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Frugal random exploration strategy for shape recognition using statistical geometry
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Very distinct strategies can be deployed to recognize and characterize an unknown environment or a shape.
A recent and promising approach, especially in robotics, is to reduce the complexity of the exploratory units
to a minimum. Here, we show that this frugal strategy can be taken to the extreme by exploiting the power of
statistical geometry and introducing different invariant features. We show that an elementary robot devoid of
any orientation or location system, exploring randomly, can access global information about an environment
such as the values of the explored area and perimeter. The explored shapes are of arbitrary geometry and may
even nonconnected. From a dictionary, this most simple robot can thus identify various shapes such as famous
monuments and even read a text.
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I. INTRODUCTION

Image, object, or environment recognition is a highly
complex operation which involves acquiring a global infor-
mation based on spatial correlations. The standard strategy
is centralized using multiplexed sensors coupled to com-
plex computational capacities and data processing which can
be possibly implemented in high-tech robotic systems. Re-
cently, an alternative fruitful strategy has emerged based on
the simple cost-effective basic units collecting unsupervised
information, no direct localization capacities, and eventu-
ally working in parallel in an unmanned manner [1,2]. This
strategy is more robust and well-suited for analysis and explo-
ration with restricted computational and hardware resources,
and in the case of harsh or complex environments for which
part of the information is not accessible. The most elementary
system one can imagine is limited to the acquisition of a local
information only with no possible communication, localiza-
tion capacity, or orientation awareness.

The unavailability of localization capability and the associ-
ated randomness of the exploration make the use of statistical
geometry crucial to move from local information to a global
knowledge of the environment. In this context, the statistical
properties of chord length are distributed across various kinds
of geometrical shapes. A chord length is defined as the Euclid-
ian distance of a segment linking two points at the boundary
of a given two-dimensional domain. Only segments which
are fully included in the domain are classified as a chord.
The distribution of these chord lengths plays a central role
for the characterization of size and shape of the intercepted
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objects with applications such as in acoustics, ecology [3–6],
image analysis [7,8], stereology [9–11], and reactor design
[12–15]. The moments of the chord length distributions are
related to mathematical invariants and give access to global
geometrical parameters such as the volume, the surface, or
the perimeter of objects. As a historical example, the Cauchy
formula states that the mean chord length is proportional to
the ratio of the volume of an object to its surface area for a
three-dimensional (3D) object, or to the ratio of its area to
its perimeter for a 2D object [16,17]. Recent generalization
to random motion [18–23], to closed trajectories [24,25], and
to wave propagation properties [26–28] have renewed interest
for such invariants. Unfortunately, most of theorems of this
field of mathematics are restricted to convex shapes and with
no inclusions which limit the statistical approach for explo-
ration and pattern recognition.

Here, we introduce statistical invariants that extend to
any arbitrary, possibly nonconvex, nonconnected or with
inclusions shapes. This generalization allows us to revisit
and push the limits of frugal exploration strategies to its
most minimalistic version by fully integrating the assets of
statistical geometry. We show experimentally that an ele-
mentary robot devoid of any localization, orientation, and
observation systems can assess the surface and perimeter of
a two-dimensional region in which it evolves with random
displacements. Then, with the help of a dictionary, we show
how it recognizes these shapes. We also discuss the benefits
of global over sequential exploration strategies in the case of
nonconnected shapes and apply it to reading strategies.

