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Beating resonance patterns and extreme power flux
skewing in anisotropic elastic plates
Daniel A. Kiefer*, Sylvain Mezil, Claire Prada

Elastic waves in anisotropic media can exhibit a power flux that is not collinear with the wave vector. This has
notable consequences for waves guided in a plate. Through laser-ultrasonic experiments, we evidence remark-
able phenomena due to slow waves in a single-crystal silicon wafer. Waves exhibiting power flux orthogonal to
their wave vector are identified. A pulsed line source that excites these waves reveals a wave packet radiated
parallel to the line. Furthermore, there exist precisely eight plane waves with zero power flux. These so-called
zero–group-velocitymodes are oriented along the crystal’s principal axes. Time acts as a filter in thewave-vector
domain that selects these modes. Thus, a point source leads to beating resonance patterns with moving nodal
curves on the surface of the infinite plate. We observe this pattern as it emerges naturally after a pulsed
excitation.
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INTRODUCTION
Engineering materials often exhibit anisotropic stiffness, particular-
ly single crystals and composites. Among them, monocrystalline
silicon is the single most important material for fabrication of inte-
grated circuits, microelectromechanical systems (MEMSs), and
photovoltaic cells (1, 2). These are generally produced from a thin
wafer of this material. Understanding the intricate mechanics of
elastic wave propagation in these plates is of importance not only
for their quality evaluation (3–5) but also for the functional
design of MEMS devices such as surface acoustic wave and Lamb
wave filters and sensors (6–8). The latter usually involve layers of
piezoelectric materials, which constitute another kind of medium
where anisotropy plays a major role (9).
As the structures in the mentioned applications are usually thin,

guided elastic waves are of great relevance. These waves propagate
dispersively (10–12), i.e., their angular frequency ω is nonlinearly
related to their wave number k through the dispersion relation
ω(k). Of particular interest are solutions where the group-velocity
component ∂ω/∂k vanishes while the wave number remains finite
(13–18). In isotropic media, these zero–group-velocity (ZGV)
points represent local resonances that are due to the finite thickness
of the semi-infinite structure. At sufficiently high frequencies, they
usually dominate the overall mechanical response of the structure.
They are rather simple to excite and measure with contactless laser-
ultrasonic techniques. ZGV resonances are used in nondestructive
evaluation to determine various structural properties such as mate-
rial parameters, thickness, or bonding state with very high precision
in a spatially resolved manner (19–23).
ZGV resonances in anisotropic plates were the object of some

theoretical (24–26) and experimental studies (27, 28). Prada et al.
(27) revealed the directional dependence of the ZGV resonance fre-
quency in a silicon wafer, and we reproduce this result in Fig. 1A (we
will show, however, that not all of the components really correspond
to ZGV resonances). Note that the directional dependence is dis-
tinctive of ZGV resonances as this is impossible for common thick-
ness resonances characterized by k = 0. It is striking that the

extremal frequencies in Fig. 1 play a special role, particularly
when inspecting later times as depicted in Fig. 1B. Moreover, in
(27), the response to the point-source excitation appears to be dom-
inated by the two ZGV frequencies associated to the principal direc-
tions of the crystal. This fact was confirmed by numerical
computations in (25). However, the described effects remain unex-
plained in the literature.
The aim of the present work is twofold. First, the special role of

ZGV resonances along the principal directions of the material is ex-
plained. The contributions along other directions are explained by
slow waves that propagate parallel to the line source, which means
that they exhibit a group-velocity vector that is orthogonal to the
wave vector. Second, we predict and confirm the formation of
complex time-dependent resonance patterns on the surface of the
plate after it has been excited by an impulsive point load. We
show that this beating pattern can be explained by the interference
of eight ZGV modes associated to the material’s principal
directions.

