s liquid lining. The chosen
value for the surface tension is lower than at an air–water interface since surfactants
are present in the lung. However, we have assumed that the surface tension is
constant in our model. There are three dimensionless parameters in this study: the
dimensionless length of the tube, the initial film thickness and the Reynolds number.
In order to compare with the experimental data (Bian et al. 2010), the dimensionless
length of the tube is assigned as L = 6.8. Three initial dimensionless film thicknesses
are selected: ε = 0.19, 0.23 and 0.27. The Reynolds number is computed using the
above dimensional parameters. Table 1 gives the values of the various dimensionless
parameters used in this study.

4.1. Validation

First, we compare the current SIM (DNS) results with the results obtained by
the lubrication theory model, which is often used to solve thin film problems to
ensure that our current numerical approach is reliable. Figure 4 shows comparisons
of the dimensionless histories of the maximum interfacial velocity and Rmin (the
minimum distance between the interface and the centreline) between the lubrication
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Figure 4. Comparison between lubrication theory and present computational results: the
time histories of (a) maximum interfacial velocity and (b) minimum core radius Rmin .

theory model (Halpern, Fujioka & Grotberg 2010) and the SIM with L = 9.0, ε = 0.2
and Re = 1.0. Results shown in figure 4 demonstrate good agreement between both
approaches until t = 18, and an increasing deviation occurs between them after t = 18.
Note that in the lubrication theory model, inertia is neglected and the pressure is a
function of the axial location and time, that is p = p(z, t). When the deformation is
small, both assumptions are reasonable but may not be so good when the deformation
becomes large, prior to the pinch-off. In figure 4, it can be seen that the interfacial
velocity is slightly higher using the lubrication theory model, so that the closure
time is slightly shorter. Once the deformation is large enough, the interfacial velocity
dramatically increases with time due to the stronger influence of surface tension.

Overall, the comparison at early times is very favourable, which means that just
like the lubrication theory model, the SIM is able to accurately capture the initial
stages of the instability. Moreover, the SIM is more accurate than the lubrication
theory model, when the deformation becomes sufficiently large (Rmin < 0.4) since no
special assumptions are made in the SIM.

4.2. Comparisons between numerical simulations and benchtop experiments

Next, a special case is considered that takes into account the dynamics of the core fluid,
so that we can make comparisons with the experimental results of Bian et al. (2010).
The density ratio ρ∗

f /ρ∗
c = 1.05 and the viscosity ratio µ∗

f /µ∗
c = 100 are the same as in

the experiments. The governing equations in each phase are solved numerically using
the method described above. The pressure in the core part is no longer a constant and
is adjusted to satisfy the interfacial stress condition. Figure 5(a) shows the streamlines
in both phases at an instant in time just before closure occurs. The liquids in each
phase are pulled and pushed by the interface and form two symmetric vortices.

Figure 5(b) shows how the minimum core radius, Rmin , varies with (tc − t) for ε = 0.23
and in the numerical simulations with an initial amplitude of 0.01ε. As t approaches tc,
Rmin decreases to zero at an ever-increasing rate, indicating that the core pinches off at
some location along the interface in a singular manner. Although figure 5(b) indicates
that there is relatively good agreement with regard to the rate of decrease of Rmin , when
Rmin is small between the two theoretical approaches and the experimental results of
Bian et al. (2010), there are some important discrepancies that are highlighted next.
For example, there is a significant difference in the estimated closure time (scaled
by a∗µ∗

f /ε3σ ∗): it is approximately equal to 26 using the lubrication theory model,
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39.1 using the DNS approach and 62.8 from the experiments of Bian et al. (2010).
The differences between the two theoretical approaches could be due to the fact that
in the lubrication theory model the core is treated as a passive fluid with constant
pressure, and that inertial terms and certain viscous terms are neglected.

The discrepancy in tc between the DNS approach and the experiments may be due
to uncertainties with the initial condition, the measurements of tc and the surface
tension. The initial condition used in the numerical simulations consists of a wave that
has a fixed amplitude and wavelength, while in the experiments the initial condition
most likely consisted of small-amplitude white noise. Figure 6 shows the influence
of the initial wave amplitude on Rmin and the closure time. For amplitudes of 0.01ε,
0.005ε and 0.001ε, the corresponding closure times are 39.1, 49.6 and 71.5, respectively.
Therefore, fluctuations in the initial amplitude could account for differences in the
closure time since it is not easy to discern the exact instant that the wave disturbance
begins to develop in the experiments.

