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Most of the studies on optimal transport are done for steady state regime conditions. Yet, there exists
numerous examples in living systems where supply tree networks have to deliver products in a limited
time due to the pulsatile character of the flow, as it is the case for mammalian respiration. We report here
that introducing a systematic branching asymmetry allows the tree to reduce the average delivery time of
the products. It simultaneously increases its robustness against the inevitable variability of sizes related to
morphogenesis. We then apply this approach to the human tracheobronchial tree. We show that in this case
all extremities are supplied with fresh air, provided that the asymmetry is smaller than a critical threshold
which happens to match the asymmetry measured in the human lung. This could indicate that the structure
is tuned at the maximum asymmetry level that allows the lung to feed all terminal units with fresh air.
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Branched transportation networks are ubiquitous in liv-
ing systems. Such trees have been suggested to allow
efficient feeding of the body volume from a small source,
the aorta for blood or the mouth for oxygen [1-7].
For example, the human tracheobronchial tree brings fresh
air to the oxygen-blood exchange units, called the acini,
that fill the majority of the volume of the thoracic cage [1].

In the general perspective of how statistical physics may
help to better understand the relation between structure and
physiological function, we focus here on pulsatile trees in
which the delivery of products has to be achieved in a
limited time. For example in mammalian respiration, the
respiratory cycle is made in two successive steps, inspira-
tion and expiration. The period of this cycle is about
5 seconds for humans at rest (2 s for inspiration, 3 s for
expiration). And of course, the transit time from the mouth
to the acini has to be short enough so that expiration does
not start before the arrival of fresh air into the acini. The
present work analyzes the possible statistical constraints
related to this last condition.

From the point of view of ventilation, the conducting
airway system can be modeled as an arrangement of pipes
defined by their diameter and length. The branchings are
essentially dichotomous, each airway being divided into
two smaller daughter airways. A branching defines the
beginning of a new generation. The tracheobronchial tree
starts at the trachea (generation 0) and ends in the terminal
bronchioles (around generation 15) at the entrance of the
acini [1]. Since no gas exchanges take place in the trache-
obronchial tree, its volume is referred to as the dead space
volume (DSV). Its value is around 170 ml in the human
lung [8]. To better understand human respiration in relation
with the tree structure, we discuss successively the general
properties of two models, respectively symmetric and
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asymmetric, before discussing the real human airway
system.

The first model has symmetrical branching. Although
the human airway system is both nonsymmetric and ex-
hibits some type of randomness, a fundamental step in
describing its morphology has been the introduction of
the so called Weibel’s “A” model [1]. In this first model,
the tree is likened to a hierarchical network of cylindrical
pipes with symmetrical branching and a uniform scaling
ratio sip = 271/3 = (.79 between the airway sizes of con-
secutive generations. This value corresponds to the classi-
cal Murray-Hess law [9,10] for which the diameter of the
mother branch d, and the diameters of both daughter
branches d; and d, are linked by the relationship
&= dd + .

An important second step in modeling the human lung
morphology has been the introduction from anatomical
studies of a systematic asymmetry [11-15]. This is the
second model studied in this Letter. The branching asym-
metry is characterized by two different scaling ratios,
homax = 0.88 and A, = 0.68 [15]. Each parent airway
gives rise to a larger daughter airway (the major airway)
and a smaller daughter airway (the minor airway). Note
that (0.88)3 + (0.68)> =1 so that the asymmetric tree
respects the above dissipation requirement. And so, the
Weibel’s A model is the exact symmetrization of the real
asymmetric structure.

Those are the two models to be compared, including the
possible role of a statistical noise associated to anatomical
variability. Note that two different types of structural ran-
domness can appear in these models: the first source of
disorder, due to the systematic branching asymmetry,
is found in the random succession of large and small air-
ways along any given airway path. The second type of
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disorder (the variability) results from the statistical noise of
the biological growth process [8] and spreads the distribu-
tion of the branch sizes at a given generation even in the
symmetric model.

The criterion that will be used in the following to
quantify the delivery performance of the tree is the distri-
bution of oxygenation times of fresh air into the acini. The
oxygenation time in one acinus is obtained by subtracting
from the total duration of the inspiratory phase, t;,,, the
time spent in the extrathoracic airways, 7. (approximately
constant and equal to 0.47 s at rest [16]), and the transit
time from the trachea to this acinus, f,:

Tox = ling = lext — Iy

The performances of symmetric and asymmetric trees
have been computed on 15-generation trees. The geomet-
rical parameters used in our computations, are summarized
in Table I. These are the scaling ratios at each generation
and the length to diameter ratio for each generation. It has
to be noted that the values of the dead space volumes are
kept almost similar. Because of the uniform motion of the
thoracic cage, each acinus is assumed to act as a hydro-
dynamic pump draining the same flux. In other terms, the
gas exchange units are equitably ventilated [17]. As a
consequence, starting from the bottom of the tree, any
two daughters of a given mother branch create, indepen-
dently of their sizes, the same additive flux in their mother
branch. The time spent in a branch is then directly obtained
from the flux and the branch size. Thus, in both laminar and
turbulent regimes, the transit time across the tree is deter-
mined by the flux prescribed in the acini only. In the
inspiratory phase studied here, the total flow can be con-
sidered approximately constant in time with a velocity in
the trachea of about 1 m/s [8]. Since the duration of the
inspiration f,,, and the time spent in the extrathoracic air-
ways f.,, are the same for all acini, the oxygenation times
in the acini are thus entirely determined by the transit times
of fresh air from the trachea to the terminal bronchioles.

Figure 1 shows the distribution of the acini oxygenation
times for both models. The distribution for the symmetric
tree trivially presents a single peak at r = 0.67 s as all
pathways from the trachea to a terminal bronchiole are
identical. The distribution of oxygenation times for the
asymmetric tree is spread around a mean value of 0.82 s
and has a standard deviation of 0.43 s. Therefore, on
average, fresh air arrives slightly sooner and remains lon-
ger in acini supplied by an asymmetric tracheobronchial

TABLE I. Model parameters
Model Scaling ratio for D Ratio L/D * DSV (ml)
Symmetric hy =271/ 3.00 220
Asymmetric homin = 0.68 3.00 213

homax = 0.88

4D and L: diameter and length of the airway.

tree than by a symmetric one. (Such an asymmetric tree
structure can be described as multifractal [18,19].)

We now study how the performances of these tree struc-
tures are robust or not with respect to anatomical varia-
bility. To mimic this variability, we introduce a “‘growth
noise” by adding Gaussian variations of the scaling ratios.
At each branching, the values of the scaling ratios are
modified to become random variables:

+ hj

0,min

)

= )3

hin = hO,min + oX, hr3nax + h? 0,max

min

X being a centered Gaussian random variable of standard
deviation 1. The mean values hg,;, and hg ., of these
random variables correspond to the values given in Table 1.
Scaling ratios of different bifurcations are assumed to be
independent random variables while in the same branch-
ing, scaling ratios h;, and h,,,, are anticorrelated. This
means that if the random variable for &, take a larger
(resp. smaller) value than its mean value, then A, is very
likely to take a smaller (resp. larger) value than its mean
value.

The results are shown in Fig. 2 which displays the
distributions of oxygenation times for both symmetric
and asymmetric trees with randomized scaling ratios
(o = 0.05). The distribution for the symmetric tree is
now also spread, with an average oxygenation time of
0.67 s and a standard deviation of 0.32 s. Unlike the sym-
metric case, the distribution in the asymmetric model is not
modified by the randomization of the scaling ratios (mean
value of 0.82 s and standard deviation of 0.44 s). The
delivery of products through a dichotomous tree of constant
depth thus appears to be more efficient both for average
oxygenation time and immunity versus growth fluctuations.

So far, the two model trees that were considered had an
equal number of generations for all pathways. In fact, the
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FIG. 1. Distribution of oxygenation times in the acini for both
symmetric (gray) and asymmetric (black) trees. All the pathways
have the same transit times in the symmetric case, hence a single
peak distribution of oxygenation times at 0.67 s. In the asym-
metric case the distribution is spread with a mean value about
0.82 s and a standard deviation of 0.43 s.
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FIG. 2. Distribution of oxygenation times with randomized
scaling ratios according to Eq. (2): symmetric tree in gray and
asymmetric tree in black. The oxygenation times are spread in
the symmetric case, but the distribution is shifted towards
smaller oxygenation times. The distribution for the asymmetric
tree is not modified by randomization.

real human tracheobronchial tree is even more complex
because not only the branchings are asymmetric but also
the number of generations is not uniform [11,12,14]. The
human tracheobronchial tree does not end at a constant
generation but more at a constant airway diameter, that of
the terminal bronchioles, around 0.5 mm [8,17]. The ter-
minal generations of the tree range from 8 to 22 [11] and
the length of the airways in the first generations also
exhibits specific features linked to anatomical constraints
[1,12,20]. The diameter scaling ratios are kept equal to 0.68
and 0.88 for all generations. The aspect ratios (length over
diameter) are specific for the first 4 generations
(respectively equal to 3.07, 1.75, 1.43, and 1.85) and equal
to 3.00 for higher generations (generations 5 to 22). With
these parameters, the distribution of oxygenation times for
the real human tree (not shown here) is found to have
an average oxygenation time of 0.67 s and a standard
deviation of 0.13 s.

