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Abstract
The Ince-Gauss beams, separable in elliptic coordinates, are studied through a ray-optical
approach. Their ray structure can be represented over a Poincaré sphere by generalized Viviani
curves (intersections of a cylinder and a sphere). This representation shows two topologically
different regimes, in which the curve is composed of one or two loops. The overall beam shape is
described by the ray caustics that delimit the beams’ bright regions. These caustics are inferred
from the generalized Viviani curve through a geometric procedure that reveals connections with
other physical systems and geometrical constructions. Depending on the regime, the caustics are
composed either of two confocal ellipses or of segments of an ellipse and a hyperbola that are
confocal. The weighting of the rays is shown to follow the two-mode meanfield Gross–Pitaevskii
equations, which can be mapped to the equation of a simple pendulum. Finally, it is shown that the
wave field can be accurately estimated from the ray description.

1. Introduction

The paraxial wave equation accepts many types of solutions, some of which are separable in a given
coordinate system [1–8]. A particular case is that of beams that take the form of a Gaussian times a
polynomial involving the corresponding separation variables [1, 2, 9]. The Hermite-Gauss (HG) and
Laguerre-Gauss (LG) beams, for example, are separable in Cartesian and polar coordinates, respectively, and
are used in a range of applications including quantum information, telecommunications and
imaging [10–15]. Given the simplicity of the closed-form expressions for these beams in the wave regime,
only a handful of studies consider them in terms of a ray-optical picture [16–18].

The Ince-Gauss (IG) beams [9, 19–24], separable in elliptic coordinates, have received significant
attention in the last couple of decades, finding also many applications [25–28]. Elliptical coordinates require
specifying the separation 2f between its two foci. Let the radial ξ ∈ [0,∞) and angular ν ∈ [0,2π) elliptic
variables be defined as r= (x,y) = ( fcoshξ cosν, f sinhξ sinν). Within a region of some length scale w0

around the origin, these elliptic coordinates tend to the Cartesian coordinates as f→∞, while for f → 0 the
contours of this system reduce to radial lines and circles as in polar coordinates. IG beams are then a broader
family of beams that include both HG and LG beams as its two limiting cases. The specific shape of an IG
beam depends on the dimensionless parameter ε= 2f 2/w2

0, where w0 is the fundemantal width of the
Gaussian. For any fixed ε, IG beams form a complete orthonormal set in terms of their total order N, parity p
(= e for even modes and o for odd modes), and index µ, which runs from 0 (1) to N in steps of two for p= e
(o). At the waist plane z= 0 these beams are defined (to within an unimportant normalization factor) in

terms of the Ince polynomials K(p)
N,µ as

IG(p)
N,µ (r;ε)∝ K(p)

N,µ (iξ ,ε)K
(p)
N,µ (ν,ε)e

−r2/w0
2

. (1)
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Figure 1. Intensity distribution for the even IG beam with total order N= 22 and µ= 18 as ε varies from 0 to∞. At the extremal
values ε= 0 and∞, the IG beams reduce to real LG and HG beams, respectively. At intermediate values they take the form of
either deformed LG-like or HG-like beams when ε is below or above a given boundary.

The variation of an IG beam profile with ε (for fixed values of the beam’s indices) is shown in figure 1.
Note that for ε→ 0 the beam reduces to a real LG beam with (N−µ)/2 radial nodes and 2µ azimuthal nodes
(that is, µ azimuthal field oscillations). At the other limit, for ε→∞ the beam reduces to a HG beam with µ
and N−µ nodes in each of the Cartesian directions. As ε varies between these limits the profile undergoes a
transition in which two regimes can be recognized: the LG-like regime where the beam resembles a deformed
LG beam since it is confined between two concentric loops, and the HG-like regime where the beam
resembles a deformed HG beam since it is confined within a quadrangle with curved sides. The distinction
between these two regimes becomes more marked for modes with higher N. Note that, in all cases, the beams
carry no net intrinsic orbital angular momentum (OAM), and hence the limit ε→ 0 corresponds to real LG
beams and not ones presenting a phase vortex.

The separable Gaussian solutions discussed so far are part of a larger set of paraxial beams known as
structured Gaussian (SG) beams [17, 18, 29–33]. SG beams preserve their intensity profile under
propagation (up to a hyperbolic scaling), and are the modes of stable resonant cavities with spherical
mirrors [2, 21, 34]. These cavities happen to be mathematically analogous to a two-dimensional rotationally
symmetric quantum harmonic oscillator, and thus the functional form of SG beams at their waist plane also
describes the eigenmodes of this oscillator. The quantization of the cavity modes is analogous to the energy
quantization of the oscillator modes, and given the systems’ symmetry they both depend on only one index:
the total order N. All modes with equal N are then degenerate, explaining why a range of mode shapes
(including HG, LG, IG for any ε and many others, all with any orientation) are possible. The degenerate
subspace of modes with given N can be mapped onto a spin system with SU(2) symmetry by using
Schwinger’s coupled oscillator model [35]. This connection has allowed the use of various spherical
representations to describe SG beams and their changes under specific modal transformations, as well as the
phases they can accumulate [17, 32, 36, 37].

The degeneracy of the mirror cavity can be broken by inducing perturbations, such as small amounts of
well-chosen aberrations. It was shown recently that IG modes with a given ε can be selected by adding small
amounts of astigmatism and spherical aberration [24], their ratio being proportional to ε. In particular, a
small amount of only spherical aberration selects LG modes, while a small amount of astigmatism alone
leads to HG modes aligned with the symmetry axes of the aberration. Furthermore, this aberrated cavity
system was shown to be mathematically analogous to a Bose–Hubbard dimer, a widely used model in
condensed matter physics [24, 38].