RESULTS
We study transversely propagating waves and ZGV resonances in
anisotropic plates. Both effects are confirmed experimentally on a
[001]-cut monocrystalline silicon wafer of 524.6-μm thickness; see
Fig. 2A. The material’s stiffness is of cubic anisotropy (Voigt-
notated stiffness, C11 = 165.6 GPa, C12 = 63.9 GPa, and C44 = 79.5
GPa; density, ρ = 2330 kg/m3). The laser-ultrasonic system depicted
in Fig. 2B is used to observe the waves. It consists of a pulsed laser
source that is defocused to excite the wave-number range of interest
of up to ≈7 rad/mm and of a laser interferometer that measures the
normal surface displacements of the wafer. A two-dimensional (2D)
scan of the surface is performed by moving the laser source. To
speed up the measurement, we only scan one quarter of the wave
field and reconstruct the full field by exploiting the sample’s mate-
rial symmetries. Some of the results are band-pass–filtered between
7.6 and 7.8 MHz in a postprocessing step (indicated explicitly in the
figures), as this frequency band contains the phenomena of interest.
Further specificities on themeasurement setup and the postprocess-
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presenting the experimental results, the underlying theory is devel-
oped in the following.

Guided waves in a silicon wafer
We study guided elastic waves propagating in the wafer. The fixed
eXeYeZ coordinate system is aligned with the [110], [�110], and [001]
crystallographic axes, respectively. Moreover, the ereθez system is
oriented with the wave vector, as depicted in Fig. 2A. Taking the
point of view of a plane wave, er denotes the axial direction, while
eθ refers to the transverse direction. The plate has stress-free surfac-
es. Furthermore, it is considered to be of infinite lateral dimensions,
so that waves reflected from the border can be disregarded.
Guided waves are characterized by the angular frequency ω, the

wave vector k = ker(θ) = kXeX + kY eY, as well as the through-thick-
ness displacement distribution u(z). Only certain combinations of
frequency and wave vector can propagate, which is described by the
dispersion relation (10–12, 29). The solutions form surfaces
ω(kX,kY) or, equivalently, ω(k,θ). We use a semi-analytical method
to obtain these solutions, i.e., the associated eigenvalue problem is
solved numerically. Our implementation is made available as
GEWtool (30). Therewith, we are also able to compute ZGV
points (and the transversely propagating waves that will be
discussed later on) by using the numerical methods that we have
recently developed for this purpose (24, 31). For details on the
model and the numerical methods, see the “Computing guided
waves and power flux” section.
The computed dispersion surface of the first modes that exhibit

ZGV points is shown in Fig. 3. Note that, because of the cubic an-
isotropy of silicon, the dispersion surface has an angular periodicity
of 90°. Furthermore, we observe reflection symmetry across the
directions θ = 0° and θ = 45°, which correspond to the [110] and
[010] crystallographic axes, respectively. Furthermore, the surface
exhibits four minima on the ⟨010⟩ axes and four saddle points
along the ⟨110⟩ directions.
Often, dispersion curves are plotted along a fixed propagation

direction θ, corresponding to cuts across the dispersion surface

ω(k,θ). The curves in three different propagation directions are de-
picted in Fig. 4A, and they differ most in the directions 0° and 45°.
Although pure Lamb/shear-horizontal (SH) waves do not generally
exist in the silicon plate because they are coupled, we label the mode
branches consistently to the commonly used notation. In particular,
following the notation in (17), the positive-slope branch shown in
Fig. 4A will be denoted as S1, while the negative-slope section is
called S2b.
The power flux of the waves is proportional to the group velocity

(10–12, 32). The latter is defined as the gradient of ω with respect to
the components of the wave vector, i.e.

cg :¼ rkω ¼
∂ω
∂k

er þ
1
k
∂ω
∂θ

eθ ð1Þ

It is worth remarking that these vectors are, per definition, or-
thogonal to the iso-frequency lines drawn in Fig. 3A. This is illus-
trated in Fig. 4B, where some group-velocity vectors have been
sketched for a chosen iso-frequency contour.
The power flux is discussed by comparing propagation at the

principal direction θ = 0° and the nonprincipal direction θ =
26.6°. For both directions, we compute the group-velocity vectors
as a function of frequency. The resulting vector components are de-
picted in Fig. 4C, while the magnitude is shown in Fig. 4D. Because
of the material’s reflection symmetry across principal axes, the
transverse power flux cgθ is identically zero on the principal direc-
tions. This is not the case for other propagation directions, as Fig.
4C illustrates. Because of this, the corresponding group-velocity
magnitude in Fig. 4D does no longer vanish at theminimal frequen-
cy. Furthermore, depending on whether the axial component cgr is
positive or negative, we speak of forward waves or backward waves
(17, 33–35), respectively. With respect to a source, a backward wave
exhibits outgoing flux but incoming phase fronts. This is the case
for the S2b wave. Note that the phenomena investigated hereinafter
are strongly related to the existence of such waves.
The transverse-group-velocity (TGV) component cgθ is due to

the anisotropy ∂ω/∂θ and causes a transverse power flux. We
remark that it is the coupling of Lamb and SH polarizations that
implies this (usually) nonzero transverse power flux [appendix B
of (24)]. Because of this transverse component, the overall power
flux (or group velocity) is not collinear with the wave vector. The
angle between the two is denoted as α and called steering or skew
angle (12, 36, 37). The frequency-dependent skew angles of the S1/
S2b modes are shown in Fig. 4E. It is remarkable that they cover
almost 180° in a rather narrow frequency range.

