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Reaching the precision limit with tensor-
based wavefront shaping

Rodrigo Gutiérrez-Cuevas 1 , Dorian Bouchet 2, Julien de Rosny1 &
Sébastien M. Popoff 1

Perturbations in complex media, due to their own dynamical evolution or to
external effects, are often seen as detrimental. Therefore, a common strategy,
especially for telecommunication and imaging applications, is to limit the
sensitivity to those perturbations in order to avoid them. Here, instead, we
consider enhancing the interaction between light and perturbations to pro-
duce the largest change in the output intensity distribution. Our work hinges
on the use of tensor-based techniques, presently at the forefront of machine
learning explorations, to study intensity-based measurements where its
quadratic relationship to the field prevents the use of standard matrix meth-
ods. With this tensor-based framework, we can identify the maximum-
information intensity channel which maximizes the change in its output
intensity distribution and the Fisher information encoded in it about a given
perturbation. We further demonstrate experimentally its superiority for
robust and precise sensing applications. Additionally, we derive the appro-
priate strategy to reach the precision limit for intensity-based measurements,
leading to an increase in Fisher information by more than four orders of
magnitude compared to the mean for random wavefronts when measured
with the pixels of a camera.

When light propagates through complex media, such as biological
tissue, paint, clouds or even multimode fibers (MMFs), it is mixed into
a high number of degrees of freedom leading to the observation of a
seemingly random speckle pattern at the output1,2, and limiting the
information that can be transferred through them3–5.While the process
leading to the generation of this intricate interference pattern is
complex, owing to the deterministic and linear nature of the propa-
gation of light in suchmedia, the response of the system between a set
of input and output modes is fully represented by a single matrix H.
This matrix usually corresponds to the scattering matrix or part of it,
such as the transmission or reflection matrices. While its derivation
from analytical or numerical models is highly challenging and often
impossible, experimentally, it can be measured via wavefront-shaping
techniques6,7. This matrix gives us full knowledge over the wave pro-
pagation, thus enabling many applications in imaging2,8–11, quantum

information12, among many others1,2,13. However, the dynamics of the
system or external actions introduce perturbations into the known
configuration, rendering our previous knowledge approximate at best.
For applications in telecommunications and imaging, the detrimental
effect of this perturbation can be bypassed by finding a set of channels
that are insensitive to it14–20. When the changes depend on a single
parameter ζ these channels can be identified as generalized principal
modes which are insensitive to first-order variations of ζ 15–17,19,21–23.

Nonetheless, in certain scenarios, the objective may shift from
mitigating the impacts of perturbations towards actively enhancing
them. This is the case, for example, when we want to use the output
light for sensing applications23–29, where it is possible to use wavefront
shaping techniques to increase the interaction between the propa-
gating light and the parameter of interest ζ. The enhanced interaction
causes the output field to become more sensitive to perturbations
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induced by small changes of the parameter and to carry more infor-
mation about it, usually quantified by the Fisher information J . This
increase in information allows for improved precisionwhen estimating
small changes in ζ, according to the Cramér–Rao bound, which states
that the variance of the estimation σ2

ζ will be larger or equal to the
reciprocal of the Fisher information, i.e. σ2

ζ ≥J �130,31. More general
bounds have been derived for cases with limited resources, see e.g.
refs. 32–34, but here we use the Cramér-Rao bound, which is easy to
calculate and asymptotically reachable.

Whenoneuses anexternal reference to access both the amplitude
and phase of the output field, the channel maximizing the Fisher
information carries almost all the information in its global phase23. This
presents a significant constraint, since phase measurements in optics
are highly susceptible to noise, and require a level of stability usually
only available in laboratory conditions, making such an approach less
suitable for real-life implementations. In comparison, protocols based
on intensity measurements are quite robust and therefore broadly
applicable26–29. In particular, the spatial information concealed within
the speckle pattern of the light coming out of a complex medium has
been exploited to develop a wide range of specklegram sensing
devices26–29. However, the identification of the channel maximizing the
information carried by its output intensity distribution, and the strat-

egy allowing to reach the precision limit remain unsolved. This is in
part due to the fact that the relation between the input field and the
output intensity distribution is not linear, but rather quadratic which
prevents the use of standard matrix methods.