In this work, we take a fresh look at IG beams from a ray-optical perspective. Rays, and their envelopes
known as caustics, have been used to explain intuitively the behavior of wave fields [17, 30, 33, 39–43]. When
applied to SG beams, the ray model can explain both their ‘self-healing’ behavior, as well as the Gouy phase
accumulated around the focal region and the geometric phase accumulated during a sequence of mode
transformations [17, 30]. Rays can also be used to design new SG beams [17, 44], and to describe even SG
beams that can be deemed as ‘the least ray-like’ [33]. Here we show that a ray-based description provides
important insights into the shape of IG beams, revealing a surprising amount of geometry that connects
them to several other physical phenomena. In particular, this ray treatment is naturally compatible with the
cavity aberrations mentioned earlier, and hence clarifies the two regimes (HG-like and LG-like) from the
shape of the resulting caustics, as well as the boundary between these regimes, which can be understood as a
ray-optical topological transition. We also show that the ray description is essentially complete, since it is
sufficient to calculate accurate wave field estimates.
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2. Ray formalism for SG beams

In the paraxial ray formalism, at a given propagation distance z, say z= 0, each ray can be identified by its
transverse coordinates Q= (Qx,Qy) and its transverse direction cosine vector P= (Px,Py). These quantities
can be used to constitute a four-dimensional phase space (Qx,Qy,Px,Py), where each point represents a
possible ray. An optical beam is represented by a two-parameter family of rays that defines a surface (referred
to as the Lagrange manifold) within this phase space [41, 43]. Typically, for well-localized beams, this
manifold is topologically a torus, so that the two parameters, say τ and η, are periodic. For SG beams, the
requirement of self similarity means that the cross-section of the ray family must maintain its overall shape
up to a global scaling, and as shown elsewhere [17, 18] this imposes a specific dependence for Q and P on
one of the two parameters, say τ , so that at z= 0 they satisfy

1

w0
Q(η,τ)+ i

kw0

2
P(η,τ) =

√
N+ 1v(η)e−iτ , (2)

where v is a two-dimensional complex vector with unit norm. The normalization of v implies that

1

w2
0

∥Q∥2 + k2w2
0

4
∥P∥2 = N+ 1. (3)

This expression is equivalent to the equation for the conservation of energy of a two-dimensional harmonic
oscillator, and it restricts the region of the 4D phase space occupied by the Lagrange manifold. Note that, for
fixed η, bothQ and P describe ellipses as τ varies, just like the time evolution for the position and momentum
of a harmonic oscillator. Upon propagation, each of these elliptic families of rays (EFR) describes a ruled
hyperboloid with an elliptic cross-section that satisfies the property of self similarity, as shown in figure 2: the
elliptical cross-sections get larger upon propagation, but they retain their ellipticity and orientation.

An EFR is fully determined by the normalized complex two-vector v. Since the vector is normalized and
its global phase is irrelevant, it can be parametrized as

v(η) = cos [θ (η)/2]e−iϕ(η)
2 ϵ+ + sin [θ (η)/2]ei

ϕ(η)
2 ϵ−, ϵ± = (x̂± iŷ)/21/2, (4)

with θ and ϕ being the colatitude and longitude angles of a sphere, respectively. This vector is then
mathematically equivalent to the Jones vectors used to represent polarization states as points on the surface
of a Poincaré sphere. It is then possible to represent any EFR as a point on the surface of ray-Poincaré sphere
as shown in figure 2. Like for polarization, the angle θ determines the ellipticity and handedness of the EFR,
while ϕ determines its orientation. These angles are functions of the second parameter, η, so that an SG beam
is described by a path over the surface of the sphere, referred to here as the Poincaré path (PP). Because this
second parameter is typically periodic, the PP is typically a closed path.

The analogy between the ray structure for SG beams and polarization can be extended by introducing
analogs of the Stokes parameters, which define a Cartesian coordinate system for the ray-Poincaré sphere.
These are the Fradkin-Stokes parameters, defined as [24, 29]

T1 =
1

2w2
0

(
Q2
x −Q2

y

)
+

k2w2
0

8

(
P2x − P2y

)
, (5a)

T2 =
1

w2
0

QxQy+
k2w2

4
PxPy, (5b)

T3 =
k

2

(
QxPy−QyPx

)
. (5c)

For each ray, these parameters are invariant under propagation in free space, with T3 being proportional
to the skew invariant, which is a measure of the OAM of each ray. Further, it can be shown that these
parameters are constant also over all rays within a given EFR as defined by the expression in equation (2) for
fixed η and varying τ . In fact, an alternative definition for the EFR is as the set of all rays with given values for
all three Tn. It can be shown that equation (3) can be written as

T2
1 +T2

2 +T2
3 =

(
N+ 1

2

)2

, (6)

so these parameters are indeed constrained to a spherical surface in the space (T1,T2,T3). Because the
Poincaré sphere is often defined as a unit sphere, it is convenient to use the normalized quantities
tj = 2Tj/(N+ 1), so that

t21 + t22 + t23 = 1. (7)

3
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Figure 2. (left) Ray-Poincaré sphere representation for elliptic families of rays (EFRs). Several EFRs are shown corresponding to
different points over the ray-Poincaré sphere. (right) Examples of Poincaré paths for vortex LG and HG beams.

The ray families of the most common SG beams are simply related to the parameters Tj (and hence tj).
For example, LG beams have definite OAM, and hence their ray-optical representation is composed of only
rays with given t3. Their PP then corresponds to the intersection of the sphere with a plane of constant t3,
that is, to a horizontal circle over the sphere whose height determines the OAM as shown in figure 2. A
similar relation holds for HG beams oriented along the x and y axes, which are composed instead of rays with
given t1, and whose PP are circles normal to the t1 axis (see figure 2). Ray families for which a linear
combination of t1 and t2 is constant correspond to HG beams with different orientations. More generally, ray
structures for which a linear combination of all three parameters is constant, that is, where the PP is a circle
with any orientation, correspond to the so-called generalized Hermite-Laguerre-Gauss (HLG) beams [18, 29,
31, 45], which include the HG and LG beams as special cases. Note that, except for these two special cases,
HLG beams are not separable in any coordinate system.

3. Ray structure for the IG beams

3.1. Poincaré path as a generalized Vivani curve
IG laser modes are known to result from aberrations or misalignment in a cavity [24, 34]. In fact, before IG
beams were proposed, modes in aberrated cavities resembling IG modes were observed experimentally and
studied theoretically in terms of ellipsoidal coordinates (beyond the paraxial regime) [46]. We showed
recently [24] that T1 can be associated with the effect of a small amount of astigmatism in the cavity mirrors,
whose effect is precisely to break the symmetry in the x and y directions, while a small amount of spherical
aberration (which is nonlinear in Q and P) preserves rotational symmetry and can be associated instead with
T2
3, where the square is consistent with the fact that the aberration does not have an intrinsic skewness.
As shown in [24], IG modes result when both aberrations are present. These modes are therefore

associated with ray families for which a linear combination of T2
3 and T1 equals some constant, where ε

determines the ratio between these aberrations:

T2
3 +

ε

2
T1 =

a

4
. (8)

That is, unlike HLG beams, these modes involve quadratic combinations of the Stokes–Fradkin parameters.
This relation can be written in terms of the normalized parameters as

t23 +
ε

N+ 1
t1 =

a

(N+ 1)2
. (9)

This equation defines a parabolic cylinder parallel to the t2 axis, whose intersection with the unit sphere
corresponds to the PP. However, the resulting curve is easier to understand by using equation (7) to eliminate
t3 from equation (9), giving

(t1 − c)2 + t22 = R2, (10)

which is the equation of a circular cylinder of radius R, with an axis parallel to the t3 axis and that crosses the
t1 axis at c, with

c=
ε

2(N+ 1)
, and R=

√
1+

[
ε

2(N+ 1)

]2
− a

(N+ 1)2
. (11)
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Figure 3. Ray structure of an IG beam (N= 22, even and µ= 18) as it transitions between the LG (c= 0) and HG (c→∞) limits.
(top) The intersection of the RPS with the surfaces defining the Poincaré path (PP) as their intersection along with the projection
of the PP on the EPD where the angle φ is defined. (middle) Elliptic families of rays color coded as the PP on the first row overlaid
on top of the amplitude distribution for the corresponding beam. (bottom) Three-dimensional propagation of the families of rays.