ZGV and TGV waves
Resonances appear where the power flux vanishes, and such points
are denoted as ZGV points. This requires the vanishing of the two
components of the group-velocity vector given in Eq. 1, i.e., these
resonances are associated to stationary points of the dispersion
surface of Fig. 3. It has been a common practice in the literature
to plot the dispersion curves for a given propagation direction as
in Fig. 4A to identify ZGV modes; see (25–27). However, these
curves only reveal the axial component cgr = ∂ω/∂k of the group-ve-
locity vector. Thus, identifying ZGV points as extrema of these
curves is only valid for isotropic media or for propagation along re-
flection symmetry planes of any anistroptic material, because, in
these cases, the group-velocity vector is collinear to the wave
vector, i.e., cgθ ∼ ∂ω/∂θ ≡ 0. Hence, while the marked points on

Fig. 1. Angular dependence of the ZGV resonance. (A and B) The surface dis-
placement was acquired at the center of a line source and obtained on two
different time windows. The resonance frequency clearly depends on the line ori-
entation with a 90° periodicity. θ is the angle of the excited wave vector and is
counted from the [110] axis. For long times, the resonance remains at θ = n ×
45°, n ∈ ℤbut vanishes elsewhere. The measurement data were taken from the
experiment detailed in (27), where (A) has already been reported.
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the curves of Fig. 4A appear to be ZGV points in the conventional
sense that ∂ω/∂k = 0, their transverse power flux might actually be
nonzero due to anisotropy. For this reason, we distinguish between.
1. ZGV points: waves with overall zero power flow, i.e., ∂ω/∂k = 0

and ∂ω/∂θ = 0, and
2. TGV waves: waves with zero axial power flux, i.e., ∂ω/∂k = 0.
A ZGV point is an extremum or saddle point of the dispersion

surface depicted in Fig. 3. The cubic material exhibits eight isolated
ZGV points on the principal directions. The four minima in the
⟨010⟩ directions are denoted as ZGV1 and occur at ω/2π = 7.7079
MHz and k = 3.421 rad/mm. The ZGV2 are saddle points at ⟨110⟩
with ω/2π = 7.7551 MHz and k = 3.142 rad/mm.
The existence of TGV waves is evident from the closed iso-fre-

quency contours that enclose a minimum in Fig. 4B. These always
exhibit points where the wave vector is tangent to the contour and,
consequently, orthogonal to the group velocity. The wave number
and frequency of TGVwaves depend on the wave-vector orientation
θ and form the continuous red curve drawn in Fig. 3 (A and B). The
closed TGV curve separates the forward wave region (outside) from
the backward wave region (inside).
TGV wave radiated by a line source
The existence of TGV waves is quite remarkable as their power flux
is orthogonal to the wave vector. While this fact is obvious from
their definition, the evolution of power flux when approaching
the TGV frequency can be assessed in Fig. 4E: The skew angles of
the S1 and S2b modes both converge to −90° when reaching the
TGV point. Note that the weaker the coupling between Lamb and
SHmodes, the sharper we expect the transition toward −90° to take
place. Ultimately, when these wave families decouple (i.e., on a prin-
cipal direction or in an isotropic plate), we obtain a discontinuity as
observed in Fig. 4E for θ = 0°. The combination of orthogonal prop-
agation and wide skew-angle spectrum leads to extraordinary dif-
fraction effects.
To observe these effects, we synthesize a line-source response

from the point-source measurements; for details, see the “Measure-
ment setup” section.Waves usually radiate in normal direction from
the line source and diffract around its edges. However, this is not the
case for the TGV wave. This can be observed in Fig. 5, which pre-
sents the response to a 6.4-mm line source preferentially exciting
wave vectors at 26.6° and −153.4°. The associated wave-number
spectrum at the TGV frequency is compared to the theoretical
wave numbers in Fig. 5A. To better observe the TGV wave, we
apply a Gaussian filter in the wave-number plane. Its full width at