II. RESULTS

A. Generalized statistical geometry invariants

Statistical geometry establishes a link between proba-
bilities arising from local properties and global geometric
quantities. Cauchy’s theorem plays a central role in relating
the average chord length of a random distribution 〈�〉chords
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to the ratio of the area A to the perimeter P of the explored
domain. The average is realized over all possible chords of
the domain. In two dimensions, it reads 〈�〉chords = πA/P. The
Crofton-Hostinský theorem [17] uses the third moment, and in
two dimensions satisfies 〈�3〉chords = 3A2/P so that combining
these two theorems can yield P and A separately which could
provide a frugal and powerful recognition strategy. While
Cauchy’s theorem can be extended to nonconvex shapes [29]
unfortunately, the Crofton-Hostinský theorem is only valid for
convex shapes, which in practice, prohibits its relevance for
exploration and pattern recognition purposes. A generaliza-
tion of this theorem to arbitrary forms is therefore essential.
To this end, we introduce an alternative statistical invariant.
We first label the intersections between a straight trajectory L
and the boundaries of the explored shape according to whether
they are ingoing i or outgoing o from the shape. We then derive
all the distances between pairs of intersections by distinguish-
ing the chords depending on their ends: lio, lii, or loo. We define
the geometric function of order n ∈ N associated to the line L,
Ln(L) = ∑

i,o �n
io−

∑
o �n

oo−
∑

i �
n
ii. Following a mathematical

demonstration detailed in the following section, we find that
the area of the explored shape A satisfies

A = π

3

〈L3〉lines

〈L1〉lines
(1)

with the average being made with respect to all straight lines
crossing the shapes. This relation, combined with Cauchy’s
theorem, allows statistical geometry to be used for exploration
and pattern recognition by measuring P and A independently.
It applies to any arbitrary shape, whether nonconvex, with
inclusions, and even nonconnected. This establishes an au-
tonomous strategy for obtaining global geometric features
without any a priori assumptions.

B. Demonstration of Eq. (1)

Before implementing this strategy in real-word conditions,
we demonstrate Eq. (1). First, let us consider the case of a
simple nonconvex domain � with border ∂�, surface area A,
and perimeter P, as depicted in Fig. 1(a). We assume that the
domain � must have a measurable area A and a measurable
perimeter P.

We consider a line L intersecting the border ∂�. A point
belonging to the line L is identified by its curvilinear abscissa
l along the line. For every line, we enumerate the points
where the line enters and exits the domain. With N being
the number of chords belonging to a given line L, we denote
by (ik )k=1, ...,N the curvilinear abscissa of the entries and by
(ok )k=1,...,N the curvilinear abscissa of the exits. For a convex
body, we have N = 1 for all the possible lines intersecting
∂�. For the shape shown in Fig. 1(a), N = 1, 2, etc. The
number of lines is quantified by using the kinematic measure
dL = dρdθ , where (ρ, θ ) denotes the usual radial coordi-
nates, with an origin placed inside the domain � [17]. Let us
consider two points P1 with abscissa l1 and P2 with abscissa l2
inside the domain and belonging to a given line L. We denote
r = |l2 − l1| as the distance between P1 and P2. For any given
integer n we consider the integral

Jn =
∫

(P1,P2 ) ∈ �×�

rnd2P1d2P2. (2)

FIG. 1. (a) Simple and (b) complex nonconvex domain � in-
tersected by a nonoriented line L. Two points P1 with curvilinear
abscissa l1 and P2 with abscissa l2 inside the domain belonging to a
line L are plotted. This line has (a) two entries in (i1, i2) and two exits
(o1, o2) or (b) N entries in (i1, . . . , iN ) and N exits in (o1, . . . , oN ).

Note that for n = 0, we have

J0 =
∫

P1∈�

d2P1 ×
∫

P2∈�

d2P2 = A2. (3)

Then let us call f the characteristic function such that
f (P) = 1 if P ∈ � and f (P) = 0 otherwise. Finally, the
terms d2P1d2P2 can be expressed in the system of the line
coordinates with the Jacobian given in [17], d2P1d2P2 =
|l2 − l1|dl1dl2dL. It gives

Jn =
∫

f (P1) f (P2)|l2 − l1|n+1dl1dl2dL. (4)

The integration on dL is realized over every possible line L
intersecting the external border ∂� while the integrations on
dl1 and dl2 are such that P1 and P2 remain in �. It gives

Jn =
∫

L;L∩∂� �=0
dL

∫
dl1 f (P1)

∫
dl2 f (P2)|l2 − l1|n+1 . (5)