The PP for IG modes then corresponds to the intersection of the ray-Poincaré sphere with this cylinder, as
shown in figure 3. Note that the condition−1< c−R< 1 must be satisfied for an intersection between the
cylinder and the sphere to exist. For the specific case of c= R= 1/2, this intersection corresponds to the
Viviani curve (or Viviani window), proposed by seventeenth century mathematician Vincenzo Viviani [47].
More generally, intersections of a cylinder with a sphere are referred to as generalized Viviani curves, or also
as Euclidic spherical ellipses since the sum of the distances to two focal points on the surface of the sphere
equals a constant [48]. Generalized Viviani curves appear naturally in the description of a range of physical
phenomena, including the Bose–Hubbard dimer [48], which as discussed earlier presents mathematical
analogies with the aberrated cavity [24]. In optics, generalized Viviani curves describe polarization evolution
in nonlinear birefringent fibers (also analogous to the Bose–Hubbard dimer) [49], and the subset of the
generalized Viviani curves that are eight-shaped (with c+R= 1) describe the polarization evolution for
linearly polarized light traversing a rotating waveplate, or conversely the polarization states explored by a
rotating-waveplate polarimeter [50].

We can now see that the regimes for the shape of IG beams in figure 3 correspond to the different types of
generalized Viviani curves for the PP:

1. For c+R< 1 (that is, for ε < a/(N+ 1)) the PP consists of two disjointed loops, and this defines the
LG-like regime, since the PP resembles a deformed version of that for a real LG beam (two horizontal
circles that are mirror images of each other with respect to the t3 = 0 plane).

2. For c+R= 1 (that is, for ε= a/(N+ 1)) the PP is an eight-shaped curve, which defines the boundary
between the two regimes.

3. For c+R> 1 (that is, for ε > a/(N+ 1)) the PP consists of a single loop, and this defines the HG-like
regime since the PP resembles a deformed version of that for HG beams (a single vertical circle).

That is, in this ray-optical description, the transition between the LG-like and the HG-like regimes for IG
beams corresponds to a topological transition for the ray family: in the LG-regime, the ray family is actually
composed of two separate ray families (two phase-space tori) that are mirror images of each other. As ε
increases these two families deform until they share an EFR for ε= a/(N+ 1), and they then merge into a
single continuous ray family (one phase-space torus) in the HG-like regime. Note that while the boundary is
sharp in the ray regime, it becomes blurry when we take into account the wave nature of light. That is, for

5
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values of ε near the transition there can be appreciable tunneling effects between the two separate parts of the
PP that approach each other. The shape correspondence between the ray and wave pictures is shown in
figure 3.

3.2. Caustic structure in terms of Keplerian and harmonic oscillator trajectories
As we can see from the bottom row in figure 3, all rays are restricted to a region of space confined by an outer
surface, and also by an inner surface for the case of LG-like beams. These surfaces correspond to what is
known as caustics, which are the envelopes of the rays. Due to the large density of rays in their vicinity (on
one side), caustics are associated with the brightest regions of an optical field [39–41]. Since the PP encodes
the two-parameter ray family, the caustics can be inferred from it. The procedure for doing so turns out to be
of a geometrical nature [17], particularly for the case of IG beams considered here. The coordinates (t1, t2) of
the PP are sufficient for the determination of the caustics, since the only extra information provided by t3 is
the sign of the rays’ skewness, which does not affect where they form an envelope. As shown in the top row of
figure 3, the ray-Poincaré sphere can then be projected onto a unit disk, referred to here as the equatorial
Poincaré disk (EPD). Since for IG beams the PP is the intersection of a vertical circular cylinder with the
sphere, the PP projects onto a circle (or a circular segment) of radius R centered at (t1, t2) = (c,0). This circle
can be parametrized as

(t1, t2) = (c+Rcosφ,R sinφ) , (12)

where φ is the angle measured from the positive t1 axis (see figures 4 and 5). In the LG-like regime φ traces a
complete cycle while in the HG-like regime it is constrained to [φ0,2π −φ0] with

φ0 = arccosh with h=
1−R2 − c2

2Rc
. (13)

We now describe the geometric procedure for finding the caustics from the PP projection. As discussed in
[17], the first step is to find what is known as themedial axes or topological skeleton [51] between the PP
projection in equation (12) and the unit circle (the edge of the EPD). Medial axes are curves that are
equidistant to two other curves, and are defined as the loci of centers of what we call here bitangent circles,
which are the circles that are tangent to the two original curves. This is shown in figure 4 for the case of
interest here, in which the two original curves are the PP projection and the unit circle. For each point of the
PP projection (corresponding to a given value of φ), there are two bitangent circles, one of radius ro and
whose centermo is on the opposite side of the PP projection as its center, (c,0), and one of radius rs and
whose centerms is on the same side of the curve as (c,0). Because the PP projection is also a circle, the
distance between its center (c,0) and each of the two medial points is just the sum or difference of R and the
radius of the corresponding bitangent circle, namely

∥mo − (c,0)∥= ro +R, ∥ms − (c,0)∥= |R− rs|. (14)

Similarly, because both bitangent circles touch the unit circle, the distance between the origin and the medial
points is the difference between unity (the radius of the unit circle) and the corresponding radius, that is,

∥mo∥= 1− ro, ∥ms∥= 1− rs. (15)

The equations for the medial axes are obtained by eliminating the radii ro and rs from these relations, and we
now consider each medial axis separately.

For the medial axis traced bymo the elimination of ro leads in all cases to the equation

∥mo∥+ ∥mo − (c,0)∥= 1+R, (16)

which describes an ellipse with major axis 1+R and whose foci are the origin and (c,0). This construction is
shown in the top row of figure 4 and on the left side of Media 1–4. Note that in the LG-like regime the medial
axis traces the complete ellipse, and the geometry of this construction is related of what is known as a Steiner
chain [52], a remarkable geometric result by 19th-century Swiss mathematician Jakob Steiner. The ellipse is
also traced completely in the boundary case, for which the construction resembles instead a Pappus chain
[52], described by Pappus of Alexandria in the third century. In the HG-like regime, on the other hand, only
a fraction of the ellipse is traced bymo, given the fact that the PP projection is an incomplete circle.