half maximum is delineated in Fig. 5A. A subsequent inverse
Fourier transform into the spatial domain yields the instantaneous
intensity distributions depicted in Fig. 5B. Two wave packets prop-
agating along the line source can clearly be discerned, i.e., their skew
angle is ±90° as expected. From another point of view, this wave
“diffracts” around the line’s edge while maintaining the orientation
of the phase fronts aligned with the line source.
A further validation is done by comparing the group velocity of

the wave packets to theory. After 40 μs, the maxima of the envelops
are 6.81 mm from the source’s center, yielding a transverse velocity
of ±0.170 mm/μs. This is in very good agreement with the comput-
ed value of −0.177 mm/μs for the TGV wave at θ = 26.6°, as shown
in Fig. 4C. Note that the wave vectors oriented at θ =−153.4° lead to
the wave packet traveling in the opposite direction.
Propagation of energy purely orthogonal to the wave vector is a

strictly monochromatic process, both in frequency and wave
number. The neighboring spectral components exhibit a nonzero
axial power flux, and these waves are responsible for the packets’
lateral extend. Wave packets and their power flux can only be ob-
served when considering a spectrum of finite width. This is
ensured by the applied Gaussian filter in Fig. 5A, which has a
half-width of 0.7 rad/mm. While all spectral components of the
wave packets have very similar wave vectors, their power flux
covers a wide range of directions. As the power flux is orthogonal
to the iso-frequency lines, Fig. 5A shows that the skew-angle spec-
trum spans almost 180°.
Last, it is worth observing that the two wave packet’s phases

propagate in opposite directions, as indicated in Fig. 5B. The
counter-propagating wave packets lead to quickly varying interfer-
ence in the regions where the two superpose. It is remarkable that
the phase fronts of one packet travel all in the same direction. This
means that the phases propagate toward the source on one side, and
away from the source on the other side, as indicated by the wave-
vector arrows in Fig. 5B. Accordingly, each wave packet clearly con-
sists of the S1 forward wave and the S2b backward wave, separated
spatially by the TGV component. This is consistent with the smaller
wavelengths that we observe in Fig. 5B for the S1 components com-
pared to the S2b components. The spatial allocation of modes is also
in accordance with Fig. 4 (B and E).
Decay of the TGV wave contributions
The decay observed for some spectral components in the introduc-
tory Fig. 1 can now be explained. While the frequency extrema cor-
respond to the ZGV resonances, the remaining spectral

Fig. 2. Sample and measurement setup. (A) [001]-cut silicon wafer sample. The eXeYeZ coordinate system is fixed as indicated, while the ereθez system is aligned with
the wave propagation direction. The wave vector k is inclined at angle θ, while the group-velocity vector cg is at angle θ + α. (B) schematic representation of the laser-
ultrasonic measurement setup. BE, beam expander; L, lense.
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Fig. 3. Dispersion surface of the S1/S2bmode close to theminima in frequency. (A) Iso-frequency contours in thewave-vector plane and (B) surface in the frequency-
wave vector space. The ZGV points are located at themarkedminima and saddle points (red points). For visualization purposes, (B) has been rotated by 22.5° and cropped
to the shown quarter plane.

Fig. 4. Dispersion of wave vectors and group velocity. (A) Frequency versus wave numbers. (B) Some group-velocity vectors sketched on a selected iso-frequency
contour. Dispersion curves are cuts along constant θ of this surface. (C) Components cgr and cgθ of the group-velocity vector versus frequency, compare also to (B). The
transverse power flux due to cgθ does not vanish for TGV waves, while it does vanish at ZGV points. (D) Magnitude of the group-velocity vector versus frequency. (E) Skew
angles α between the group-velocity vectors cg and the wave vectors k plotted versus frequency.
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components are due to TGVwaves. The line source excites the latter
all along its length. The TGVwaves then propagate along the source,
where they are measured at the center point by the interferometer.
Because of their propagative nature, the waves leave the detection
point after a certain time. As seen in Fig. 1B, the TGV waves disap-
pear completely after about 40 μs, while the expected eight ZGV res-
onances at θ = n × 45°, n ∈ ℤ, perdure.
The time for the TGV waves to escape the measurement point

depends both on the length of the line source and the wave’s
group velocity. Compared to other wave components, the TGV
wave exhibits a very low group velocity, as can well be appreciated
in Fig. 4D. Therefore, the TGV waves are detected for a relatively
long time, resulting in a well-pronounced spectral peak in Fig.
1A. This explains why they play an important role in the presented
measurements. Note that the group velocity tends to zero as the line
orientation tends to one of the material’s principal axes. Hence, the
closer the line orientation is to a ZGV point, the more pronounced
the corresponding spectral peak will be.