The asymmetry level, namely hg,.x = 0.88 and
homin = 0.68, used in the above computations was consid-
ered as a given fact drawn from anatomical measurements.
It is a natural question to ask for a reason for such values.
For obvious reasons, the branching asymmetry cannot be
too strong because it would lead to a structure with only
very few wide pathways surrounded by a large number of
much narrower pathways with large hydrodynamic resis-
tances. Moreover, due to flux conservation, the wider path-
ways correspond to larger transit times. If the asymmetry
level were too large, a number of extremities would not be
supplied with fresh air because the transit time in their
pathway would be too long. We will now investigate the
influence of the asymmetry level on the acini oxygenation.
The question that naturally arises is thus the following:
How much asymmetry can there be? In other words, can
one define an optimal asymmetry level?

In order to investigate this question, trees of different
asymmetry levels have been studied. In this study,

the asymmetry level is characterized by one parameter «
such that:
B3 pax = M1+ @), h}

0,max 0,min

=1 -a). (2

The scaling ratios 0.88 and 0.68 as measured in the human
tracheobronchial tree would for instance correspond to an
asymmetry level of 36% (a = 0.36). All computed trees
are conditioned to have the same thoracic volume (dead
space volume + acini volume) and the aspect ratios L/D
given above. Considering that fresh air has to remain at
least 0.3 s in the acinar region in order to achieve the gas
exchange process (a duration consistent with computations
of the dynamical diffusion oxygen transport in the acinus
[21]), we have computed for each asymmetry level the
proportion of acini with an oxygenation time larger than
0.3 s. This corresponds to a total transit time from the
mouth to the terminal bronchiole smaller than 1.7 s.
Results are presented in Fig. 3. The proportion of acini
fed with fresh air for more than 0.3 s is 100% for the
symmetric tree (zero asymmetry level) and remains
100% until a threshold value of the asymmetry level. As
one can see on Fig. 3, this threshold value is about 35%,
almost identical to the value measured in the human tra-
cheobronchial tree.

So it seems that the systematic asymmetry found in the
tracheobronchial tree corresponds to the maximum value
that allows the tree to feed all acini. There are several
advantages to such a structure: 100% of the acini receive
fresh air, and the distribution of the ventilated volumes is
robust against anatomical variability. Also, the spread dis-
tribution of arrival times in the exchange units may con-
tribute to smoothen the oxygen delivery to the blood. On
the other hand, due to this distribution of transit times, all
acini do not receive the same volume of fresh air. Even if
all acini receive the same flux, the unevenness of branching
creates an inhomogeneity of the volumes of supplied fresh
air that multiplicatively increases at each generation. In the
limit of an infinite tree, this would mathematically lead to a
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FIG. 3 (color online). Proportion of inactive acini (with oxy-
genation time smaller than 0.3 s) as a function of the asymmetry
level . All acini are found to be active provided that the
asymmetry level is below « = 35%. This value almost exactly
corresponds to the measured asymmetry level in the human
lung (36%).
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FIG. 4 (color). 2D representation of the distribution of vol-
umes of fresh air delivered at generation 10 in the human
tracheobronchial tree (parameters described in the text).

multifractal distribution of the volume of fresh air deliv-
ered in the extremities [22]. This pre-multifractal behavior
can be observed in Fig. 4 which shows a 2D representation
of the distribution of volumes of fresh air delivered at
generation 10. One observes a wide spread of the distribu-
tion of fresh air volumes. This could indicate that a dy-
namical regulation of airway diameters might be necessary
to minimize such effects, as already suggested to fight
inertial effects in the upper part of the airway tree [23].
Note that the spread in the distribution of external gas in
the acini would also induce an inherent noise in NMR
imaging of the lung.

In summary, numerical computations show that sym-
metric branching trees are not optimal to supply a volume
when a constraint of limited delivery time is imposed. For
trees of uniform depth, the average transit time is found to
be smaller when the branching is asymmetric rather than
symmetric. Moreover, the distribution of oxygenation
times in the acini of the asymmetric tree is almost not
modified by a stochastic variability of the sizes of the
branches. This approach is then extended to the study of
the role of variable asymmetry in trees, with the same
trachea, the same ratio length over diameter, the same
diameter of the terminal bronchioles and the same inner
volume. It is shown then that there exists a maximum
asymmetry level above which the number of terminal units,
or acini, supplied with fresh air, departs from 100%.
Interestingly, this maximum value almost exactly corre-
sponds to the asymmetry level measured in the human
lung. The geometry of the lung airways thus appears as if
being adjusted to have the largest possible branching asym-
metry, while still being able to feed efficiently all acini
with fresh air. It may be considered as remarkable that an
asymmetric tree works better and that the natural selection
of mammals seems to have found a level of asymmetry that
can be considered as best from the physical point of view.
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