To solve these problems, we exploit the versatility of higher-order
tensors to describe the quadratic relationship between the input field
and its output spatial intensity distribution. We use this tensor-based
framework to study three practical configurations for robust intensity-
based sensing applications: first, when we only have control over the
input wavefront for a fixed detection scheme at the distal end of the
fiber; second, when controlling the projection of the outgoing field on
the distal end for a fixed arbitrary input; and third, when controlling
both the input wavefront and the output projections. In particular, we
experimentally study the case of an MMF which is perturbed by
pressing down on it transversally with a motorized actuator as exem-
plified in Fig. 1a. The parameter ζ represents the linear displacement of
the actuator and H the transmission matrix (TM) between M input
modes formed by the 144 modes of the fiber (see Methods for more
details), and a set of N output modes, such as the pixels of a camera.
With this implementationwe are able to demonstrate an enhancement
in the Fisher information bymore than four orders ofmagnitudewhen
using the optimal input-output configuration.
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Fig. 1 | Sensitivity to perturbations. a Change on the output intensity distribution
induced by a local deformation on a multimode fiber. b Fisher information in the
pixel basis for random inputs (where the line denotes the mean value for one-
thousand states and the shaded region the range obtained), the fibermodes (where
the dotted line marks the maximum value), the third-order input singular vectors
(ISVs) (where the dashed line marks the maximum value), and the maximum-

information intensity channel (MIIC). c Intensity change over large deformations
for the samemodes as in (b). For the random inputs, the fibermodes and the third-
order ISVs the shaded region indicates the range of values. d Output intensity
distribution for theMIIC, themost sensitive third-order ISV, themost sensitive fiber
mode, as well as a random input for the reference deformation Δζ =0 μm and a
large deformation for which Δζ = 25 μm.
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Results
Optimizing the input field
Intuitively, the Fisher information carried by the output intensity dis-
tribution, under the assumption of Gaussian noise with a known
standard deviation σ, is given by the change of the output intensity
produced by first-order variations in ζ,

J ðζ Þ= 1
σ2

XN

i = 1

∂ζ Ii
� �2, ð1Þ

where Ii = jeðoutÞi j2 is the intensity measured at the ith output mode.
Therefore, to determine the maximum-information intensity channel
(MIIC), that is, the one maximizing the Fisher information, we need to
find the input field e(in) that leads to the largest variations in output
intensity distribution for small changes in the deformation ζ. Note that
the assumption of Gaussian noise is quite general encompassing all
systems for which the noise fluctuations are dominated by dark and
readout noise.

Given the nonlinear dependence of the Fisher information on the
input field, onemay think that there is no other choice than to cast this
problem as a standard nonlinear optimization problem18,35–38. Never-
theless, rewriting the Fisher information in terms of the input field and
TM as

J ðζ Þ= 1
σ2

XN

i = 1

X
jk

Wð3Þ*
ijk eðinÞj eðinÞ�k

0
@

1
A

2

, ð2Þ

allows codifying the nonlinear relation between the input field and the
changes in the output intensity distribution induced by changes in ζ
into the third-order tensor Wð3Þ, defined component-wise as
Wð3Þ

ijk =∂ζ ðH�
ijHik Þ where Hij are the components of the matrix H.

Furthermore, as demonstrated in Section 1 of the Supplementary
Information, for a fixed set of output modes (such as the pixels of a
camera) it is possible to rewrite the maximization of the Fisher
information as a best rank-one approximation ofWð3Þ39,40,

maxeðinÞJ ðζ Þ= 1
σ2 maxu,vhWð3Þ,u� v� v*i2: ð3Þ

The right-hand side is given by the inner product between the third-
order tensor Wð3Þ, and the rank-one third-order tensor u⊗ v⊗ v*

with⊗denoting the outer product. Note that the optimizations are
subject to the normalization constraints ∥e(in)∥ = ∥u∥ = ∥v∥ = 1 which fix
the total number of input photons. Therefore, in order to determine
theMIICwe need to find the set of three vectors that best approximate
Wð3Þ, in the sense that they minimize the sum of the squared
differences between their components.