Resonance pattern of ZGV modes
The previous results demonstrate that time acts as a filter in thewave
vector–frequency domain. After sufficient time, only the ZGV res-
onances remain in the finite spatial region of observation. As a con-
sequence, a resonance pattern develops in the silicon crystal plate.
We first lay out the theory explaining this resonance, and, subse-
quently, we present direct measurements thereof.
Theory of ZGV resonances
For the frequency region of interest, the resonance pattern is ex-
plained by the interference of the eight ZGV resonances sketched
in Fig. 6 (A and C). The interference of the four wave vectors

pertaining to a given ZGV mode leads to the periodic square
wave pattern depicted in Fig. 6 (B and D). Note that, for each
wave vector k, there exists a counter-propagating wave−k. As a con-
sequence, the square patterns are standing wave fields (17). It is
notable that this standing wave field is not due to the edges of the
plate but actually emerges in the infinite plate.
It is pertinent to discuss differences between the isotropic and

anisotropic cases. While the isotropic ZGV resonance consist of a
continuous wave-vector spectrum, i.e., it exhibits wave vectors in all
possible directions, the ZGV resonances in an anisotropic medium
consist of a finite set of wave vectors. Accordingly, the ZGV field
due to a point load on an isotropic plate is a cylindrical standing
wave (18). In particular, this means that the nodal curves seen on
the plate’s surface are closed circles around the source that never
cross. In contrast to this, the field of the ZGV1 or ZGV2 resonance
is the “checkerboard standing wave” as shown in Fig. 6 (B and D).
Hence, anisotropy leads to straight, open, and crossing nodal lines.
The ZGV1 and ZGV2 waves interfere to form a resonance

pattern as depicted in Fig. 6F. The nodal curves form “bubbles” of
different shapes that are no longer square. As each of the wave com-
ponents is flux free, no energy is propagated. Nonetheless, this is no
longer a standing wave field because the ZGV1 and ZGV2 compo-
nents are at different frequencies. Instead, the bubbles move radially
out or into the center of the pattern while changing their shape (see
movie S2). Note that they shortly stop moving when the two ZGV
components are in phase or in paraphase. For the field synthesis
shown in Fig. 6F, we arbitrarily assumed identical amplitudes and
a zero phase shift between ZGV1 and ZGV2. Because of the simi-
larity of the displacement eigenfunctions uZGV1(z) and uZGV2(z),
both modes are excited similarly by the point source. For the

Fig. 5. Measured TGV wave field radiated by a synthetic line source inclined 26.6°. (A) Wave-number spectrum at the TGV frequency compared to theory prior to
filtering in the wave-number domain. (B) Instantaneous intensity distributions after having applied a Gaussian filter in the wave-number domain as indicated in (A). The
two wave packets propagate along the line source, while the wave vectors are orthogonal. Note that the phases propagate counter-wise in the two pulses, leading to
interference where the two overlap. Frequency band from 7.6 to 7.8 MHz. Full field reconstructed from one quadrant (cf. movie S1).

Fig. 6. Formation of the S1/S2b resonance pattern in an infinite silicon plate. (A, C, and E) Wave vectors (not to scale). (B, D, and F) Corresponding wave fields. The
ZGV modes in (A) and (B) and (C) and (D) are characterized by close but different wave numbers |k| and frequencies ω. These two standing wave fields interfere to form a
nonstationary, time-dependent beating pattern as shown, for example, in (F) when the phase shift between the two is zero (cf. movie S2).
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same reason, we expect both ZGVs to be in phase at the moment of
generation by the pulse.
The phase shift between ZGV1 and ZGV2 is modulated in time

due to their slightly different frequencies. In other words, temporal
beating is expected as a consequence of their superposition. Hence,
the instantaneously observed phase shift loops 2π in a period of