The equation for the second medial axis, traced byms, requires a different treatment for the two regimes,
as well as for their boundary. In the LG-like regime we have that rs > R and R< 1, so that the right-hand side

6
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Figure 4. Construction of the medial axes from the PP projection for the two regimes and their boundary. (top) Medial axis (thick
blue curve) traced for varying φ by the pointmo which is the center of the bitangent circle (blue) of radius ro that touches both
the edge of the unit disk and the PP projection (thick black circle with radius R) at the point (red dot) corresponding to a given
angle φ. Note that the PP projection’s center andmo are on opposite sides of the tangent point to the PP projection. (bottom)
Same construction (with orange instead of blue) for the medial pointms, which is on the same side of the tangent point of the PP
projection as this curve’s center. A more detailed view of this construction is shown in Media 1–4 for the different regimes.

of the second expression in equation (14) equals rs −R. The elimination of rs from equations (14) and (15)
then gives

∥ms∥+ ∥ms − (c,0)∥= 1−R, (17)

which also describes a complete ellipse with foci at the origin and (c,0) but with major axis 1−R, as shown
in the bottom-left panel of figure 4 and the right panel of Media 1. In the HG-like regime, on the other hand,
because R> rs the right-hand side of the second expression in equation (14) equals R− rs, and the
elimination of rs gives instead

∥ms∥−∥ms − (c,0)∥= 1−R, (18)

which describes a branch of a hyperbola with the same foci, as illustrated in the bottom-right panel of
figure 4 and the right panel of Media 3,4. This hyperbolic branch presents different behavior for different
values of R: it opens away from the origin for R< 1 (as in the case shown in the bottom-right part of figure 4
and in Media 3), it is a straight line for R= 1, it opens towards the origin for R> 1 (as shown in in Media 4),
and it becomes a parabola with focus at the origin in the limit R→∞ (corresponding to the HG case). In
fact, in this latter limit, the ellipse traced bymo also becomes a parabola. At the boundary of the two regimes,
for which c+R= 1, the medial axis traced byms undergoes a transition that makes it occupy the complete
unit radial line corresponding to the positive t1 axis, as shown in the bottom-center panel of figure 4, because
any circle centered on this line segment that is tangent to the unit disc at t1 = 1 is also tangent to the PP
projection and hence is a valid bitangent circle. Note, though, that two points along this straight medial axis
are special, namely the origin and the point at (c,0). Whenms coincides with one of these points, rs equals
either unity or R, meaning that the bitangent circle is identical either to the edge of the EPD or the PP
projection and hence is tangent to the corresponding curve not only at one point but all along its perimeter.
This transition case is illustrated in the right-hand panel of Media 2.

In summary, for both regimes the medial axes are conic sections with one focus at the origin of the EPD
and the other at (c,0). Therefore, geometrically, their shape coincides with that of Keplerian orbits for a
potential centered at the origin. These orbits are closed (elliptic) and correspond to an attractive force formo

in all cases (althoughmo does not trace the complete orbit for c+R> 1), and also forms in the LG-like
regime. Forms in the HG-like regime, the force is attractive if R> 1 (although the orbit is not periodic),

7
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Figure 5. Construction of the caustics from the PP as they transition between the LG (c= 0) and HG (c→∞) limits. (top)
Equatorial Poincaré disk (EPD) with the projection of the PP (inner black curve) and the two medial axes (blue and orange
curves) with examples of the bitangent circles used to construct them, (middle) the caustics obtained via the conformal mapping
of the medial axes and (bottom) the caustics overlaid on top of amplitude distribution of the corresponding beam.

repulsive for R< 1, and there is no force for R= 1. In the limit c→∞ (and hence R→∞) corresponding to
HG beams, bothmo andms trace parabolas corresponding to escape orbits, while in the opposite limit of
c→ 0 corresponding to LG beams, bothmo andms trace circular orbits.

The medial axes can now be mapped directly onto the caustics by using a square-root conformal
map [17]. This is done by associating a medial pointm= (t1, t2) with the complex number t1 + it2 and then
taking its square root:

Q(c)
x + iQ(c)

y =±w0

√
(N+ 1)(t1 + it2). (19)

The resulting pointQ(c) = (Q(c)
x ,Q(c)

y ) corresponds to a caustic point. Given the sign ambiguity of the square
root, each medial axis point maps onto two caustic points, and therefore each of the two medial axes maps
onto two segments of the caustic curves. Remarkably, the square-root conformal map is known to have the
property of mapping Keplerian orbits onto the orbits of a particle in a (repulsive or attractive)
two-dimensional harmonic oscillator, which correspond to conic sections centered at the origin [53].
(Incidentally, the properties of this mapping when applied to conics make it also useful for studying the
shape of light reflectors in non-imaging applications [54].) Since the medial axes of IG beams correspond
precisely to Keplerian orbits, their caustics take the shape of confocal conic sections with foci that coincide
with those for the elliptical coordinate system, (±f,0). For beams in the LG-like regime, the caustics are two
complete confocal ellipses, which in the limit of LG beams become two concentric circles. In the HG-like
regime, on the other hand, the caustic structure is composed of two segments of an ellipse and two segments
of a hyperbola, forming a deformed quadrangle, and in the limit of HG beams these segments become
straight lines (since the square-root map transforms parabolas to straight lines). In the boundary case, the
outer caustic is an ellipse and the inner one occupies the major axis of this ellipse, with two main points that
coincide with the foci. In all cases, all rays are contained within these caustics.

4. Semiclassical analysis

4.1. Wave reconstruction
The wave behavior of an optical field can be reproduced faithfully from the ray description if an appropriate
semiclassical method is used. Since there is a closed-form expression for the IG beams, it is not necessary to
rely on a semiclassical approximation to calculate them. However, it is still interesting to show that the ray
picture is essentially sufficient to reconstruct these fields. Further, this asymptotic analysis helps illustrate
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Figure 6. Semiclassical and exact values for the radius R for the IG beams with N= 6, N= 11 and N= 22 as a function of the
center coordinate c. The different curves or pairs of curves correspond to different values of µ.

some interesting aspects of the topological transition between the LG-like and the HG-like regimes, and
elucidates a connection with yet another physical system.