We separate the sets of lines L into two sets L1 and L2. A line
in L1 enters once in the domain at a point i1 and exits once at
a point o1. A line of L2 has two entries (i1, i2) and two exits
(o1, o2) in the domain � as exemplified in Fig. 1(a). It yields

Jn =
2∑

j=1

∫
L j ;L j∩∂� �=0

dLj

∫
dl1 f (P1)

∫
dl2 f (P2)|l2 − l1|n+1,

(6)

which we can write in the compact form

Jn =
2∑

j=1

J ( j)
n . (7)

The computation of J (1)
n gives us

J (1)
n = 2

(n + 2)(n + 3)

∫
L1;L1∩∂� �=0

dL1(o1 − i1)n+3, (8)
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which is the same result as for convex shapes [17]. For a line L2, the point P1 can be either in or out of the domain � by sliding
along the line L2. It means that l1 must be integrated along two intervals [i1, o1] and [i2, o2] corresponding to P1 being in �.
The integrals can be performed explicitly, which yields

J (2)
n = 2

(n + 2)(n + 3)

∫
L2;L2∂� �=0

dL2([(o2 − i1)n+3 + (o1 − i1)n+3 + (o2 − i2)n+3 + (i2 − o1)n+3]

− [(o2 − o1)n+3 − (i2 − i1)n+3]). (9)

By combining Eqs. (7), (8), and (9) for n = 0, with Eq. (2) we get

A2 = 1

3

∫
L1;L1∩∂� �=0

dL1(o1 − i1)3 + 1

3

∫
L2;L2∩∂� �=0

dL2([(o2 − i1)3 + (o1 − i1)3 + (o2 − i2)3 + (i2 − o1)3]

− [(o2 − o1)3 + (i2 − i1)3]), (10)

or equivalently and in a more compact form

A2 = 1

3

∫
L;L∩∂� �=0

dL L3(L). (11)

We now want to evaluate 〈L3(L)〉lines, the mean value of L3(L) among all possible lines L uniformly, isotopically distributed,
and intersecting ∂�. The probability p(L)dL to measure a line L intersecting ∂� is

p(L)dL = dL∫
L;L∩∂� �=0 dL

. (12)

So, the mean value 〈L3(L)〉lines over all possible lines intersecting ∂� can be computed by

〈L3(L)〉lines =
∫

L;L∩∂� �=0
L3(L)p(L)dL =

∫
L;L∩∂� �=0 L3(L)dL∫

L;L∩∂� �=0 dL
= 3A2∫

L;L∩∂� �=0 dL
. (13)

The generalization for more complex nonconvex domains
such as shown in Fig. 1(b) is obtained by considering Eq. (5)
and by dividing the set of all lines intersecting ∂� into the sets
L1, L2, L3 . . . , LN having respectively 1, 2, 3, . . . , N exists
and entries. The rest of the demonstration follows the same
steps as above. As a result, we obtain the generalized version
of the Crofton-Hostinský formula for nonconvex shapes in
two dimensions:

〈L3(L)〉lines = 3A2∫
L;L∩∂� �=0 dL

. (14)

The last step of the demonstration considers the first moment
to obtain an extended version of the Cauchy’s mean chord
theorem,

L1(L) =
∑
k, j

|ok − i j | −
∑
k, j

|ok − o j | −
∑
k, j

|ik − i j |

=
∑

k

|ok − ik|. (15)

Hence, L1(L) represents the sum of lengths of all the chords
belonging to the same line that cross the domain �. Its mean
value of all possible lines intersecting ∂� yields [17,29]

〈L1(L)〉lines =
∫

L;L∩∂� �=0 L1(L)dL∫
L;L∩∂� �=0 dL

= πA∫
L;L∩∂� �=0 dL

. (16)

Finally, by dividing Eq. (14) over Eq. (16), we obtain

〈L3(L)〉lines

〈L1(L)〉lines
= 3A

π
, (17)

and achieve our demonstration of Eq. (1) for any domain
regardless of its topology.