ΔT ¼
2π

ωZGV2 � ωZGV1
¼ 21:2 μs ð2Þ

Measurement of ZGV resonances
The described resonance pattern is directly observable by measur-
ing the wave field excited by a point-like source. As the S1/S2b res-
onance is the one that is most strongly excited by our system, the
theoretically expected moving resonance pattern can be discerned
in the raw data without postprocessing; see movie S4. To obtain a
clean result, other resonances as well as reflections from the border
of the plate should be avoided. We achieve this with the mentioned
frequency band-pass filter in combination with the large source that
excites low wave numbers; see the “Measurement setup” section for
details. The thus observed frequency–wave-number range contains
only slow modes in the vicinity of the ZGV resonances. The filtered
displacement fields are depicted in Fig. 7 for selected time instants.
Propagating waves dominate the picture at first, and their phase

fronts (nodal curves) encircle the source. However, a nodal curve
pattern with the mentioned bubbles forms over time; see Fig. 7
and movie S3. The pattern develops slowly from the source (in
the center) outward as the propagative waves leave the region of ex-
citation. When the pattern becomes first visible, the two ZGV res-
onances are not in phase and the bubbles move in and out on the
⟨110⟩ and ⟨100⟩ axes as expected from the theory.
After one beating period ∆T, the two ZGVs should be in-phase

for the first time and, hence, we expect a pattern similar to Fig. 6F.
At 21.25 μs, the pattern in the inner area marked by the square in
Fig. 7 resembles the corresponding region in Fig. 6F. Outside this
region, the contribution of propagating waves is still too high.

Nonetheless, after two beating periods, at 42.4 μs, the non-ZGV
waves propagated, and we can now recognize a fully developed
ZGV resonance pattern in the region of observation. Note, for
example, the “eight-pointed star” centered at the center and at the
edges of the marked inner region. Discrepancies to Fig. 6F can
mostly be attributed to temporal sampling of the measurement.
A quantitative validation is performed by comparing measure-

ment and theory in the spectral domain. First, a time Fourier trans-
form yields the measured wave fields at the ZGV frequencies. The
result is depicted in Fig. 8 (A and B), and both confirm the wave
fields expected in Fig. 6 (B and D). Second, we additionally
perform a spatial 2D Fourier transform into the wave vector–fre-
quency domain. The obtained spectral amplitudes are displayed
in Fig. 8 (C and D) together with the ZGV wave vectors expected
from theory. We observe that the energy confines closely to the
regions predicted by the computed wave vectors. While the wave
field at ωZGV1 consists almost purely of the ZGV resonances, prop-
agating modes exist at ωZGV2 and are also excited. This is because
ωZGV2 corresponds to the saddle points and the corresponding iso-
frequency contours are two curves that cross/touch at the ZGV2
points. In contrast to this, the iso-frequency contours at ωZGV1
reduce to the isolated ZGV1 points. Note that spatiotemporal
gating can be used to remove the propagating waves of Fig. 8D, as
was done in Fig. 1. Overall, this confirms that the resonances ob-
served in an infinite plate of anisotropic elasticity are formed by
the superposition of a discrete set of ZGV modes.

DISCUSSION
The existence of isolated critical points in the S1/S2b mode disper-
sion surface entails two distinct and extraordinary effects: transverse
wave propagation (TGV waves) and beating ZGV resonances. We
presented the underlying theory and experimental evidence of
both effects. TGV waves are characterized by a power flux that is
orthogonal to their wave vector. They propagate along a line

Fig. 7. Measured wave fields at selected times. A resonance pattern forms due to the superposition of the eight plane waves corresponding to ZGV resonances in the
single-crystal silicon wafer. The pattern forms naturally over time as only the ZGV resonances remain in the spatial window close to the point source. The inner region of 4
mm by 4 mm is marked for reference. Frequency band from 7.6 to 7.8 MHz. Full field reconstructed from one quadrant (cf. movies S3 and S4).
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source that excites them. For this reason, they manifest as a peak in
the spectrum measured at a chosen point of the line source.
ZGV resonances are already used very successfully for ultrasonic

nondestructive testing and material characterization. With the de-
veloped physical understanding, we expect similar procedures to
become attractive for novel MEMSs, particularly sensors. The
present work overcomes one of the major difficulties in designing
such systems: properly accounting for anisotropy, such as is en-
countered for silicon.
It is evident from the theory that we presented that the ZGV res-

