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de Vasconcelos TF, Sapoval B, Andrade JS Jr, Grotberg JB,
Hu Y, Filoche M. Particle capture into the lung made simple? J
Appl Physiol 110: 1664 –1673, 2011. First published March 17,
2011; doi:10.1152/japplphysiol.00866.2010.—Understanding the
impact distribution of particles entering the human respiratory system
is of primary importance as it concerns not only atmospheric pollut-
ants or dusts of various kinds but also the efficiency of aerosol therapy
and drug delivery. To model this process, current approaches consist
of increasingly complex computations of the aerodynamics and par-
ticle capture phenomena, performed in geometries trying to mimic
lungs in a more and more realistic manner for as many airway
generations as possible. Their capture results from the complex
interplay between the details of the aerodynamic streamlines and the
particle drag mechanics in the resulting flow. In contrast, the present
work proposes a major simplification valid for most airway genera-
tions at quiet breathing. Within this context, focusing on particle escape
rather than capture reveals a simpler structure in the entire process. When
gravity can be neglected, we show by computing the escape rates in
various model geometries that, although still complicated, the escape
process can be depicted as a multiplicative escape cascade in which each
elementary step is associated with a single bifurcation. As a net result,
understanding of the particle capture may not require computing particle
deposition in the entire lung structure but can be abbreviated in some
regions using our simpler approach of successive computations in single
realistic bifurcations. Introducing gravity back into our model, we show
that this multiplicative model can still be successfully applied on up to
nine generations, depending on particle type and breathing conditions.

pulmonary airways; particle deposition; aerodynamics; multiplicative
cascade

THE DEPOSITION PROCESS into an aerodynamic tree is complex
because it results from the interplay between the fluid velocity
map in the branched structure, which depends on fluid density
and viscosity (1, 4, 5, 17, 25, 30, 34), and the distribution of
particle sizes, masses, and velocities (13, 14, 35). Over the past
20 yr, many reports have been devoted to the analysis of this
process. These studies explore increasingly complex struc-
tures: two- or three-dimensional structures with an increasing
number of generations (6, 16), detailed branching morpholo-
gies (2, 3, 21, 23, 24, 28, 31), and a wide range of aerosol types
and aerodynamic effects (15, 20).

One of the difficulties in understanding the particle capture in
such systems comes from the fact that each particle follows a
complicated trajectory, with each part of this trajectory depending
on the detailed structure of the flow (1, 30). Even at small enough
Reynolds numbers (Re), although deterministic, the detailed com-
plexity of each trajectory suggests that a global approach would be

even more out of reach. But, as shown in this report, this is not
true. A global statistical description, at the level of a population of
particles, permits us to derive simple laws for the escape rate (E)
and capture rates (C) averaged among the entire population of
incoming particles. E represents the fraction of incoming particles
that cross a given structure without being captured, and C is the
fraction of particles captured in this structure (also called deposi-
tion efficiency), so that E � C � 1. It will be clear in the following
that what is simple in the trapping in an aerodynamic tree is not
the capture but the escape, which essentially multiplies in succes-
sive bifurcations, a fact that has been so far obscured by the
complexity of global tree studies.

METHODS

The physical model. For each structure, we solved the steady-state
Navier-Stokes and continuity equations corresponding to an inspira-
tion flow (from the entrance to the outlets) for various Re, as follows:
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where � is the fluid (air)-specific mass, �
¡

is the gradient operator, u
¡

is
the fluid velocity, � is the fluid viscosity, and p is the pressure. Using the
diameter of the first branch (D0) and the mean entrance velocity of the
fluid (u0) as units, the entrance Re is defined as follows: Re � �u0D0/� �
u0D0/v, where v is the kinematic viscosity of air (0.15 cm2/s). The Re
is the only dimensionless parameter governing Eqs. 1 and 2.

Nonslip boundary conditions were imposed on the lateral walls of
the branching tree. Additional dimensionless parameters entered here
through the geometry discussed below. The velocity field was taken as
uniform at the entrance cross section and constant pressure conditions
were assumed on the outlets of the structure.