C. Implementation with an elementary robot

We experimentally implement this frugal exploration strat-
egy to evaluate the robustness of Eq. (1) under real conditions.
We use a commercial toy robot called Sphero [30] which is
a self-propelled rolling sphere [see Fig. 2(a)]. Sphero is a
transparent spherical robot of 7 cm in diameter, with two en-
coded motors enabling a straight motion. The built-in battery
can be recharged using an inductive charger. The robot speed
can be programmed between 1 and 50 mm/s, with autonomy
from 1 to 4 h. It features a 2-mm-diameter light sensor, a
multicolor LED, an internal clock, and an accelerometer. It
also has a Bluetooth connection with a range of 30 m to
communicate with a computer or other devices. The robot
can be programmed using blocks or JavaScript. The robot
is enclosed in a closed arena in the shape of a rectangle of
size 1.2 × 1.5 m2 and made of aluminum Norcan bars (square
section, 2 in. wide) rigidly screwed together. The edges are
detected by measuring an abrupt change of acceleration. The
shape to recognize, such as the Eiffel Tower [Fig. 1(b)], is pro-
jected using a video projector placed above the arena explored
by the robot.

The robot performs a series of uncorrelated straight linear
motions at 10 mm/s, changing direction randomly as it detects
the edge of the arena [Fig. 2(a); see Supplemental Material
Movie 1 [31]]. Crucially, the robot possesses no information
about either its absolute position or its direction. From the
light received by the sensor, the robot can only detect if it
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FIG. 2. Principle and implementation of robotic shape recognition by random exploration. (a) Photo and structure of the autonomous
Sphero toy robot. (b)–(d) Exploration of a projected Eiffel Tower shape (b) by random straight-line motion acquiring only the chord lengths.
Using statistical geometry to compute invariant quantities and shape parameters such as the perimeter P and the area A of the explored
shape enables recognition from a dictionary. Snapshots of accumulated experimental light blinks emitted by the robot during its exploration
of the Eiffel Tower for N = 40, 200, and 1000 lines (b) and for a triangle (c), the Chichen Itzá pyramid (d), and the Statue of Liberty for
N = 1000 lines (e). (f) Chord length probability density function (PDF) for the Eiffel Tower shape with the mean chord length invariant 〈�〉chords

and A1/2 = ( π

3
〈L3〉lines
〈L1〉lines

)
1/2

for comparison. (g) Trajectories followed by the estimated parameters (P, A) as the number of lines N increases
(increasing line contrast) in the perimeter-area representation space for various explored shapes. 75%, 95%, and 99% statistical confidence
limits associated to each shape estimated by Monte Carlo simulations for N = 1000 (ellipses with increasing contrast and decreasing
size).

is inside or outside the projected shape. From the times of
entries and exits of the shape along the line L, the chord
lengths are deduced and the functions L1(L) and L3(L) are
calculated on board. From the statistical averages, the area
A and the perimeter P of the projected shape are deduced
from Eq. (1) and Cauchy’s theorem. Note that the memory
required to perform the calculations is limited, containing
only the time of intersection events along the latest line to
update the previously calculated mean values. Shape recog-
nition is then performed using a dictionary containing a list
of area and perimeter entries for a given shape, associated in
the present case to famous monuments [Figs. 2(b)–2(e); see
Supplemental Material Sec. 1 [31]]. Although two different
objects can have the same entries, we found in practice that
this was hardly ever the case, with up to hundreds of entries.
Figure 2(b) shows the accumulated experimental trajectories
during the robot exploring the Eiffel Tower for N = 10, 100,

and 1000 random trajectories. An external camera was used
to follow the on-board LED which blinks when it is inside
of the domain. The final exploration for the other shapes
is shown in Figs. 2(c)–2(e) (N = 1000). The explorations

are found homogenous and statistically isotropic. The ex-
perimental chord distribution for the Eiffel Tower is shown
in Fig. 2(f); its average value 〈�〉chords and π