Equation (3) shows that higher-order tensors can provide fresh
perspectives in tackling intricate and nonlinear challenges39–47. Indeed,
they allow drawing a clear parallel with optimizations of linear systems
which can often be cast as best rank-one approximations of matrices
whose solution is simply obtained by computing the singular-value
decomposition (SVD) and taking the outer product of the first pair of
singular vectors15–17,19,20,23. In nonlinear cases, however, weneed to solve
the equivalent problem for higher-order tensors which is not a simple
task. Nonetheless, a step in the right direction can be taken by per-
forming the higher-order singular value decomposition (HOSVD)39,43,44.
This generalization of the matrix SVD allows decomposing a higher-
order tensor in terms of a sum of rank-one tensors composed of
higher-order singular vectors which form orthonormal bases for their

respective spaces. Specifically, for the third-order tensorWð3Þ wehave

Wð3Þ =
XN

i

XM

jk

Sð3Þ
ijku

ð3Þ
i � vð3Þ

j � vð3Þ �k ð4Þ

inwhich the third-order singular vectors,uð3Þ
i and vð3Þj , identify themain

components of the Wð3Þ, and Sð3Þ is known as the core tensor, which
plays the role of the singular values for matrices and satisfies an
ordering property that generally arranges the third-order singular
vectors from the most to the least relevant (see Section 2 of the
Supplementary Information and Ref. 39,43,44 for more details).
Therefore, the first third-order input singular vectors (ISVs), vð3Þk ,
correspond to input fields that are highly sensitive to changes in ζ.
Moreover, one big advantage of the HOSVD is that it can be computed
in a straight forward manner in terms of SVDs of different rearrange-
ments of the tensor into matrices39,43,44.

Hence, to find the third-order ISVs of Wð3Þ we first need to con-
struct this tensor. This is done by performing twomeasurements ofH,
using the pixels of a camera asoutputmodes, around a reference value
ζ = ζ (i) for the deformation. With these twomeasurementsWð3Þ can be
constructed by approximating the derivativewith respect to ζ viafinite
differences (see Methods for more details about the experimental
implementation). Then, its HOSVD can be computed.

In Fig. 1b we compare the values of the Fisher information
obtained for the third-order ISVs with those obtained when using the
fiber modes and one-thousand randomwavefronts as inputs. It can be
seen that the Fisher information for the first third-order ISVs is above
all the values obtained with the fiber modes and random wavefronts,
and with the maximum value being an order of magnitude larger the
maximum value attained for a random wavefront. Therefore, the
HOSVD immediately provides uswith a set ofmodes generally ordered
from the one with the largest Fisher information to the smallest, and
with the first ones being highly sensitive to the perturbation. Note,
however, that the ordering is not strict, which is a well-known feature
of the HOSVD. This difference with the matrix SVD stems from the
choice that needs to be made for higher-order tensors between a
diagonal or orthogonal decomposition, as it is generally not possible
to have both39,43,44.

One of the main differences between the HOSVD and the SVD is
that the first singular vectors do not immediately provide us with the
best rank-one approximation. Nonetheless, they form a reasonably
good first guess that canbe used as a seed for amodified version of the
iterative alternating-least squares algorithm39,40 to determine the best
rank-one approximation. In this algorithm, we iterate over the vectors
forming the best-rank one approximation and solve the least-squares
problem resulting from leaving the other vectors fixed. This iterative
procedure is simple to implement and relies solely on standardmatrix
operations (seeMethods for details). This allowsus to identify theMIIC
which provides a two order of magnitude boost in Fisher information
with respect to an average random wavefront, as shown in Fig. 1b.

It is also worth noting that, as seen in Fig. 1c, both the third-order
ISVs and the MIIC maintain their high sensitivity over a large range of
deformations. Likewise, in Section 5 of the Supplementary Informa-
tion, we show that they also keep their sensitivity if the deformation is
slightly displaced along the fiber’s length. However, by looking at the
intensity distributions in Fig. 1d, it can be seen that their behavior is
quite different. For the most sensitive third-order ISV, we get an
intensity distribution that is fairly distributed throughout the pixels of
the camera. Under the effect of the deformation, this intensity is
redistributed towards neighboring pixels thus keeping a fairly dis-
tributed pattern. In contrast, the intensity distribution of the MIIC is
mostly localized around a focal spot. This optimal distribution allows
concentrating themaximumamountof information across a fewpixels
in order to increase the signal-to-noise ratio (SNR). The main effect of
the deformation on this distribution is to dim the focal spot by
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redistributing the energy to other areas. This local change in intensity
of the focal spot can be recorded by a single detector thus minimizing
the cost of the system and allowing high-speed operations. Despite the
similarity, the MIIC is not equivalent to the channel obtained through
phase conjugation to focus at the same spot7 and for which the Fisher
information value is much lower.