After each flow simulation, the particle trajectories and deposition
were computed by numerically solving Newton’s second law for each

particle with a Stokes drag force (F
¡

drag) written for a spherical particle

as follows: F
¡

drag � 3��dp�u
¡

� u
¡

p�, where dP is the particle diameter

and u
¡

p is the particle velocity. This is the a simplified expression of
the drag force when the so-called “particle Re” (ReP; defined as ReP

� uPD/v) remains small, a good approximation here. The resulting
equation of motion of a particle of mass m can be written as follows:

m
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The quantity m(3��dP) is the relaxation time �, which measures the
time for the particle to adjust to the flow (1). The Stokes number (St),
often called the impaction parameter, is the ratio of the relaxation time
to a characteristic transit time for the flow D/u0. For spherical
particles,
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In the expression of St, �p is the particle-specific mass and D is the
diameter of the branch. The St is the second dimensionless parameter
governing Eq. 3 for a given airway geometry.

Diffusion and gravity effects are not taken into account in this
approach for the moment, as the goal is here to derive the general
background properties of the deposition process in a tree structure.
Thus, the inertia of the particle and the drag force exerted by the fluid
are the only two ingredients that cannot be removed. We will discuss
later the relative importance of gravity and diffusion and how they can
be introduced as well as other physical effects. Without approxima-
tion, this study is about the deposition of particles transported by
convection in a tree in the absence of gravity or in a microgravity
environment (7–10). The particles were assumed to be large enough
so that diffusion can be ignored.

Geometry of the tree. The tracheobronchial tree is a complex
branching structure that exhibits self-similar invariance at all scales. A
cast of the airways showing this complexity is shown in Fig. 1A. The
geometrical airway models are dichotomous branching trees (see
Fig. 1, B and C). All branches have the same aspect ratio, namely,
their length-to-diameter ratio (L/D) � 3, a commonly admitted value
for the intermediate bronchial tree in mammalian lungs, where we
focused our attention. Each branching is a symmetric coplanar bifur-
cation described by the branching angle (�) between the daughter
branches and the diameter ratio (h) � Di�1/Di of successive genera-
tions, where i is the generation number. Also, the azimuthal angle (�)
between successive bifurcation planes was specified.

We defined the canonical tree by the following parameters: h �
2	1/3, � � 60°, and � � 90°. It has to be noted that this tree
corresponds to Weibel’s “A” symmetric model (33).

Method of solution. For fixed geometrical parameters, the flow

distribution (u
¡

) was first computed for each tree structure using a
parallel commercial CFD code (Fluent) on a computer Linux cluster
to solve Eqs. 1 and 2. For each flow (each Re value) simulation,
10,000 particles, uniformly distributed in the entrance cross section,
were launched with an initial velocity equal to the local fluid velocity,
and their trajectories were calculated by the numerical integration of
Eq. 3. When a particle trajectory crossed the surface at a given point,
the particle was considered to be trapped there, and the number of
particles captured in each branch was calculated.

We then obtained a map of the particle deposition along the tree. C
was defined as the number of particles that impacted at the inner
surface divided by the number of particles at the entrance. E was
simply calculated as E � 1 	 C.

RESULTS

We first computed the capture efficiency in the canonical
tree (h � 2	1/3, � � 60°, �� 90°) of four generations (3
bifurcation levels and 8 outlets; see Fig. 1B) for different
values of Re (50, 100, 500, 1,300, and 2,600). C is plotted in
Fig. 2A in the traditional way in which investigators have
presented their results. Figure 2B, on the other hand, shows the
corresponding plot of E. As shown in Fig. 2, A and B, all data
almost collapsed onto the same curve through the entire range
of St. The capture process in the tree thus appears to depend
essentially on the St of the population of particles entering the
tree, a commonly known fact in deposition studies (18, 29, 35).

Figure 3 shows, with Re � 50, the total escape rate for the
entire tree (Et), the escape rate for the first bifurcation (E1), and
the escape rate for the second bifuracation (E2) [with En

defined as the number of particles that escaped bifurcation (n)
divided by the number of particles that entered it]. E1 and E2

were almost identical: although the population arriving on the
second bifurcation could be thought to have different spatial
and velocity distributions than the population arriving on the
first bifurcation, both appeared to have the same E value.