4.3. Flow fields

The flow fields for the case with ε = 0.23 and L = 6.8 are shown and compared with
the experimental results (Bian et al. 2010) in figures 7 and 8. Because of the limitation
of the camera, the image can only be shown in the range of 1.6 >z > −1.6 in the
experimental study but the actual length of the tube is L =6.8 in both experimental
and numerical studies. Time sequences of sample computational images before closure
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Figure 7. Dimensionless time sequences of the interface shape before the closure with ε =0.23:
(a) numerically computed interface position; (b) experimentally recorded fluorescent particle
images (Bian et al. 2010).

are given in figure 7(a). It can be seen that the interface shape and location from the
computed results are qualitatively consistent with those of the micro-PIV experiments
in figure 7(b) (Bian et al. 2010).

Instantaneous velocity vectors, speed contours, and streamlines at two different
times before closure are shown in figure 8(a). The experimental flow fields which
are derived from three particle images are shown in figure 8(b) (Bian et al. 2010).
The streamline plots from both the numerical and experimental results indicate that
the liquid is driven from the edges of the film domain towards the centre. This is
due to the capillary instability that induces a pressure gradient within the liquid layer
and the conservation of mass within the layer. The maximum velocity is located at
the bulge tip (z =0) and a second velocity peak is found locally at the transition
regions between the film and the bulge (z = ±0.8). The streamlines are approximately
perpendicular to the surface of the tip area, while a vortical structure is observed near
the interface between the tip and the transition areas (1.6 >z > −1.6), consistent with
the numerical results of Campana et al. (2004). Close-up views of the velocity vectors
near the bulge tip at the instant before closure from the numerical simulation and
the experiment are shown in figure 8(c), respectively. The vectors are found to point
outwardly from the centre of the tip, indicating that the interface is being stretched
horizontally and vertically at the same time before closure.

4.4. Wall shear stresses

The numerically computed shear stress along the inner wall of the airway
τ ∗
w = −µ∗(∂w∗/∂z∗)|r∗ = a∗ at different time steps is plotted in figure 9(a). It shows

that the shear stress increases as the interface deforms. The maximum shear stress
magnitudes occur at z = ±0.8 at the last computational time step. As time increases,
the stress magnitudes increase and become large near the end of the closure process
when velocities are high. When t = 26.24 (t∗ = 0.88 s), the shear stress maxima are
±80 dyn cm−2, which is in the range of stress levels that damage airway epithelial
cells reported during the reopening process (Bilek et al. 2003; Huh et al. 2007). In
figure 9(b), the wall shear stress is scaled by the maximum wall stress value at the
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given time. The dimensionless parameter η is defined as z/zmax , where zmax is the
axial location of the maximum wall shear stress at each instant. It can be seen that
nearly all of the wall shear stress data collapse into one single sinusoidal curve before
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closure, indicating that the film growth is dominated by linear instability until the
very last instants when the evolution of the film starts to be influenced by nonlinear
effects. Also, the location of the maximum wall shear stress moves towards the bulge
(z = 0) as t → tc, which is consistent with the presence of the local velocity peaks seen
in figure 8(c).

The evolution of the wall shear stress versus time at various axial locations is shown
in figure 10.

Both the numerical and the experimental results show that the wall shear stress
increases gradually and then accelerates rapidly when closure is about to occur. Also,
both approaches confirm that the wall shear stress increases significantly at closure.
In the airway, the epithelial cells not only experience a high shear stress but also a
large spatial gradient and a dramatic temporal fluctuation, both of which might be
injurious to the cells.

4.5. Pressure fields and wall-normal stresses

The numerically computed speed, streamlines and pressure contours for different
times with ε = 0.23 are shown in figure 11. Initially, the perturbation is small, and
consequently the interface deforms slowly and the generated velocity in the liquid layer
is small. As the deformation becomes larger, the interfacial curvature also increases,
inducing larger flows and deformations. The locations of maximum speed change are
initially located at the transition regions. As t → tc, these locations move towards the
tip of the bulge. The locations of maximum pressure are approximately at z = ±2.2,

when the deformation is small. The maximum speed locations are approximately at
z = +2 and −2 at early times. With time, these locations move towards the centre and
eventually merge. In this model for ε =0.23, the pressure in the gas phase is set to
a constant value pg = κ/ε = 5.65. Therefore, the pressure in the liquid film is initially
negative in order to satisfy the normal stress condition at the interface. At early times,
when the deformation is small, the pressure contours are essentially vertical straight
lines, indicating that the pressure distribution is only a function of the axial location
and time, that is p = p(z, t) (figures 11a and 11b). However, once the deformation is
large enough (figure 11c), the pressure develops a strong radial dependence (which
the lubrication theory model fails to capture), and has a strong negative value near
the bulge tip which is needed to balance the surface tension.
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Figure 11. Streamlines, speed contours and pressure contours scaled by εσ ∗/a∗ for ε = 0.23
at various time steps: (a) t = 10.0, (b) t = 20.0 and (c) t = 26.24.