The semiclassical approach we use is a Gaussian summation method [42, 55, 56], since it does not diverge
at caustics and was shown to reproduce the exact paraxial solutions for HG, LG and HLG beams [17, 18, 57,
58]. In this method, each ray is dressed with a Gaussian contribution, and the estimate takes the form of an
integral over τ and η. When applied to SG beams, the integral in τ over a period can be solved analytically,
and the constant factors in equation (2) guarantee that the integrand is consistent at the endpoints of
integration. The semiclassical estimate then takes the form of an integral of contributions associated with
each EFR that allows estimating a SG beam from its ray structure [17, 18]:

U(r)≈
˛

A(η)
√
ϕ ′ (η) sinθ− iθ ′ (η)UN (θ,ϕ;r) e

i(N+1)Υ(η) dη, (20)

where A(η) is a weight factor for the contributions from each EFR, primes denote derivatives with respect to
η, UN is a mathematical analog of a spin coherent state [32, 59–61] defined as

UN (θ,ϕ;r) =
(v · v)N/2

w
√
2N−1πN!

e−
r2

w2 HN

(√
2v · r

w
√
v · v

)
, (21)

with HN representing an Nth order Hermite polynomial, and

Υ(η) =
1

2

ˆ η

0
ϕ ′ (η̄)cosθ (η̄)dη̄ (22)

gives a phase to each contribution that can be interpreted as a geometric phase, since it corresponds to half
an area on the ray-Poincaré sphere. This integral can be performed analytically in terms of elliptic integral
functions. (See appendix A for more information.)

While the periodicity of the integrand in τ is guaranteed by the factors in equation (2), the periodicity of
the integrand in η imposes conditions on the phase contribution due to the geometric phase caused by the
PP enclosing a solid angle Ω over the ray-Poincaré sphere. Because the square-root factor in equation (20)
accumulates a phase of±π on closing the PP loop, the solid angle must then be an odd multiple of
2π/(N+ 1), [17, 18]

Ω=
2π

N+ 1
(2s+ 1) , (23)

for integer s. This condition restricts the valid values for R in equation (10) needed to define the PP. However,
recall that the number of closed loops composing the PP differs for the two regimes. For the LG-like regime
there are two loops and each must satisfy the equation above, so the total subtended solid angle must be an
odd multiple of 4π/(N+ 1) (since the two loops enclose the same solid angle). On the other hand, in the
HG-like regime the PP consists of a single loop so the solid angle must be an odd multiple of 2π/(N+ 1).
This leads to a discontinuity at the ray-optical boundary on the allowed values for R for a given c; as shown in
figure 6 there are N + 1 allowed values of R for the HG-like regime, but only ⌊(N+ 1)/2⌋ for the LG-like
regime.

9
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4.2. The Ince equation and its eigenvalues
In the wave domain, IG beams are defined as eigenstates of what we call here the Ince equation, which
corresponds to the operator version of equation (8):(

T̂2
3 +

ε

2
T̂1

)
IG(p)

N,µ =
a

4
IG(p)

N,µ, (24)

where the operators T̂j are obtained from the expressions for Tj in equations (5) by substituting
P→−ik−1(∂x,∂y). Note that a corresponds now to an eigenvalue. The dotted lines in figure 6 were
calculated by using the values of a found through the numerical solution of equation (24). These curves are
continuous at the boundary, and they merge by pairs as one transitions into the LG-like regime. This is
because LG-like IG beams with equal indices but different parity are nearly degenerate, and semiclassically
they are represented by the same pair of PP loops, the only difference being the relative phase between the
two contributions. The discrepancy between the curves in figure 6 for the semiclassical estimate and the
result using the exact eigenvalue is due to the fact that the semiclassical approach neglects tunneling effects
that take place near the boundary. A more accurate semiclassical estimate would require considering
asymptotic corrections to the amplitude term derived below, which would modify the phase consistency
condition that leads to equation (23). This type of correction was used recently in the asymptotic estimation
of eigenvalues for anharmonic potentials [62]. Nonetheless, away from the boundary between the two
regimes, the curves produced by the semiclassical estimate are in good agreement with those calculated using
the exact eigenvalues, even for moderate N.

4.3. The semiclassical amplitude and a connection with the simple pendulum
The remaining element for evaluating the semiclassical estimate in equation (20) is to find the amplitude A.
The choice of this function, as long as its phase is constant and it does not vary abruptly, does not affect the
fact that the resulting beam is self similar or that it has a shape resembling that of IG beams. However, the
form for this function that makes the estimate approach closely the IG beams can be calculated from
substituting equation (20) into equation (24), leading to an equation that can be separated into different
orders of N (see appendix B for more detials). Unsurprisingly, the dominant term gives equation (8), namely
the PP. The next term in the series leads to an equation for the amplitude A(η), and hence to the appropriate
weighting for each EFR. The resulting equation for the weight takes a simple form when written in terms of
the Cartesian parameters tj(η):

A2 =
B

c

t ′3
t2
, (25)

where B is a constant of integration.
If we assume that the parametrization is such that A is constant, then t ′3 = A2t2/B. For simplicity we set

A2/B equal to unity. By combining this equation with the PP and the fact that the parameters tj lie on a unit
sphere, we are led to the following system of first order differential equations:

t ′1 =−t2t3, t ′2 = t1t3 − ct3, t ′3 = ct2. (26)

These equations are analogous to the two-mode Gross-Pitaevskii equations describing the meanfield
evolution of a Bose–Hubbard dimer [38, 48]. They lead to a particularly simple form when written in terms
of the angle φ used to parametrize the cylinder in equation (12):

φ ′ ′ − cR sinφ = 0. (27)

This is the equation for a simple pendulum where the parameter η plays the role of time. This equation
implies that the EFR contributions become more important the closest their point at the PP is to the equator
(which correspond to points where the pendulum lingers). The two regimes for the IG beams then
correspond to the two topologically different regimes for the pendulum: full rotation corresponds to the
LG-like regime and libration corresponds to the HG-like regime. The analogous connection between the
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Figure 7.Mapping between the phase space curves of the pendulum and the PPs of IG beams on the ray-Poincaré sphere.

pendulum and the Bose–Hubbard dimer was pointed out by Graefe et al [48]. Further, the connection with
the generalized Viviani curves becomes more intuitive if we use equation (12) to write t3 in terms of φ as
t3 =±

√
1− t21 − t22 =±

√
1− c2 −R2 − 2cRcosφ, and substitute this into the third relation in

equations (26), which leads to the simple expression

φ ′ (η) = t3. (28)

That is, t3 corresponds to the pendulum’s velocity (or momentum, for a unit mass). One can then define a
two-dimensional phase space (φ, t3) for the pendulum, in which its motion is described by a curve. However,
given the possible periodicity of φ one can roll up this phase space into a cylinder of radius R. The
pendulum’s phase space curve would then coincide with the PP for the IG beams, that is, with the
intersection of the cylinder with a sphere as shown in figure 7.