The most striking result of this work arises from the com-
parison of particle capture in the entire tree with particle
capture computed independently in single bifurcations. Specif-
ically, E in the whole four-generation tree was compared with
the product of the E values computed separately for the three
successive single bifurcations. The result is shown in Fig. 4, A
and B, which results in a simple, and therefore interesting,
answer: when plotted against the St of incoming particles, the
average E value of a four-generation tree remarkably fits the
product of E values for three successive bifurcation levels,
computed independently (Fig. 4A). All bifurcations can be thus
considered as identical units of particle capture, i.e., with the
same escape probability. This multiplicative behavior of E was
carried out for the same parameter values shown in Fig. 4A for
one seven-generation tree with six levels of bifurcations. The
same result was obtained and is shown in Fig. 4B: the E value
of the seven-generation tree can be considered as the product of
the E values of six individual and identical E values.

In other words, from a statistical point of view, the capture
process in a tree for a large population of particles can be seen

Fig. 1. A: cast of the human intermediate
bronchial tree (courtesy of E. R. Weibel).
B: geometrical model used for the numeri-
cal simulations (4 generations; hence, 3
successive bifurcations). C: the geometrical
parameters of the model geometry are the
diameter ratio (h) between successive gen-
erations, the branching angle (�), and the
azimuthal angle (�) between successive bi-
furcation planes.
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as a succession of independent trials at each bifurcation as the
population progresses in the more distal regions. This suggests
that, in the goal to understand only deposition, the geometry of
the bronchial tree should not be considered as an assembly of
successive branches (Fig. 5A) but as an assembly of successive
bifurcations (Fig. 5B). Such a multiplicative property has
already been used between different regions of the airway
system (nasal, larynx, upper bronchial tree, etc.) to model
deposition efficiency (13). The strong difference here is that we
show this multiplicative property also holds for successive
bifurcations within the airway tree. This allows us to pro-
pose a predictive probabilistic model from first principles,
fundamentally different from an a posteriori statistical de-
scription (22).

Note that the multiplicative property mentioned above has
been obtained for specific trees in which all bifurcations are
reduced copies of one bifurcation (e.g., same � and h) and for
a constant � of 90°. We now see that this multiplicative
property is robust in the sense that it holds for a very broad
class of bifurcations and tree morphologies.

Particle escape properties of a single bifurcation. Very
generally, the flow distribution in a bifurcation depends on the
bifurcation geometry (represented by the parameters h and �)
and on the Re that governs fluid dynamics. The particle
trajectories depend on the particle properties, mass (mp) and
possibly shape, through the drag force that characterizes the
interaction between the particles and flow. But when studying
C against one of these parameters, it seems difficult to sum-
marize the capture process into a simple law. If, however, E
across one single bifurcation is plotted against the St of the
incoming particles, then all curves almost collapse onto a
single curve for any values of Re (see Fig. 6). A slight
departure from the universal collapse can be observed for a Re
larger than a few hundreds. Indeed, for higher Re, the fluid
streamlines have higher curvatures that the particles cannot
follow. This consequently favors the capture by impaction in
the bifurcation and lowers the escape. Also, at higher Re, the
volume flow rate into the daughter tubes of a bifurcation may
not be the same.

The capture (or escape) process in a single bifurcation was
also observed to mostly depend on �. To show that, we
investigated the influence of the geometrical parameters � and
h on E of advected particles crossing the bifurcation. The
results are shown in Fig. 7A and demonstrate that h has a very
limited impact, whereas the results shown in Fig. 7B demon-
strate that � influences E only for particles of an initial St
between 0.1 and 10.

In summary, E of a single bifurcation is a function of the St
[E(St)] parameterized by � and h and is almost independent of
the Re. This function is the elementary building block that one
can now use to understand the capture process as a statistical
mechanism in the entire tree. In addition, note that, since E
across an individual bifurcation only depends on one side on
the St of the particles and on the other side on h and �, there is
no explicit dependency on the actual size of the bifurcation. It
means that two individual bifurcations of different sizes but
which are homothetic share the same escape function E(St).