3
〈L3〉lines
〈L1〉lines

are ge-
ometrical invariant (while 〈L1〉 lines and 〈L3〉 lines are not).
The trajectories followed by the estimated parameters and
areas as the number of lines N increases (increasing line
contrast) can be plotted in a {Perimeter-Area} representation
space for various explored shapes [Fig. 2(g); see Supple-
mental Material Movie 2 [31]]. The statistical ellipses of
confidence in the representation space {Perimeter-Area} are
deduced from the confidence intervals of the area and the
perimeter; these are estimated by Monte Carlo simulations
consisting in generating of 103 independent runs, each of
them consisting in generating N = 1000 independent lines.
The increasingly small ellipses in Fig. 2(g) show the 75%,
95%, and 99% confidence ellipses associated to each shape.
This proves that the robots discriminate each registered shape
in the dictionary without any statistical ambiguity even though
some shapes are very similar, such as in the case of the trian-
gle and the Chichen Itzá pyramid (chosen with an identical
area).
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FIG. 3. Convergence properties. Common color code: Circular shape (pink), Chichén Itzá pyramid (green), triangle (brown), Statue of
Liberty (blue), Eiffel Tower (orange). (a) Probability density function of chords for the four remaining shapes. The normalized mean chord

length invariant 〈�〉chords and Ã1/2 = ( π

3
〈L̃3〉lines
〈L̃1〉lines

)
1/2

for comparison. Lengths are normalized by the maximum chord length for each shape
and are indicated by a tilde sign. (b),(c) Evolution of the area and perimeter estimated autonomously by the robot during its exploration.
Thick lines correspond to an experimental realization, thinner lines correspond to Monte Carlo simulations and give an indication of the
reduction of the fluctuations over different realizations. (d),(e) Evolution of the standard deviation of the surface and perimeter computed from
1000 independent Monte Carlo simulations as the function the number of lines and follows a 1/2 power law convergence σA � σA,0/

√
N and

σP � σP,0/
√

N . (f) Evolution of the prefactor σA,0 or σP,0 with the shape entropy of the domain defined as the Kullback-Leibler divergence
(KL) of the chord distribution. The dashed grey line is a guide for the eye. The chord distribution of a circular shape is taken as a reference
for the KL calculation. (g),(i) Likelihood landscape in the representation space for N = 200 (g) and N = 1000 (i). The borders indicate a 95%
of likelihood of recognition and strongly depend on the dictionary entries. (h),(j) Relative number of lines contributing to a 95% likelihood of
recognition for N = 200 (h) and N = 1000 (i).

D. Efficiency of the method

The extreme frugality and efficiency of the recognition
pathway relies on iterative averaging of the statistical fea-
tures. Figure 3(a) shows the distributions of the chord lengths
normalized by the maximal length associated to various ex-

plored shapes. The full chord length distribution obviously
holds some additional geometric information from the shape
as shown by distinct profiles. However, in the quest for the
simplest exploration strategy, the robot does not need to store
all these data. It only iteratively computes and save the mean
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values 〈l〉chords, 〈L1〉 lines, and 〈L3〉 lines. This is performed
after each exploration line. Note that even the full knowledge
of the chord PDF would not be sufficient to establish a strict
correspondence with all possible 2D shapes [32]. For a non-
convex shape, a line contains at most N ingoing and outgoing
intersection points (N = 1 for convex shapes). The robot thus
needs to temporarily store at most N (N − 1) + 4 values. For
a complex shape such as the Statue of Liberty, N � 6 and the
robot needs to store at most 34 scalar values. While memory
is not restrictive for large robots, it is essential for applications
at small scales.