The fact that the rolling-up of the phase space of the pendulum falls on a sphere (or ellipsoid) is all the
more surprising because the shape of the intersections of the cylinder with the sphere depends on two
parameters, c and R, while for a pendulum one considers typically that the orbits in phase space depend on a
single parameter. Let us use as this parameter h as defined in equation (13). The libration and rotation
regimes for the pendulum then correspond to h being smaller or larger than unity, respectively. It is easy to
show that the equation for the PP, when unrolled onto the pendulum’s (φ, t3) phase space, becomes
t23 = 2cR(h− cosφ), so that the shape of the curve depends only on h, and the factor of 2cR just provides a
constant scaling for the pendulum’s momentum that, amongst other things, guarantees that |t3|⩽ 1.

4.4. Ray-based estimates
We conclude by testing the ray-based estimate for the IG beams, to show that the ray families obtained
recreate faithfully the wavefields. Since the integral in equation (20) has no closed-form solution, we
approximate it as a discrete sum ofM terms:

U(r)≈
M−1∑
j=0

√
ϕ ′
(
ηj
)
sinθ

(
ηj
)
− iθ ′

(
ηj
)
UN

[
θ
(
ηj
)
,ϕ
(
ηj
)
;r
]
ei(N+1)Υ(ηj), (29)
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Figure 8. Examples of sampling and comparison between the exact mode and its ray-based estimate for (first row) helical IG
beams in the LG-like regime with (second and third columns) N= 6, µ= 4, c= 0.1 and (fourth and fifth columns) N= 22,
µ= 18, c= 0.3, and (second row) even IG beams in the HG-like regime with (second and third columns) N= 6, µ= 4, c= 0.4
and (fourth and fifth columns)N= 22, µ= 18, c= 0.7. The number of termsM was chosen as the smallest for which the estimate
is visually indistinguishable from the exact distribution. For the helical IG beams the plots show the complex field with the phase
encoded as hue, while for the HG-like IG beams the plots show the amplitude distribution. The figures in the first column show
an example of sampling for eight points at equal integrals in η. Note that their projection onto the (t1, t2) plane is equivalent to
snapshots at uniform time intervals of the evolution of a pendulum.

where we use the parametrization defined by equations (26) and (27) that makes A= 1. The dependence of
the angles θ and ϕ on the parameter η is determined by solving these differential equations with appropriate
initial conditions determined by the PP. Setting η0 = 0 then ηj = jη(p)/M where the pendulum’s period is
given by

η(p) =


´ 2π
0

dη√
1−c2−R2−2cR cosη

= 4 K(h)√
1−(R+c)2

, if c+R< 1,´ 2π−φ0

φ0

2dη√
1−c2−R2−2cR cosη

= 8 F(φ0/2 |h)−K(h)√
1−(R+c)2

, if c+R> 1,
(30)

with h=−4Rc/[1− (R+ c)2], and where K and F are, respectively, the complete and incomplete elliptic
integrals of the first kind.

In the LG-like regime, each of the two loops provides a contribution, one being the complex conjugate of
the other. However, the semiclassical theory does not constrain how these contributions are combined.
Figure 8 shows the field due to the northern PP loop, resulting in a beam with the same elliptical shape as the
corresponding IG beam, but with nonzero net OAM. The southern loop would then have the opposite OAM.
These are then estimates (when sufficiently far from the boundary) for what has been referred to as helical IG
beams, which are obtained by combining even and odd IG beams with the same N and µ as

IG(±)
N,µ = IG(e)

N,µ ± iIG(o)
N,µ [21]. As shown in figure 3, for both the upper and lower parts, the projections on

the EPD of the sampling points used to compute the estimate provide us with snapshots of the evolution of a
pendulum in full rotation. Real IG beams can be obtained by adding both contributions either in phase or
out of phase (that is, by taking the real or imaginary part of the contribution from one loop). In the HG-like
regime, on the other hand, the PP is given by a single loop so that equation (29) directly provides a ray-based
estimate for the corresponding IG beam. Here, the projections on the EPD of the sampling points used to
compute the estimate correspond to snapshots at equal temporal intervals of the libration evolution of the
pendulum. Note that it is not possible to obtain an estimate at the boundary between the two regimes
because the quantization condition becomes ill-defined.

Figure 8 also shows the excellent agreement between the ray-based estimates and the exact fields for IG
beams within the two regimes, despite the low values ofM being used. Figure 9 shows the rms error in terms
of the number of contributionsM, for beams with the same indices as in figure 8 and for others with a lower
value for µ for different values of c (and hence of ε). The plots show that in all cases the sums converge
rapidly (typically forM<N), reaching a level of error that is due to the semiclassical approach itself, which is
more accurate as the difference between c and the boundary between regimes increases. This means that this
approach might be computationally convenient for large N.
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Figure 9. Rms error ϵrms between the exact IG beams and the ray-based estimates as a function of the number of termsM used for
the estimate for various values of the center c for the LG and HG-like regime and for four different IG beams.

5. Concluding remarks

In this work we explored the structure of IG beams from the ray-optics perspective. This ray structure
embodies the main features of these beams, in particular the two separate regimes for their overall shape, as
well as the boundary between them, which corresponds to a ray-optical topological transition. The analysis
also reveals connections with many geometric constructions such as the Steiner and Pappus chains, Viviani
curves, Keplerian orbits and medial axes, as well as physical systems like the harmonic oscillator, the
pendulum and the Bose–Hubbard dimer.

As shown in [24] and discussed in this work, IG beams are modes of resonant cavities whose curved
mirrors contain a small amount of spherical aberration and astigmatism. Cavities play a central role not only
in the generation of structured laser beams, but also in advanced metrology applications such as gravitational
wave detection [63, 64]. Understanding the modes of these cavities, especially in the presence of the most
basic aberrations, is of central importance. Since some amount of these aberrations are typically present, the
modes produced or supported by realistic cavities are more likely approximations to IG beams that might be
near the HG or the LG limits. The ray treatment provided here sheds light on the structure of the beams from
the ray-optical perspective, as we now discuss. Imagine a subset of rays corresponding to a single EFR like
those shown in figure 2. When confined inside an unaberrated cavity with appropriate mirror separation and
curvatures, this group of rays retains its configuration after a round trip. Note though that each ray within
the EFR changes position after each round trip, cycling within the EFR and exploring different values of the
parameter τ . In fact, except for very specific cases in which certain rational relations hold, the complete EFR
can be populated by letting a single ray bounce back and forth. Now consider the effect of small amounts of
astigmatism and spherical aberration in the cavity. These aberrations cause the EFR to very slightly modify
its profile after each round trip. If the aberrations are in the perturbative regime, the deformed EFR will still
have an elliptic profile and therefore will still constitute an EFR, one corresponding to a nearby point over
the ray-Poincaré sphere. Multiple round trips then correspond to a slow displacement of the point over the
ray-Poincaré sphere, which traces the PP (a generalized Viviani curve if the aberrations are astigmatism and
spherical). Remarkably, the temporal rate of this slow evolution corresponds, when projected onto the (t1, t2)
plane, to the rotation or libration of a simple pendulum. That is, a ray bouncing back and forth in the
aberrated cavity presents a fast cyclic evolution in τ and a slow pendulum-like precession in η. From this
point of view, we see that the connection between IG modes and the pendulum does not arise in the
semiclassic regime (that is, for the construction of wave modes) but in the ray-optical one.