Figure 12(a) shows the numerically computed dimensionless normal stresses on the
inner wall of the airway σ ∗

w = −p∗
f |r∗ = a∗ at different time steps. This can be easily

computed using the DNS approach. In the experimental approach such as micro-PIV,
the velocities can be measured but it is much more difficult to measure pressure
accurately.

Figure 12 shows that the normal wall stresses increase as the interface deforms
and the maximum magnitude of the normal stress, which is 410 dyn cm−2, is much
larger than the maximum shear stress in figure 9, which is about ±80 dyn cm−2.
The maximum normal stress on the wall occurs at the centre of the growing liquid
bulge, z = 0. As time increases, the stress magnitudes increase and become large near
the end of the closure process when velocities are high. Figure 12(b) shows that
the maximum wall-normal stress increases gradually with time when the disturbance
grows exponentially (t < 20). When the growth of the disturbance is strongly affected
by nonlinear effects near the closure time (t � 20), the maximum wall-normal stress
increases abruptly.

Spatial gradients of the computed wall-normal and shear stresses at t = 26.24
(t∗ = 0.88 s) are shown in figure 13. The maximum wall-normal stress gradient is
located at z = ±0.8, approximately where the maximum and minimum wall shear
stresses exist. The wall shear stress gradient has a peak at z = 0, where the wall shear
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stress changes signs and the maximum wall-normal stress is. Two positive peaks for
the wall shear stress are found near z = ±1.2. The magnitude of the maximum wall-
normal stress gradient is approximately 3–4 times higher than that of the maximum
wall shear stress gradient as discussed above.

4.6. Impact of film thickness on the wall stresses

In order to compare the numerical and experimental results, most results shown in the
previous sections are for ε = 0.23. In this section, the impact of the film thickness on
the wall stresses is investigated. Figure 14 shows Rmin as a function of a dimensionless
time t∗/(µ∗

f a∗/σ ∗) which is independent of ε for ε = 0.19, 0.23, 0.27. This figure clearly
demonstrates that Rmin decreases more quickly with increasing ε and that the closure
time decreases with increasing ε.

Normal and shear stresses along the tube wall for different values of ε are shown
in figures 15 and 16. The stresses are scaled with respect to σ ∗/a∗. Figure 15 shows
the shear and normal stresses for ε = 0.19, 0.23 and 0.27, when Rmin reaches 0.3. In
all three cases, both stresses are higher for the case with ε = 0.27. In figure 15(a), the
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maximum shear stress is similar for ε = 0.19 and 0.23 but the shear stress decays faster
for the case with ε = 0.19 when z > 2 and z < −2. For the case where ε =0.19, the
shape of the interface is flatter when z > 2 and z < −2. In figure 15(b), the interfacial
velocity decreases in this area due to the increased resistance from the wall as the
interface deforms. Once the interfacial velocity decreases, the induced liquid flow
decreases and results in a decrease in the normal stress.

4.7. Self-similar behaviour near the closure event

Since R∗
min approaches zero when closure occurs, the solution in the neighbourhood

of where this happens does not have a characteristic length scale. So, presumably a
similarity solution exists that describes the closure event. In the breakup of a liquid
bridge between two plates (Keller & Miksis 1983; Chen & Steen 1997; Eggers 1997),
there is a 2/3-power-law relation between the diameter of the liquid bridge and the
time to breakup, (t∗