We now investigate the convergence to assess the effi-
ciency of this probabilistic method. Figures 3(b) and 3(c)
show the evolution of the surface area A and the perime-
ter P respectively as a function of the number of lines N .
The values are computed by the robot during experiments
associated to the five shapes in the shape dictionary (colored
contrasted solid lines). The robot is programmed to send
these updated geometrical estimates by wireless Bluetooth
connection only for control purposes as it performs on-board
surface and perimeter estimations. Additionally, we perform
Monte Carlo simulations by generating uniformly distributed
random lines (colored dimmed solid lines) to compare with
the experiments. The convergence towards the expected val-
ues of P and A for the experimental and simulated estimates
are similar. It is found that only a few hundred lines are
typically required to measure the area and perimeter with an
error of less than 10%. This is sufficient to distinguish the
shapes listed in our dictionary. However, in the general case,
the recognition speed would strongly depend on the L2 norm
in the representation space {Perimeter-Area} between shapes
listed in the dictionary. The standard deviation over many
independent realizations can be computed from the numerical
simulations as a function of the number of exploration lines
N . Figures 3(d) and 3(e) show the evolution of the standard
deviations of A, σA(N ) and of P, σP(N ), respectively for the
five shapes of the dictionary. It is found that the convergence,
in both cases, is independent of the complexity of the explored
shape and scales as 1/

√
N . This can be rationalized by noting

that the measure converges towards a normal distribution as
an ensemble averaging of independent random variables with
the same mean and standard deviation. The influence of the
shape appears only in the prefactors σ0,A and σ0,P associ-
ated to A and P, respectively. The latter increases from the
circle, to the square, to the triangle, to the Chichen Itzá pyra-
mid, to the Eiffel Tower, and finally, to the Statue of Liberty.
The prefactors thus seem to increase with the complexity of
the shape. For regular shapes, complexity can be related to the
decrease of the symmetries. For irregular shapes, complex-
ity needs to be assessed quantitatively. The Kullback-Leibler
divergence DKL which is a measure of the relative entropy be-
tween two probability distributions provides such a parameter.
Figure 3(f) shows the prefactors σ0,A and σ0,P as a function
of the DKL of the chord length distributions associated to the
various shapes, with the chord length distributions of a circle
taken as a reference. The prefactors increase monotonically
with DKL confirming the role of complexity. However, the
range is only a factor of about 4 for a logarithmic variation
between distributions of about 3. The dependence on shape
complexity is therefore rather modest.

In practice, the exploration must be stopped, once the
likelihood of determining a shape is larger than a preset
value, here 95%. The corresponding likelihood landscape
(see Supplemental Material Sec. 2 [31]) in the representation
space {Perimeter-Area} depends on the given dictionary, σ0,A

and σ0,P for all of the entries, their relative distance in the
{Perimeter-Area} space, and the duration of the exploration.
Figures 3(g) and 3(i) illustrate the influence of the number
of crossing lines N, where each colored domain delineates a
95% likelihood of finding the targeted shape (for N = 200 and
1000). Figures 3(h) and 3(j) show quantitatively the relative
number of lines contributing to a 95% likelihood of recogni-
tion. One observes that about a hundred lines are enough to
recognize a circular shape with this level of certainty which
is due to its distance from the other shapes in the representa-
tion space {Perimeter-Area}. In contrast, it takes more than
103 lines to achieve this level of confidence for the other
shapes that are more closely packed in the representation
space {Perimeter-Area}.

E. Reading letters and words

Equation (1) remains valid for arbitrary shapes with inclu-
sion or even nonconnected shapes. Disconnected objects can
thus be explored and gathered within a common global shape
with area or perimeter equal to the sum of those of its parts.
Since the area and perimeter are geometrical invariants, they
are conserved under rigid body transformation such as trans-
lations, rotations, mirrors, and any combinations of them (see
Supplemental Material Sec. 3 [31]). Two alternative strategies
can be chosen to recognize unconnected shapes: a global
strategy considering all the shapes as a single clustered entity,
or a local strategy considering the addition of each subentity
separately. We assess these two strategies through the em-
blematic case of reading, based on a word or letter-by-letter
recognition strategy. The local strategy consists of mapping
the capital alphabetic letters into the {Perimeter-Area} repre-
sentation space which depends on the font. Figure 4(a) shows
the position of the projected capital letters for a Helvetica
font and the associated domain where the likelihood of recog-
nition is larger than 95% for N = 3 × 104. Most common
fonts do not overlap in the dictionary partly because letters
do not transform into each other by symmetry. Figure 4(b)
specifies the number of lines required to distinguish a given
letter with a likelihood larger than 95%. Letters can thus be
distinguished without ambiguity. For the global strategy, the
dictionary is composed of words in the {Perimeter-Area} rep-
resentation space. Figure 4(c) shows the dictionary with words
sampled from the preamble of the United Nations charter as a
dictionary [33] with the associated 95% likelihood domains.
All the words can be distinguished. One necessary condition
for nonoverlapping in the dictionary is the absence of ana-
grams. In order to compare with the local strategy [Fig. 4(b)],
Fig. 4(d) specifies the number of lines, normalized by the
number of letters in the word, required to distinguish a given
letter with a probability larger than 95%. For this moderately
small pool of words, the two strategies are of about the same
efficiency.