The ray-optical picture of IG beams provides intuition not only on their behavior within a cavity but also
under free propagation. For example, rays give a simple description of the transport of energy (and therefore
information) over significant distances, especially for beams with sufficiently large N for with the transverse
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profile is more structured. If one were to block a sector of a beam’s profile, the change in this profile some
distance away from the obstacle can be understood intuitively in terms of the rays that were blocked.
Amongst other things, this explains why IG beams, like most other structured self-similar beams, present the
property of ‘self-healing’, in which the intensity features that were blocked reappear after some propagation
distance (at the cost of others disappearing). This effect is due to the cycling under propagation of the rays
within each EFR: the blocked rays associated with the missing feature are replaced by non-blocked rays,
making the feature reappear. Finally, note that the ray representation of a structured beam allows the use of
fast ray-based computations of the trapping forces and torques resulting from the interaction of the beam
with an object whose spatial features are larger than the wavelength. This type of ray-based calculation is not
only intuitive but also typically much faster [65–67]. However, it has been so far limited to simple focused
beams, while calculations of trapping forces and torques for structured beams [68–70], including IG beams
[26], have relied on the wave model.

Finally, let us remark that the description given here can be used to predict the (ray and wave) shape of
self-similar beams that are modes of cavities presenting other types of aberration. By associating such
aberrations with powers of the parameters tj, one can easily find the shape of the PP, and from it that for the
caustics by using the medial axis construction. Nevertheless, it is unlikely that any other set of aberrations
would lead to beams with such a simple yet rich geometric description as the one shown here. For IG beams
it is remarkable that, despite the nonlinear (that is, nonplanar) nature of the PP and its resulting different
topological regimes, the caustics end up being simple confocal conic sections.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI: https://
github.com/rodguti90/InceGauss. [71].

Acknowledgment

The authors dedicate this work to the memory of Kurt Bernardo Wolf and Willard Miller, Jr., both of whom
passed recently. MRD and MAA first presented aspects of this work almost exactly a decade ago at a
workshop to celebrate Wolf ’s 70th birthday and where Miller was also present. Discussions with both of
them led us to a deeper appreciation of these results. The authors also acknowledge J M Fellows and D H J
O’Dell for useful discussions. R G-C and M A A acknowledge the Excellence Initiative of Aix-Marseille
University—A∗MIDEX, a French ‘Investissements d’Avenir’ programme for funding this research. R G C also
acknowledges funding from the Labex WIFI (ANR-10-LABX-24, ANR-10-IDEX-0001-02 PSL∗). MRD
acknowledges support from the EPSRC Centre for Doctoral Training in Topological Design (EP/S02297X/1).

Conflict of interest

The authors declare no conflicts of interest.

Appendix A. Analytic formula for equation (22)

As mentioned in the main text, it is possible to perform the integral defining the phaseΥ analytically for the
ray families describing IG fields. The result is given by the following expression in terms of elliptic functions:

Υ(η) = Re

{
tan

[
ϕ(η)

2

]√
1− c2 −R2 − 2cRcosϕ(η)+

i sgn(C+)√
C+

[
C+E

(
γ

∣∣∣∣C−

C+

)
+

2R
(
1+ c2 −R2

)
c−R

F

(
γ

∣∣∣∣C−

C+

)
− 4cR

c2 −R2
Π

(
1−C−

1−C+
;γ

∣∣∣∣C−

C+

)]}
, (A1)

where C± = 1− (c±R)2, γ = i arcsinh{tan[ϕ(η)/2]}, E is the elliptic integral of the second kind, F elliptic
integral of the first kind, and Π is the complete integral of the third kind. However, there is a caveat for the
use of this expression: it is defined as a continuous function for ϕ within the interval [−π,π] such that it is
zero for ϕ= 0 in the LG-like regime and for ϕ =±φ0 in the HG-like regime. There is therefore a
discontinuity at ϕ =±π. This discontinuity poses no problem in the LG-like regime since the quantization
of the solid angle ensures that, when placed in the exponent of the semiclassical estimate, the resulting phase
discontinuity is an integer multiple of 2π. For the HG-like regime, on the other hand, the discontinuity must
be removed by hand to make the function continuous at ϕ =±π. Unfortunately the limit ϕ→±π in this
analytic form is complicated to evaluate, so the constant that must be added/subtracted must be evaluated
numerically by using a value very near this limit.
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Appendix B. Derivation of the amplitude equation

To compute the ray-based estimate, we employ a Gaussian summation method where each ray is dressed
with a Gaussian contribution of the form

g(r;Q,P) =

√
kΓ

2π
exp

[
−kΓ

2
∥r−Q∥2 + ik(r−Q) ·P

]
eikL(η,τ). (B1)

The center Q and direction P of the Gaussians are the same as those of the corresponding rays. Γ is a free
parameter that can be chosen to optimize the field estimate. For the study of SG beams, its optimal value is
the inverse Rayleigh range, Γ = 2/kw2

0. Given this choice, these Gaussian contributions correspond to
displaced coherent states of the two-dimensional isotropic harmonic oscillator. As opposed to what is done
in the main text, here we keep the dependence on both parameters of the ray family so that the estimate is
given by

U(r) =

¨
A(η)

√
J(τ,η) g(r;Q,P)dτdη (B2)

where L(η,τ) is the optical path length that plays the role of the action in mechanics. The weight A only
depends on the parameter η so that all the rays in the same ellipse are weighted equally, which is a necessary
condition to obtain a self-similar beam.