A direct application of theMIIC regards the estimation of changes
in the perturbationΔζ. AssumingΔζ to be small, when compared to the
deformation that decorrelates the output, we can safely assume a
linear model for which we only need to perform calibration measure-
ments for the reference intensity distribution and its derivative with
respect to ζ above the noise level. Figure 2a–d show the Fisher infor-
mation per output pixel obtained from these calibration measure-
ments for four different input fields, namely, a random wavefront, the
fiber mode with the highest Fisher information, the third-order ISV
with the highest Fisher information and the MIIC. Here, the drastic
enhancement provided by the MIIC can be appreciated.

For the actual estimation, we use the same four input fields, but
perform the measurements at a lower input power and for the four
smaller deformation values Δζ = -1, -0.5, 0.5, and 1 μm. The input
intensity is lowered for two reasons; first, to place ourselves in a
situation dominated by Gaussian noise, and second, to reduce the
SNR in order to clearly appreciate the difference when estimating
the deformations using the different input fields. We measure 500
intensity distributions for each field and each deformation, and use
each one of these measurements to estimate the deformation using

the corresponding minimum variance unbiased estimator30 (see
Methods for more details). The results are shown in Fig. 2e–h. For
the random input, it is practically impossible to discriminate the
four peaks corresponding to the four different deformation values.
For the fiber mode and the third-order ISVs, we can clearly discern
the deformations that are further apart as the distributions are
narrower. However, there is still significant overlap between the
neighboring ones. Finally, when we take a look at the results for the
MIIC, we can appreciate four well-defined peaks with a standard
deviation that is more than an order of magnitude smaller than the
one obtained for the random input, in agreement with the Cramér-
Rao lower bound.

Optimizing the output projection modes
One consequence of the quadratic relationshipbetween the input field
and themeasured output intensity is that the Fisher information is not
invariant under changes in the output projectionmodes (OPMs).While
the pixels of a camera might be the simplest output modes to imple-
ment experimentally, they are generally not the optimal choice since
they are blind to the information that could be hidden in the relative
phase variations of the field fromone pixel to another, and they spread
out the information across many modes, thus decreasing the SNR. To
address both of these issues we could foresee demultiplexing the
outputfield into a specifically designed set of spatial channels, which is
experimentally feasible using Fourier filters48–50, photonic lanterns or
multiplane light converters51–53. This is the principle behind techniques
that allow increasing the information transfer for telecommunication
applications54,55, estimating the three-dimensional position and orien-
tation of single molecules48–50, or beating Rayleigh’s curse when ima-
ging two closely-spaced sources56–59, among others60,61.

Mathematically, this spatial demultiplexing is performed by pro-
jecting the output field onto anorthogonal set ofQOPMs,whereQ can
be smaller than the number of output modes used to define H. If we
assume that the input field is fixed, then, as shown in Section 1 of the
Supplementary Information, the Fisher information canbe rewritten as

J ðζ Þ= 1
σ2

XQ

q= 1

hpq,Eζ � pqi2, ð5Þ

where pq is the qth OPM, and Eζ =∂ζ eðoutÞ � eðoutÞ�
� �

is a rank-2
Hermitianmatrix. Therefore, the Fisher information can bemaximized
by choosing as OPMs the two eigenvectors of Eζ with nonzero
eigenvalues (see Section 3 of the Supplementary Information for the
proof and the explicit expressions of the eigenvectors). These two
optimal OPMs are given by a simple linear combination of the output
field e(out) and its derivative with respect to the parameter ∂ζ e(out). For
unitary systems, the OPMs are given by the symmetric and antisym-
metric combinations of the output field e(in) and the orthogonal
component of the derivative ∂ζ e(in). This result is a generalization of
those previously derived for estimating the distance between two
particleswhere the outputfield is projectedonto aGaussian and afirst-
order Hermite-Gauss modes, which resemble the symmetric and
antisymmetric superpositions of the two-point spread functions,
respectively56–58,61.