Figures 4(e) and 4(f) illustrate the principle of these
strategies applied to the word “FREEDOM” with successive
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FIG. 4. Global versus local exploration strategies applied to reading. (a) Likelihood landscape in the {Perimeter-Area} representation for
the projected capital letters of the alphabet with a likelihood larger than 95%. (b) Specifies the number of lines required to distinguish a given
letter without ambiguity, in this case with more than 95% of probability. (c),(d) Global strategy. The dictionary is composed of words in the
{Perimeter-Area} representation space. (c) Words sampled from the preamble of the United Nations charter as a dictionary [33] with the
associated 95% likelihood domains. The words can be distinguished if there is an absence of anagrams. (d) Number of lines, normalized by
the of letter in the word, required to distinguish a given letter with a probability larger than 95%. (e),(f) Comparison of both strategies applied
to the word “FREEDOM” with successive identification of each letter (e) and the global estimate (f) of the word perimeter and area. (g),(h)
Area estimation of the word FREEDOM and its associated error, with a local (g) or a global (h) strategy. With this moderately small pool of
words, the two strategies are of about the same precision.

identification of each letter [Fig. 4(e)] and the global estimate
[Fig. 4(f)] of the word perimeter and area. In Figs. 4(g) and
4(h), we plot the convergence for the area estimation in the
case of a letter-by-letter strategy or a global strategy, respec-
tively. With this moderately small pool of words, the two
strategies are of about the same precision.

The best strategy is a compromise between the size, the
choice of the word dictionary, and the accumulation of inde-
pendent errors in the letter-by-letter strategy. On one hand,
if the word dictionary is larger than our current one, the
words accumulate in a closed region of the Perimeter-Surface
space, and as a consequence, a letter-by-letter strategy is more
efficient. On the other hand, if we choose a letter-by-letter
strategy, the perimeter and surface area computation accumu-
late the uncertainties corresponding to each letter. In contrast,
the direct word recognition combines the chords topology
such that the overall noise is smaller. So, for smaller pool
of words, measuring directly the word FREEDOM converged
quickly by a “word” rather than a letter-by-letter recognition.

III. CONCLUSION

The strategy, presented here, does not require any knowl-
edge about either absolute or relative position or information

about the direction of motion. On the contrary, the randomness
of orientation and absolute position is crucial. At every single
stage of the physical computing, the robots acquire no global
information about the number of holes, the convexity, or
any global information. However, despite ignoring about any
global information and by measuring only local quantities,
the robot is able to recognize shapes listed in a dictionary by
measuring the perimeter and the area of any given 2D shapes.
This was only possible thanks to the introduction of a gen-
eralized statistical invariant which allows us to estimate the
area from a random exploration of any 2D domain, regardless
of its complexity. Finally, we note that the dictionary is not
a necessary prerequisite and is used here for convenience. A
preclassification phase, for example with k-means or Gaussian
mixture strategies, can be added to our protocol to perform
an autonomous and unsupervised recognition. Extending our
technique to a swarm of robots, to take advantage of dis-
tributive computation strategies, is a natural step where each
can compute these invariants locally and share them with
the others to improve convergence. However, the inevitable
contact between individuals and the possible formation of
aggregates makes swarm computation a real challenge, for
which new invariants for more disordered paths need to be
discovered.
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All data are available in the main text or the Supplemental
Material [31].
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