onances directly reveal information about the principal axes of the
material, independent of the actual orientation of the sample. Mea-
suring the ZGV1 and ZGV2 resonance frequencies as well as the
frequency of a regular thickness resonance is sufficient to fully char-
acterize a material of cubic symmetry. These frequencies are readily
obtained from the recorded normal surface displacement after a
single pulsed excitation because they all manifest as sharp peaks
in the spectrum (27). This avoids the technically complicated scan
of the wave field, as needs to be done for widespread techniques
based on guided waves. Overall, this could enable nondestructive,
contactless, and real-time characterization of complex materials.
The present contribution restricted to ZGV resonances of the S1/

S2bmodes. However, it is well known that other ZGVmodes exist at
higher frequencies. They are substantially weaker and were frequen-
cy-filtered in this work. Note that anisotropic plates can also
support multiple ZGV resonances pertaining to the same modes
(24). In this case, not only local minima but also local maxima
can appear in the dispersion surface. The analysis and mechanics
presented here apply analogously.
The discussed phenomena are very particular to 2D (and partly

also 3D) wave propagation in anisotropic media. Analogous phe-
nomena should be expected when the material pertains to a

different anisotropy class than the one studied here. Moreover,
similar effects are expected in phononic crystals or meta-materials,
as dispersion surfaces with similar features haven been reported for
these materials (38–41). However, note that the critical points (ZGV
points) that we studied here exist even without periodicity, i.e., in a
homogeneous anisotropic plate. Last, hyperbolic polaritons share
many of the wave propagation features described here, including
power flux orthogonal to the wave vector (42).

METHODS
The procedure that we use to compute guided elastic waves is
sketched in the “Computing guided waves and power flux”
section. The experiment is detailed in the “Measurement
setup” section.

Computing guided waves and power flux
The waves propagate in a plate that is assumed to be infinite in the
X-Y plane; see Fig. 2A. Its material is of anisotropic stiffness c and
mass density ρ. The plane waves of wave number k shall be harmon-
ic with angular frequency ω. Hence, their wave field is of the form

~uðr; θ; z; tÞ ¼ uðzÞ eikr e� iωt ð3Þ

We proceed by arbitrarily fixing the propagation vector k = ker
and computing the corresponding frequency ω andmodal displace-
ments u(z). These are obtained as the solutions of a differential
eigenvalue problem (24, 29, 43). ω and u(z) represent the eigenval-
ues and the eigenfunctions, respectively. For a concise derivation of
the concrete problem formulation, see (24).
We compute solutions with a semi-analytical procedure that

consists in two steps: (i) discretize the differential eigenvalue
problem and (ii) solve the resulting algebraic eigenvalue problem
numerically. Many variants of this procedure have been discussed
in the literature (43–45). A concise implementation based on spec-
tral collocation is GEW dispersion script (46). For the current work,
we perform the discretization using the spectral element method,
i.e., one finite element of high polynomial order (47). This method
leads to a regular Hermitian eigenvalue problem (48), which allows
us to reliably compute the ZGV and TGV points in general elastic
waveguides (24, 31). We make our implementations available under
the name of GEWtool (30), and it includes all required postprocess-
ing methods to reproduce the results of this contribution. In partic-
ular, the script "dispersionSurface_silicon_ZGV.m" in the examples
directory produces Fig. 3A.
The coupling and decoupling of wave families are of importance

(24, 29, 48, 49). Symmetric and antisymmetric waves decouple due
to the plate’s symmetry across its midplane. We only compute the
symmetric waves bymodeling the top half of the plate and fixing the
uz displacement component at the midplane. Moreover, the SH po-
larization (uθ) only decouples from the Lamb polarization (ur, uz)
for θ = n × 45°, n ∈ ℤ. For this reason, we always compute the fully
coupled waves, meaning that all three displacement components are
accounted for in the displacement vector u(z).
After computing guided wave solutions, their power flux and

group velocity can be computed in a postprocessing step. To this
end, we exploit the fact that, in nondissipative waveguides (more
precisely: real-valued k and ω), the group velocity is equal to the