Particle escape properties of a tree as a cascade process.
The multiplicative property exhibited in our first results (Fig.
4) suggests that each bifurcation captures particles indepen-

Fig. 2. A: capture rate versus log10(St), where St is the Stokes number, in a
four-generation tree for five values of the Reynolds number (Re). B: escape rate
versus log10(St) in the same tree for five values of the Re.

Fig. 3. Escape rates after the first and second bifurcation of a four-generation
tree and global escape rate. One can see that the escape rates of the first and
second bifurcation are identical.
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dently of the others for low Re. Identifying E across each
individual bifurcation as an escape probability, one can thus
compute the global E across the entire tree by simply multi-
plying the E values along each possible path, with all paths
being equally weighted since all bifurcations are symmetric.

One necessary condition for this multiplicative property to
hold is that �, which is the geometrical parameter connecting
one bifurcation to the next, plays a negligible role in the global
E. To test this hypothesis, E was computed for various values
of � between successive bifurcations. The result of these
simulations is shown in Fig. 8. The almost nearly identical
overlap of the curves, for any value of �, confirms that this
parameter had very little influence on the global E in the tree.
In other words, the capture process in the entire aerodynamic
tree can be effectively computed by knowing only E across
each elementary bifurcation.

Thus, the only remaining parameter needed to compute E of
a population of particles entering a bifurcation is its character-
istic St. A scaling relation of the St between two successive
generations i and i � 1 can be deduced from a simple flux
conservation equation. If ui and Di are the fluid velocity and
branch diameter at generation i, respectively, then the flux con-
servation is as follows: 2�Di�1

2 ui�1 � �Di
2ui, which means

that the fluid velocity scales from one generation to the next as
(2h2)	1 and that the St scales as (2h3)	1. Thus, the multipli-
cative property of E for a particle entering a three-bifurcation
tree with an entrance St (StE) is as follows:

Et�StE� � Eh1
�StE� 	 Eh2� StE

2h1
3� 	 Eh3� StE

4h1
3h2

3� (4)

where Et is the E value of the whole tree; h1, h2, and h3 are the
h values for the first, second, and third bifurcations; and Eh1

,
Eh2

, and Eh3
are the E values of each of these bifurcations. Once

again, these elementary E values depend, if only weakly, on h
and �. Note that the h value of each bifurcation appears in two
different ways in this equation: first, it influences, in a weak
manner, the function E(St) of the corresponding bifurcation,
and, second, more importantly, it modifies the St of the particle
before and after the bifurcation.

The result shown in Fig. 4 corresponds to a self-similar tree
of constant h (hc) � 2	1/3 
 0.79. In this very specific case, the
St remains constant along the tree and the multiplicative
relation (4) simply becomes E3 � E1

3 or, expressed in terms of
C, C3 � 1 	 (1 	 C1)3.

To test the robustness of the multiplicative property when h
values may vary in the tree, E was computed in a four-
generation tree in which the h values of the first, second, and
third generations were 0.79, 0.6, and 0.9, respectively. The
global E was then compared with the product of E values for
each generation, as expressed in Eq. 4. The good quantitative
agreement between both curves shows that the multiplicative
property also holds in this case (see Fig. 9).

A simple and universal model of capture, or escape, by
impaction. This robustness of the multiplicative mechanism
allows the formulation of a general analytic model for the
trapping of particles into a aerodynamic tree of N generations.
If one considers a tree in which the diameter ratio hi is given
for each generation, then E of particles entering this tree with
St may escape with a rate determined by the following:

Et�St� � �
i�1

N

Ei�Sti�1� with St0 � St and

Sti �
1

2hi
3 	 Sti�1

(5)

where Ei is the E value of the elementary bifurcations at each
generation. Ei depends on the St of the particle, h, and �, but
not on �. Ei also does not depend on Re except for Re larger
than a few hundreds, for which one has to apply a slight
correction. In the case of a true self-similar tree, i.e., when h is
identical for all generations, the global E is as follows:

Et�St� � �
i�1

N

E� St

�2h3�i� � E�St�

	 E� St

2h3� 	 E� St

4h6� 	 · · · 	 E� St

�2h3�N�1� (6)

Fig. 4. A: statistical independence of the capture rates at each bifurcation level
for a four-generation tree (3 successive bifurcation levels). The escape rate of
the total structure, plotted against the St of the particles at the entrance, was
almost equal to the escape rate of the entrance bifurcation multiplied by the
escape rate of one successive elementary bifurcation raised to the square
power. Although each particle may follow a complicated path, the global
capture phenomenon statistically appears as purely multiplicative. B: the same
result was obtained for a seven-generation tree.
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with the elementary E being a “S”-shaped function that de-
pends only on the geometry of the individual bifurcation.

In this model, all particles were assumed to be independent
and without interaction, which means that for a population of
two different particle types or sizes, the total C (resp. E) is
simply computed by adding the C values (resp. E) of each
separate type weighted by their proportion in the whole pop-
ulation. For a continuous distribution of particle sizes, the sum
is replaced by an integral.

A critical geometrical threshold for trapping particles. An
important consequence of this multiplicative behavior can be
deduced by noticing that in a self-similar tree of constant h
(hc), the St of a particle evolves in a monotonous way when
traveling deeper into the tree. The St will remain constant if h
is equal to the critical value hc 
 0.79; it will increase if h is
smaller and decrease if h is larger. Since the elementary
capture rate is an S-shaped function of St going from 1 at low
St to 0 at large St, it implies that, for a value of h larger than
hc, the E values will be closer and closer to 1 when going
deeper into the tree. In other words, it becomes easier and
easier for a particle to travel into the tree without being
captured: a particle having crossed the first generation would
be very likely to proceed until the end of the tree.

In contrast, if h is smaller than hc, the St increases from one
bifurcation to the next, and the E values become closer to 0 as
a particle enters the more distal regions of the tree. In other
terms, such a tree would filter all particles whatever their mass

Fig. 5. The airway tree seen as a series of
homothetic branches (A) or homothetic bifur-
cations (B).

Fig. 6. Escape rate in a single bifurcation as a function of the St of the
population of particles for different values of the Re. One can observe a clear
collapse onto one unique curve.

Fig. 7. A: escape rate of single bifurcation for various values of h. B: escape
rate of a single bifurcation for various values of �.
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or diameter: the mass and diameter would only determine at
which generation the particle is likely to be trapped.

This value hc thus constitutes a critical threshold that deter-
mines the filtering properties of the whole tree. Above hc, the
tree essentially filters the particles in the very first generations;
under hc, all generations of the tree filter smaller and smaller
particles so that an infinite tree would theoretically capture all
particles. This analysis is of particular interest in the case of the
human lung in the low or microgravity environments encoun-
tered in astronautical hygiene (8, 10). In Weibel’s symmetric
model, the human bronchial tree corresponds exactly to the
threshold value h � hc (33, 25). In this light, a population of
particles of a given St at the entrance of the trachea would have
the same C values at each generation of the tree. Consequently,
the number of particles captured would decrease exponentially
with the generation with a rate that would only depend on the
entrance St.

In fact, precise anatomic measurements of the human bron-
chial tree (33) have shown that h is not constant among
generations. A close examination of the data reveals that the
average diameter decreases more rapidly in the first genera-
tions (generations 1–5) and more slowly in the intermediate
bronchial tree (generations 6–16). This corresponds to h
smaller than hc in the upper bronchial tree and h larger than hc

in the intermediate tree. In other words, the St of the particles
increases at each bifurcation of the upper bronchial tree, which
leads to the capture of increasingly smaller particles. In con-
trast, the St steadily decreases from generation 6. This implies
that the particles that have reached generation 6 without being
captured are much more likely to proceed deeper and deeper
into the bronchial tree, eventually reaching the acinar regions.