Figure 3 shows the impactof projectingonto theoptimalOPMson
the Fisher information for the same random inputs and fiber modes as
those used in Fig. 1b. By using the optimal OPMs, the mean Fisher
information obtained when using random wavefronts as inputs is an
order of magnitude larger than the maximum value obtained with the
MIIC in thepixel basis, whichclearly shows the benefits of choosing the
OPMs appropriately even when one cannot control the input
wavefront.
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Optimal input-output combination: reaching the precision limit
Let us now find the optimal channel when we are free to shape the
input field and choose the OPMs. This optimal input-output combi-
nation is the channel that maximizes the Fisher information when
projected onto its two optimal OPMs, and sets the precision limit
achievable with intensity measurements. To find it, we rewrite the
Fisher information in terms of just two OPMs and the input field which
leads to,

J ðζ Þ= 1
σ2

X2

q= 1

Wð4Þ,p�
q � pq � eðinÞ � eðinÞ�

D E2
, ð6Þ

wherewedefined the fourth-order tensorWð4Þ whose components are
given byWð4Þ

ijkl = ∂ζ ðH�
ikHjlÞ. Even though this expression resembles the

one in Eq. (3), it does not correspond to a rank-two approximation of
Wð4Þ. Nonetheless, we can still use tensor-based techniques to obtain
an excellent first guess by computing the HOSVD of Wð4Þ,

Wð4Þ =
XN

ij

XM

kl

Sð4Þ
ijklu

ð4Þ�
i uð4Þ

j � vð4Þ
k � vð4Þ�

l : ð7Þ

Figure 3 shows the resulting Fisher information for the corresponding
fourth-order ISVs, vð4Þ

k , when projected onto their respective optimal
OPMs. Oncemore, these higher-order ISVs provide us with a generally
ordered orthogonal basis of highly-sensitivemodes, with the first ones
surpassing all the modes of the fibers and random inputs.

To reach the precision limit, however, we need to perform a
nonlinear optimization using the first fourth-order ISV as a seed (see
Methods for details). The results shown in Fig. 3 demonstrate that the
Fisher information achieved by this channel is well over two orders of
magnitude above that obtained for the MIIC that uses the pixels as
OPMs. Nevertheless, thismaximumvalue is very close to that provided
by the first few fourth-order ISVs. Given the freedom to adapt the
OPMs to the output field, only the information contained in the global
phase of the output field is lost. Therefore, it is this quantity that
dictates the difference in precision of the solution achieving the pre-
cision limit for intensity measurements with respect to the one dic-
tated by the quantumCramér-Rao bound23. However, the global phase

is the quantity that is most likely to be corrupted by noise due to the
mechanical instabilities limiting its usefulness for real-life applications.

Another approach that would simplify the experimental imple-
mentation of the spatial demultiplexing is to use a single OPM to
monitor change of intensity at the output. In this case we have a single
term in Eq. (6) so that finding the optimal combination reduces to
finding the best rank-one approximation of Wð4Þ. As can be seen in
Fig. 3, this simpler approach almost allows us to reach the precision
limit, for which the Fisher information value is only 4.8% larger. For
practical applications, it means that one can approach the precision
limit within a very small margin using a single photodetector. In fact,
the output fields produced by the first fourth-order ISV and the best
rank-one approximation are highly similar to the one reaching the
precision limit, with which they have field correlations that are above
78%. This similarity can also be appreciated in their intensity profiles,
shown in Fig. 4. More surprising, however, is that the first third-order
ISV obtainedwith the output pixel basis is also highly similar to the one
reaching the precision limit (see Fig. 4). This is not intuitive sinceWð3Þ

does not contain any information about the phase at the output, which
Wð4Þ does have. These similarities also demonstrate that the HOSVD
allows getting really close to the precision limit while bypassing the
need for a nonlinear optimization.

Discussion
By introducing tensor-based methods to the study of complex sys-
tems, we have provided a natural framework for studying intensity-
based measurements. Here, we used lower-rank approximations of
higher-order tensors to find the channels that are most sensitive to a
given perturbation, i.e. that suffer the largest change in output inten-
sity when the perturbation changes. Their high sensitivity allows them
to be used for highly robust and precise sensing applications which we
demonstrated experimentally by estimating small perturbations in an
MMF. It was also shown that what is meant by most sensitive is highly
dependent on the choice of output modes used to measure the
intensity distribution. This dependence was exploited to find
the channel that allows extracting the most information available
at the output, and thus achieve the precision limit of intensity-based
measurements.