Fig. 8. Measured displacement fields at the two ZGV frequencies. (A and B)
Harmonic field at arbitrary phase in the physical X-Y space obtained by a temporal
Fourier transform. (C and D) Spectral magnitude in the reciprocal kX-kY space ob-
tained by a spatiotemporal Fourier transform. The numerically computed ZGV
wave vectors are indicated by arrows. Full field reconstructed from one quadrant.
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energy velocity (10, 32, 50) and is given by

cg ¼ ce ¼
Ð
p dz
Ð
Hdz

ð4Þ

It is defined through the power flux density vector p and the
average total stored energy density H. Using the particle velocity
v = −iωu and stress T = c : ∇u = c : (iker + ez∂z)u, the power flux
density can be computed as

p ¼ �
1
2
Refv� � Tg

¼ �
1
2
Refiωu� � c : ðiker þ ez∂zÞug

ð5Þ

where “�” denotes complex conjugation, “Re” the real-part operator,
and ∂z = ∂/∂z. Furthermore, because of equipartition of energy (12),
we can compute the average total stored energy density by

H ¼
1
2
ρω2u� � u ð6Þ

Our previously outlined procedure to solve for guided waves
yields all quantities required to compute Eqs. 5 and 6. The differen-
tiation in Eq. 5 and the integration in Eq. 4 can be performed nu-
merically. In this way, we can compute the energy velocity of each
point of the dispersion curves independently. Proceeding in this
way explicitly provides both the axial and the transverse compo-
nents of the energy velocity vector. The z component is identically
zero due to the power flux–free surfaces of the plate. Last, as the
wave vector is k = ker, the skew angle α can be computed from
the energy velocity vector as

α ¼
arctan ceθ

cer

� �
for cer � 0

arctan ceθ
cer

� �
� π otherwise

8
<

:
ð7Þ

Measurement setup
Measurements are achieved all-optically and are presented sche-
matically in Fig. 2B. Guided waves are generated with a Q-switched
Nd:YAG (yttrium aluminum garnet) laser (Quantel Laser, France,
Centurion, 1064-nm optical wavelength, 100-Hz repetition rate)
that delivers 10-ns pulses of 9 mJ. The laser output beam is expand-
ed and then focused onto the silicon plate with a lens (100-mm focal
length). The focal spot is kept rather large (beam width ≈ 1 mm),
thus exciting wave numbers up to ≈7 rad/mm. This favors the gen-
eration of the first ZGV resonance while limiting the generation of
the fundamental guided modes in the frequency range of interest
(51). The wafer (525-μm nominal thickness, 524.6-μm measured
thickness, 125-mm diameter) has a 100-nm aluminum coating on
the excitation side, which reduces the optical penetration depth.
However, similar results were obtained when exciting on the side
without the coating. The coating is thin enough not to affect the
elastic waves in the silicon plate.
The normal surface displacement is detected on the opposite

side with a heterodyne interferometer of 532-nm optical wavelength
with a power of 100 mW and a focal spot of ≈50 μm. A hardware
high-pass filter with 1.25-MHz cutoff frequency is used to avoid sat-
uration of the interferometer due to the large low-frequency dis-
placements of the A0 mode. Signals are recorded with 100-MHz

sampling rate by an oscilloscope connected to a computer. Each
signal is averaged 128 times. The 25.05 mm–by–25.05 mm scan is
performed by moving the excitation unit with a two-axis translation
stage along eX and eY with a 150-μm pitch. Note that scanning the
field is time consuming. For this reason, we exploited the cubic sym-
metry of the material and scanned only one quadrant around the
source, as indicated in the inset of Fig. 2B. The full fields have
been reconstructed by an appropriate symmetrization.
While the measurements directly provide the point-source re-

sponse, the line-source response shown in Fig. 5 is synthesized a
posteriori. To this end, we superpose 20 shifted pointsource re-
sponses. The synthetic line source exciting wave vectors at θ =
26.6° is obtained by shifting two pitches vertically for every horizon-
tal one.
Fast waves outside the ZGV region are also excited and their re-

flections from the border of the plate disturb the long-time obser-
vation of the slow TGV waves in Fig. 5 as well as the resonance
patterns in Fig. 7. To avoid this, we use a band-pass filter between
7.6 and 7.8 MHz for these figures. Note that, because of the large
source size, large wave numbers are not observed. The remaining
frequency–wave-number range contains only the slow modes
close to the ZGV points.

Supplementary Materials
This PDF file includes:
Legends for movies S1 to S4

Other Supplementary Material for this
manuscript includes the following:
Movies S1 to S4
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