Numerical computations using the cascade model described
in this report have been carried out for two models of the
tracheobronchial tree. The first model is the Weibel’s symmet-
ric tree depicted before (with constant scaling), and the second
model is a tree whose diameters are determined by actual
morphological measurements (33). The C values of a popula-
tion of particles have been calculated at each bifurcation level

as a function of the particle diameter, assuming a particle
density of 2 and an entrance air velocity of 1 m/s, correspond-
ing to a rest condition. The C values of the consecutive
bifurcations in Weibel’s A model showed that the capture
process repeatedly filters the same range of particle sizes,
capturing fewer and fewer particles when going deeper into the
lung (see Fig. 10A). On the other hand, in the case of the more
realistic tree, one can see that h values smaller than hc of the
first generations (generations 1–4) lead to an increased filter-
ing of smaller particles (see Fig. 10B). The comparison of both
C values (dotted line for the Weibel model and bold line for the
more realistic tree in Fig. 10B) showed that this increase of C
is particularly significant for particle diameters between 5 and
20 �m. The upper part of the bronchial tree thus appears as the
most efficient filtering portion of the entire bronchial tree.

DISCUSSION

At this point, we should make some comments about the
results presented in this report. One may question the origin of
this multiplicative behavior. To understand how this can hap-
pen, one has to recall that the St is the ratio of two quantities,
a typical transit time and a relaxation time, which characterizes
the duration it takes for a particle to adjust to the flow. Note
that particles that are close to the walls have a small velocity
and plenty of time to readjust to the flow. In this sense, their
capture is small since their “local” St is small. The impacting
particles are preferably those that have a large St because they
are massive and are at the center of the flow for geometrical
reasons. Those particles that escape were initially at the center
of the flow and are those that have a short relaxation time, are
at the end of a daughter branch, and are more adjusted to the
local velocity. In other words, those particles that have escaped
are in a situation similar to those that were captured before.
This is why the memory of previous captures is lost from a
statistical point of view and the capture processes in consecu-
tive bifurcations are independent (32).

Fig. 8. Robustness of the multiplicative hypothesis: capture rate in a four-
generation aerodynamic tree for three different values of � (angle between the
planes of two successive bifurcations). The capture rate was almost indepen-
dent of this angle.

Fig. 9. Escape rates in a tree of varying h values. The h values between
generations 1 and 0 (h1), generations 2 and 1 (h2), and generation 3 and 2 (h3)
were 0.79, 0.6, and 0.9, respectively. The total escape rate of the whole tree,
for any St, was still almost equal to the product of the escape rates of the
individual bifurcations corresponding to h1, h2, and h3 (E1, E2, and E3,
respectively; see Eq. 6).
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Another important fact is that we can assume flow unifor-
mity in most of the airways. In fact, for Re between 50 and 100,
the entrance length divided by the tube diameter (Le/D) is about
0.03Re to 0.06Re, depending on the desired tolerance (12, 19).
Using a value of 0.03, this translates into Le � 3D, which is
shorter than the airway. For Re values smaller than 50, Le/D is
�1.5. Therefore, in a fully developed, parabolic profile, flow
is established repetitively at successive generations. Also, the
division of the flow in a symmetric branched structure has been
shown to be equal for Re values of �200 (1, 34).

Role of gravity and diffusion. To establish the multiplicative
property of the escape process, we have until now considered
particles subject only to their inertia and to the drag force
exerted by the fluid. Although capture by impaction often
represents a very large fraction of the particles trapped into the

lung, this model does not account for the trapping of heavy
particles due to sedimentation or the trapping of very small
particles in which diffusion plays an essential role. We now
examine the respective roles played by gravity and particle
diffusion in the capture process.