c − t∗), d∗ = (σ ∗(t∗
c − t∗)2/ρ∗)1/3, where d∗ is the diameter of the

liquid bridge. In figure 16(a), R∗
min is plotted as a function of (t∗

c − t∗) using a log–
log scale with ε = 0.23. There are two distinct regimes. At the beginning of closure,
the slope of the curve is approximately 0.175, while near the pinch-off the slope is
about 0.5. The differences in these slopes may be attributed to different forces that
play dominant roles at different times. The review paper by Eggers & Villermaux
(2008) discusses the possible scaling regimes during the breakup of liquid bridges. The
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smaller slope of 0.175 can occur when the dominant effects are due to surface tension
and viscosity alone, while the larger slope of 0.5 suggests that there is a balance
between surface tension, inertia and viscous effects. The 2/3-power-law mentioned
above is based on a dominant balance between fluid inertia and surface tension,
and does not include viscous effects that are important in the closure problem. In
the airway closure model, the distance between the interface and the surface of the
tube can be very small, and thus the effect of film viscosity cannot be ignored. In
figure 11(b), one can see that during the early stages of the airway closure (t < 20), the
system is almost quiescent, and the induced velocities are very small. The maximum
speed is only about 0.061, and it can be expected that the effects of inertia should
be weak. Hence, there is a balance between viscous and surface tension effects. As
the interface deforms, the velocities in the layers increase rapidly. In figure 11(c), the
maximum speed can reach 14.35, while the minimum speed is still around zero. This
means that the induced speed and its spatial gradient are much larger compared with
those shown in figure 11(b). The maximum speed increases more than 235 times from
t = 20 to 26.24. Consequently, near the closure event, inertia should not be neglected.
In contrast, the maximum shear stress only increases 25 times compared with that
shown in figure 9(a). We can therefore infer that at some point, there is a balance
between viscous, inertia and surface tension effects. This occurs near the pinch-off.

In figure 16(b), we plot the maximum shear and normal stresses as well as functions
of (t∗

c − t∗) in a log–log scale. As with R∗
min , there are two distinct slopes. When

(t∗
c − t∗) → 0, the slopes are fairly small but still negative, indicating that the maximum

wall stresses grow without bound in this airway closure model. These results are also
confirmed by figures 10(a) and 12(b).

5. Conclusions
The liquid lining in small human airways is unstable and can form liquid plugs

that close off the airways. Instead of the simplified lubrication theory approach, the
DNS in which the full set of governing equations is solved has been performed in
an airway model to study the airway instability and the flow-induced stresses on the
airway walls. The DNS approach can offer an accurate value of the primary flow
variables and the location of the free interface at different time steps.
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A thin annular film lining the inside of a rigid tube is modelled as a liquid-
lined airway in the numerical simulations. The dynamics of the closure process is
simulated for a Newtonian viscous film with constant surface tension and a passive
core gas phase. The computed flow fields and stress distributions are consistent with
those acquired in the experiments. The numerical results are compared with the
experimental data (Bian et al. 2010) and the comparison is favourable.

Instantaneous velocity fields in the annular film at various stages of the airway
closure show multiple local velocity peaks located at the bulge tip and the transition
region. The wall stresses at the time instant of closure is one order of magnitude larger
than that before the closure, indicating a large stress spatial gradient and temporal
gradient on the airway wall. One can see that both normal and shear stresses increase
with time in the airway closure model, and both have high values near the end of
closure (at t = 26.24, t∗ = 0.88 s) due to the large induced velocity in the liquid film
and large variations of interfacial curvature.

The greatest damage to the cells occurs at the end of the closure under the
conditions just described. In contrast, in the reopening model (Bilek et al. 2003), cell
damage increases with decreasing reopening velocity. Bilek et al. (2003) found that
as the reopening velocity decreases, the thickness of the trailing film decreases, and
there is a tremendous increase in the pressure difference in the transition region.
Since the size of a typical cell is very small (40 µm), the pressure difference over
such a cell may be very large, resulting in large cell deformation and leading
to cell injury or even death. However, there are also scenarios where the surface
stresses can deform cells and induce injury. In the experiments of Bilek et al., cell
damage can occur when (τs)max > 12.9 dyn cm−2, (dτs/dx)max > 2.1 × 103 dyn cm−3 and
(dp/dx)max > 3.21 × 104 dyn cm−3. Huh et al. (2007) reported that cells are damaged
when (τs)max > 97.58 dyn cm−2 and (p)max > 6.4 × 103 dyn cm−2. In the current airway
closure model, the corresponding quantities with ε = 0.23 are (τs)max 80 dyn cm−2,
(p)max 410 dyn cm−2, (dτs/dx)max 1.48 × 103 dyn cm−3 and (dp/dx)max 4.82 × 103 dyn
cm−3. The shear stress is larger but the pressure and the gradients are smaller than
those in the experiments. It should be noted that the above quantities are based on
the current selected parameters. It is expected that as ε decreases, the stresses may
increase further.

The computational results also show that the wall shear stress, normal stress and
their gradients during closure can be high enough to injure airway epithelial cells.
These findings are consistent with the conclusions of the experimental study by Bian
et al. (2010).

We also performed a self-similar analysis during the closure event. The minimum
core radius, R∗

min , was found to be approximately proportional to (t∗
c − t∗)0.175 at

the beginning of the closure event, implying a balance between viscous and surface
tension effects. Later, near the pinch-off event, inertia also becomes important, and
R∗

min ∝ (t∗
c −t∗)0.5. Both of these exponents suggest that viscous effects play a significant

role in the airway closure model.
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