The tensor-based framework introduced here provides several
fundamental and practical advantages. It allows drawing a clear par-
allel between linear and nonlinear optimizations problems in complex
systems which can be written as lower-rank approximations of matri-
ces and higher-order tensors, respectively. Likewise, it places the
optimization problem within the appropriate mathematical context
which is particularly important here since it allows benefitting from
advances of a branch of mathematics devoted to the study of lower-
rank approximations of higher-order tensors. Lastly, the tensor-based
approach allows using the HOSVD to find highly sensitive intensity-
based channels, while bypassing the need for a nonlinear optimization.
This excellent first guess can then be refined with iterative algorithms
specifically designed to find lower-rank approximations.

This framework opens the door to further investigations, such as
the development of highly sensitive distributed specklegram MMF
sensors in which deformations can be sensed throughout the whole
length of the fiber. In Section 6.1 of the Supplementary Information,
we show how the Fisher information evolves as the position of the
deformation along the fiber changes from the one used to find
the optimal modes. These results show that, while the configuration
allowing reaching the precision limit remains highly sensitive for a
significant range, for longer variations of the position it exhibits high
variations in sensitivity. In contrast, the third-order ISVswith the pixels
as OPMs generalize better to other locations. Therefore, it should be
possible to find a field that optimizes the sensitivity to a deformation
regardless of its location. Likewise, we show that the tensor framework
provides us with another way to approach this problem. We can
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instead find the OPMs that provide the best precision on average for
any given input field. As shown in Section 6.2 of the Supplementary
Information, an excellent candidate is provided by the output fourth-
order singular vectors, u(4) given by the HOSVD of Wð4Þ. Additionally,
the tensor-based relations established here can also be used for the
study of incoherent systems where a TM cannot be derived. This last
point could help gain further insight into fluorescent imaging appli-
cations through scatteringmedia. It can also be expected for the fields
presented here to find other applications, such as for focusing light
inside scattering media but with properties that will be quite different
compared to using the generalized principal modes17.

Methods
Experimental setup
The optical setup is represented in Fig. S1 of the Supplementary
Information. The light source consists of a continuous linearly polar-
ized laser beam at 1550 nm (TeraXion NLL) injected into a 10:90
polarization-maintaining fiber coupler (PNH1550R2F1). The 90% arm
illuminates a digital micromirror device (DMD) (Vialux V-650L) which
modulates the input field. The light is converted into left circular
polarization using a quarter-wave plate. The shaped field is then left-
circularly polarized and imagedwith a 4f systemonto the input facet of
a 25 cm-long step-index fiber with a 50 μm core and 0.22 numerical
aperture. The output facet is imaged via another 4f system onto an
InGaAs camera (Xenics Cheetah 640-CL 400Hz) after passing through
a quarter-wave plate, followed by a beam displacer to select the left-
circularly polarized component. The other 10% arm is used to produce
a tilted reference that is made to interfere with the signal field in order
to retrieve the output field via off-axis holography62. A shutter allows
blocking the reference field to perform intensity measurements of the
signal field. The fiber can be deformed by pressing on it using a servo
motor actuator (Thorlabs Z812).

TM and Wð3Þ measurements
Using Lee holograms to shape the amplitude and phase of the input
light with the DMD63–65, we first measure the TM in the pixel basis. This
is achieved by sending 7200 square layouts consisting of
37 × 37 square macropixels whose value is either zero or a random
phase of amplitude one. The corresponding output fields are recov-
ered from the interferograms between the reference and signal fields,
and subsequently projected onto a square pattern of 44 × 44 macro-
pixels formed by grouping 4 × 4 pixels of the camera. Regrouping all
input and output fields into the columns of matrices X and Y,
respectively, we reconstruct the TM via H =Y ⋅X−1 where X−1 denotes
the pseudoinverse of X. The 144 fiber modes are identified by com-
puting the SVD of the resulting TM and taking all the singular vectors
that have close to unit singular values (see Fig. S2of theSupplementary
Information). All subsequent TM measurements are performed by
sending 1440 random inputs obtained by randomly superimposing all
144 fiber modes. To determine the third-order tensor Wð3Þ, we

measure two TMs, H(±), for two different values of the deformation,
ζ (i) ± dζ/2, centered around the reference value ζ(i) and with dζ = 3 μm.
These twomeasurements are then used to approximate the derivative
with respect to ζ using finite differences. We use a similar approach to
construct Wð4Þ.

Optimizing the Fisher information
A detailed explanation about the different optimizations for each case
can be found in Secs. 2 and 3 of the Supplementary Information. Here,
we provide a summary of the main steps taken for each case.