Gravity modifies the motion of a particle by introducing a

constant acceleration term �g
¡

� in Eq. 3, as follows

m
du

¡
p

dt
� �3��dp��u

¡
� u

¡
p� � mg

¡
(7)

To compare the respective influences of the drag force and
gravity in the impaction process, we computed the typical
sedimentation time for a particle falling from the center of a
branch of diameter D. Gravity was assumed perpendicular to
the axis (Ox) of the branch, which corresponds to the case
where its influence is maximal. Along the perpendicular direc-
tion (Oy), Eq. 7 becomes:

mÿp � ��3��dp�ẏp � mg or �ÿp � � ẏp � g�

with � �
m

3��dp
�

1

18

dp
2�p

�

(8)

Equation 8 reaches constant velocity within milliseconds.
Therefore, the motion induced by gravity is essentially a fall at
constant velocity g� with a typical impaction time (tI) �
D/(2g�). Since the typical transit time of any particle along the
branch (tT) � L/u � 3D/u, gravity can be neglected for the
most part if tI � tT. This condition can be expressed in terms
of the dimensionless parameters of the problem Re � uD/v and
St � �u/D as follows:

tT �
3D2

vRe
�� t1 �

u

2gSt

�
vRe

2gDSt
or

Re2

6St


gD3

v2 � Ga
(9)

The righthand side of the last inequality is the Galilei number
(Ga), which is proportional to gravity forces divided by vis-
cous forces. The Ga decreases when going down the tree from
Ga � 2.5.105 in the trachea to �5 in the last transitional
bronchioles (around generation 15). Therefore, viscous forces
are predominant to understand impaction when:

6StGa

Re2 �� 1 (10)

For a self-similar tree of constant h, the scaling factors of Re,
St, and Ga are 1/(2h), 1/(2h3), and h3, respectively.

Figure 11A shows the values of Re in the canonic tree (h �
0.79) for two breathing conditions: rest (flow rate: 250 ml/s)
and intense exercise (flow rate: 2,500 ml/s). One can see that
the condition of relatively low Re (Re 
 200) is fulfilled distal
to generations 3–4 at rest and distal to generation 8 at exercise,
respectively. Note that for very quiet breathing (27), smaller
flow rates would expand the domain of validity of this condi-
tion.

Figure 11B shows a plot of the values of (6StGa)/Re2 against
the generation number for two different particle diameters (10
and 30 �m) and the two different breathing flow rates. If we
assume of tolerance of 0.3 for this criterion, we are constrained

Fig. 10. Capture rates as a function of particle diameter in 2 different
tracheobronchial trees of 15 generations computed by the cascade model
described in this report. The particle density was taken as equal to 2 and the
entrance air velocity in the trachea was 1 m/s (rest condition). A: capture rates
after each bifurcation for a tree of constant scaling (h � 2	1/3), corresponding
to Weibel’s “A” model. The dotted line represents the total capture rate in the
same tree. B: capture rates in a tree modeled using morphological measure-
ments of average bronchial diameters (33). The thick line represents the total
capture rate in this tree, whereas the dotted line corresponds to Weibel’s A
model. The first generations (generations 1–5) of the realistic tree capture
many more particles of diameters ranging between 5 and 20 �m, thus acting
as a “filter” at the entrance of the tracheobronchial tree.
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to be beyond generation 3 at rest (flow rate: 250 ml/s), and our
assumption is not valid for the 30-�m particle, whereas it is
valid up to generation 12 for the 10-�m particle (Fig. 11).
Therefore, our model is accurate for the 10-�m particle for a
range of eight to nine generations. At exercise (flow rate: 2,500

Fig. 11. Influence of gravity effects. A: Re in the canonic self-similar tree for
two different breathing conditions: at rest (flow rate: 250 ml/s) and at exercise
(2,500 ml/s). The horizontal line shows the approximate upper value above
which flow uniformity is not satisfied. B: ratio between gravity and viscous
effects. When this number is larger than 1, gravity effects are predominant in
the understanding of the impaction mechanism in the tree. One can see that
gravity is predominant only for large particles (�30 �m) at rest. The horizontal
line shows the upper limit above which one cannot neglect gravity.

Fig. 12. Influence of gravity effects. A: comparison between deposition
efficiencies of aerosol particles without or with gravity. Computations were
performed on a four-generation tree between generations 9 and 13. Re � 100.
One can see that the deposition efficiencies are very similar up to a size of �8
�m. B: particle trajectories for 4-�m particles without C: particle trajectories
for 4-�m particles with gravity.
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ml/s), the range of validity of our model is from generation 8
to generation 12 for the 30-�m particle and from generation 8
to the end of the tracheobronchial tree for the 10-�m particle
(a minimum range of 8 generations). Therefore, one can
observe that the viscous forces are in most cases predominant
over gravity except for the largest particle (30 �m diameter) at
rest. Moreover, such a particle would have a St value very close
to 1 and thus would be already trapped by inertial impaction in
the very first generations of the branching tree.

As an example, numerical simulations are presented for a
four-generation canonical tree with an entrance diameter of �2
mm. Such a tree corresponds on average to generation 9-13 in
Weibel’s model. Deposition efficiencies were computed for
particle sizes in the range of 0.1 �m–10 �m, which are the
typical aerosol sizes used in systemic delivery. Moreover,
much larger particles would be very unlikely to be found at this
depth of the tracheobronchial tree. The aerodynamic flow has
a Re of 100. Figure 12A shows a comparison of deposition
efficiencies without or with gravity. In the second case, the
deposition efficiencies were averaged on four different possible
directions of gravity. One can observe the very close similarity
of both curves up to �8 �m. Figure 12B and 12C show
particle trajectories without or with gravity. One cannot
observe any noticeable difference. However, gravity cer-
tainly plays a role in general in the deposition process, and
future studies should investigate how it can be included in
the multiplicative behavior observed in the absence of
gravity.

The case of diffusion is very different. Diffusion is a
stochastic motion that plays a role only for smaller particles
(�0.1 �m diameter and smaller). Moreover, diffusion is a
Markov process that is without memory. Its contribution to
deposition is, by essence, independent between successive
generations. Therefore, one can add diffusion to our model
without breaking its multiplicative property, which is its
core property.

Finally, our model does not account for the nonstationary
effects that occur, for example, during the flow reversal be-
tween inspiration and expiration (4).

The multiplicative model allowed us to predict from first
principles the deposition efficiency in the lung in a broad
range of generations for various particle sizes and breathing
conditions. This can be of practical use especially in the
more distal regions of the tracheobronchial tree (generations
7–17) when geometrical and anatomic measurements are
scarce or only consist of statistical data (11) although
modeling of the behavior of very fine particles (smaller than
0.1 �m) still requires the inclusion of diffusion. A system-
atic, predictive, and probabilistic approach could thus be a
useful substitute to computational fluid dynamic approaches
in these regions to obtain a first estimate of the deposition
efficiency with a minimal computation time. One can, for
example, consider hybrid simulations in which the deposi-
tion would be computed through computational fluid dy-
namic simulations in the upper bronchial tree and then
provide the data of the population of particles as an input to
our probabilistic model.

Finally, this multiplicative model should be seen as a
fundamental template of the escape (or capture) process in a
tree. It allows us more generally to disentangle in real
structures the small contributions due to the details of the

geometry and the specific conditions from the main back-
ground process. In that sense, it must not be considered as an
alternative to detailed simulations in anatomically based struc-
tures but used as a fundamental statistical tool hand in hand
with, possibly, patient-based approaches.

Conclusions. The capture of particles transported by ad-
vection into an aerodynamic flow in a branched tree struc-
ture is usually seen as a very complex problem. Neverthe-
less, if considered statistically, this phenomenon obeys in
first approximation a very simple rule: the capture in each
generation is almost independent of the other generations.
For a given generation, it is essentially driven by the St of
the particles at that generation. In this context, the capture in
a tree appears as a cascade process in which the number of
particles captured by the structure can then be directly
estimated by simply multiplying the E values of each
generation. These E values directly depend on the local St of
the particles at each generation, which, for a tree, can in turn
be expressed in terms of the St at the tree entrance and of the
h values of the geometry from one generation to the next.
Applying these results to simplified models of the human
lung, we predict that particles are either deposited in the
upper bronchial tree or reach the deepest acinar regions of
the respiratory system. More generally, our results indicate
that particle deposition in the entire intermediate bronchial
tree can be understood through the successive computation
of trapping in successive bifurcations, each being done in a
realistic detailed geometry, a feasible goal.
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