To find the MIIC, given by the best rank-one approximation of
Wð3Þ, the first step is to compute the third-order singular vectors.
These are given by the left singular vectors of thematrices obtained by
choosing the nth index of the tensor to be the rows and all the other
indices are arranged to form the columns. This is known as themode-n
matricization39,43. For example, if n = 2 then we get the M ×MN matrix
W(3) defined component-wise via the following index assignment,
W ð3Þ

IJ =Wð3Þ
ijk where I = j and J = i + (k − 1)N. The left singular vectors ofW(3)

are the third-order ISVs. The next step is to use as a seed the rank-one
tensor formed by all the first higher-order singular vectors for an
iterative alternating-least squares (ALS) algorithm to solve the fol-
lowing minimization problem

mina,b,c k Wð3Þ � a� b� c k : ð8Þ

For the ALS algorithm, instead of tackling the minimization over a,b,
and c all at once, we iterate over each vector by solving the standard
least-squareproblem that results from leaving theother onesfixed. For
example, we start by solving

mina k Wð3Þ � a� b� c k , ð9Þ

for which we can find the exact solution. Then, we do the same for b
and c. This is repeated for a predefined number of times or until a
convergence criterion is satisfied. If this standard implementation fails
to provide a solution satisfying the symmetries of the original tensor,
then it is possible to adapt the ALS algorithm by simply imposing the
symmetries at the end of each loop (see Section 2 of the supplemen-
tary information).

When we only seek to optimize the OPMs for a fixed input
field, it suffices to construct the rank-two Hermitian matrix
Eζ =∂ζ eðoutÞ � eðoutÞ*

� �
and find its two eigenvectors with nonzero

eigenvalues. The explicit expressions are given in Section 3 of the
Supplementary Information. However, if we seek to optimize both the
inputfield and theOPMs thenweneed another approach. In the case in
which we restrict ourselves to a single OPM, then we only need to find
the best rank-one approximation of the fourth-order tensor Wð4Þ.
Therefore, in this case we can proceed as we did to find the MIIC. For
the more general case of finding the optimal input field and corre-
spondingOPMs, we need to performa nonlinear optimization over the
input field. However, just like for the ALS algorithm, we use the first
fourth-order ISVs of Wð4Þ as an initial guess.

Experimental estimation of the deformation
Before performing the experimental estimationof small deformations,
we verified the Gaussian noise assumption by performing several
measurements of the output fields for the four fields used for the
estimation for two input intensity values. These measurements con-
firmed that at low intensity the Gaussian assumption was indeed
valid (see Section 5.1 of the Supplementary Information for details).
Given that the perturbations under consideration are small, we use a
linearmodel for the change in intensity distribution as a function ofΔζ.
The measured intensity distribution χ over the output modes is

0.0

1.0

Intensity

First
3rd-order ISV

Best single
OPM

First
4th-order ISV

Precision
limit

Fig. 4 |Outputfieldsnear theprecision limit.Output intensity distribution for the
mode achieving the precision limit (a), the first fourth-order input singular vectors
(ISV) (b), the bestmodewhenusing a single output projectionmode (OPM) (c), and
the first third-order ISV (d) (all plots share the same scale bar).
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then given by

χ ≈ Iðζ ðiÞÞ+ ∂ζ Iðζ ðiÞÞΔζ +wðσÞ, ð10Þ

where I(ζ (i)) represents the output intensity distribution over the
output modes prior to changing the deformation, ∂ζ I(ζ

(i)) is the deri-
vative evaluated at ζ(i), and wðσÞ is a vector representing the Gaussian
noise with zero mean and standard deviation σ. For this linear model
the minimum variance unbiased estimator30 is given by

Δζ ðestÞðχÞ=
∂ζ Iðζ ðiÞÞ � χ � Iðζ ðiÞÞ

h i

k ∂ζ Iðζ ðiÞÞk2
: ð11Þ

Both the reference intensity distribution I and the derivative ∂ζ I are
calibrated using independent measurements (see Section 5.2 of the
Supplementary Information for further details). This estimator is used
to obtain all the estimations of Δζ shown in Fig. 2.

Data availability
The data generated in this study have been deposited in the dedicated
GitHub repository66.

Code availability
All the code used to produce the results and figures presented in this
work can be found in the dedicated GitHub repository66.
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