To determine the appropriate equation for the amplitude, we substitute the semiclassical estimate into
the Ince equation,

¨
A(η)

√
J(τ,η)

[
T̂2
3g(r;Q,P)+

ε

2
T̂1g(r;Q,P)−

a

4
g(r;Q,P)

]
dτdη = 0. (B3)

Since g is the only part that has a spatial dependence, we start by computing the following relations:

T̂1g(r,η,τ) =

[
N+ 1

2

(
|zx|2 − |zy|2

)
+

√
N+ 1

w

(
zx∆x− zy∆y

)]
g(r,η,τ) (B4a)

T̂2
3g(r,η,τ) =

[
(N+ 1)2

(
pxqy− pyqx

)2
+

N+ 1

2
q · z− 2i(N+ 1)3/2

w

(
pxqy− pyqx

)(
zx∆y− zy∆x

)
+
N+ 1

w2

(
2zxzy∆x∆y− z2x∆

2
y − z2y∆

2
x

)
+

√
N+ 1

2w
z ·∆

]
g(r,η,τ) (B4b)

where we introduced∆= (∆x,∆y) = r−Q,

Z= ΓQ+ iP=
2

wk

√
N+ 1v(η)e−iτ =

2

wk

√
N+ 1(q+ ip) =

2

wk

√
N+ 1z (B5)

and wrote explicitly the dependence of g on η and τ .
The next step is to move all the spatial dependence to g, in order to be able to identify part of the

integrand as being equal to zero. This is done by using the following identities,

∆xg=
w

2(N+ 1)1/2

(
izy
j

∂g

∂η
+

z ′y
j

∂g

∂τ

)
, ∆yg=− w

2(N+ 1)1/2

(
izx
j

∂g

∂η
+

z ′x
j

∂g

∂τ

)
(B6)

where primes indicate derivatives with respect to η (all derivatives with respect to τ can be taken explicitly
because the dependence of Q and P on τ is known) and

J(τ,η) =
∂Z

∂ (τ,η)
=

∂Zx

∂τ

∂Zy

∂η
−

∂Zy

∂τ

∂Zx

∂η
=

4i(N+ 1)

w2k2

(
zy
∂zx
∂η

− zx
∂zy
∂η

)
=

4(N+ 1)

w2k2
j(τ,η) , (B7)
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and then integrating by parts using the fact that the integrations are periodic. This leads to the following
identities which apply to all the terms appearing in equation (B4)

¨
AF

√
Jgdηdτ =

2(N+ 1)1/2

wk

¨
AF
√
j gdηdτ

¨
AF

√
J∆xgdηdτ = − 1

k

¨ [
iF ′zy

A√
j
+ iFzy

(
A√
j

) ′]
gdηdτ

¨
AF

√
J∆ygdηdτ =

1

k

¨ [
iF ′zx

A√
j
+ iFzx

(
A√
j

) ′]
gdηdτ

where F(η,τ) = f(η)exp(−iτ), with f being an arbitrary function of η, and for the rest of the terms we can
be more specific,

¨
A
√
Jz ·∆gdηdτ = − 1

k

¨
j
A√
j
gdηdτ

¨
Az2y

√
J∆2

xgdηdτ =
w(N+ 1)1/2

k

¨ {
z2y

A√
j

[
iq ′

xzy+ pxz
′
y

]}
gdηdτ

− w

2k(N+ 1)1/2

¨  zy
3


(
z3y

) ′

j


′(

A√
j

)
+

(
z4y
j

) ′(
A√
j

) ′

+

(
z4y
j

)(
A√
j

) ′ ′}
gdηdτ

¨
Az2x

√
J∆2

ygdηdτ = − w(N+ 1)1/2

k

¨ {
z2x

A√
j

[
iq ′

yzx+ pyz
′
x

]}
gdηdτ

− w

2k(N+ 1)1/2

¨ {
zx
3

[(
z3x
) ′
j

] ′(
A√
j

)
+

(
z4x
J

) ′(
A√
j

) ′

+

(
z4x
j

)(
A√
j

) ′ ′}
gdηdτ

¨
Azxzy

√
J∆x∆ygdηdτ =

w(N+ 1)1/2

k

¨
i

2
zxzy

(
|zy|2

) ′ A√
j
gdηdτ

+
w

2k(N+ 1)1/2

¨ {
zxzy
2j2

{
j
(
z ′ ′x zy+ zxz

′ ′
y

)
+ 4jz ′xz

′
y − j ′

(
zxzy
) ′} A√

j

+

(
z2xz

2
y

j

) ′(
A√
j

) ′

+

(
z2xz

2
y

j

)(
A√
j

) ′ ′}
gdηdτ.

Using the previously derived identities, all the spatial dependence can be passed onto g so that it can be
factored out along with A and j1/2. The rest of the integrand can then be set equal to zero. Moreover, since the
classical (or ray) limit is attained for large N, the contributions of different orders can be treated separately.
The first order leads to the following equation,

(N+ 1)2
(
pxqy− pyqx

)2
+

ε

2

N+ 1

2

(
|zx|2 − |zy|2

)
=

a

4
. (B8)

Noting that

T2
3 = (N+ 1)2

(
pxqy− pyqx

)2
T1 =

N+ 1

2

(
|zx|2 − |zy|2

)
(B9)
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it is clear that the previous equation is nothing more than the PP path. The following term requires more
work, but after some tedious mathematical manipulations we get

0=

{[(
pxqy− pyqx

)(
z2x + z2y

)] ′ A√
j
+ 2
[(
pxqy− pyqx

)(
z2x + z2y

)]( A√
j

) ′}

− εi

2(N+ 1)

[(
zxzy
) ′ A√

j
+ 2zxzy

(
A√
j

) ′]
.

This equation says how the weight function changes depending on the parametrization of the PP. This
equation can be integrated after we multiply it by A/j1/2, thus leading to

A2 =
Bj(

pxqy− pyqx
)(

z2x + z2y

)
− εi

2(N+1) zxzy
,

with B being a constant of integration, and for the remainder of the derivation we will set B= i without loss
of generality.

Both the equation for the PP and that for the amplitude A depend only on η, as can be appreciated when
writing them in terms of θ and ϕ,

(N+ 1)2 cos2 θ+ ε(N+ 1)cosϕ sinθ = a, (B10a)

A2 =
− sinθϕ ′ + iθ ′

cosθ sinθ+ εi
2(N+1) (i cosϕ cosθ+ sinϕ)

. (B10b)

Taking the derivative of the first equation

cosθ sinθ =
ε

2(N+ 1)

(
−ϕ ′

θ ′ sinϕ sinθ+ cosϕ cosθ

)
(B11)

and substituting it into the second one we get

A2 =
2(N+ 1)

ε

θ ′

sinϕ
. (B12)

Finally, by writing this equation in terms of φ, we have that

A2 =± φ ′√
1− c2 −R2 − 2cRcosφ

, (B13)

where we used the relation c= ε/2(N+ 1). The denominator is proportional to the angular velocity of a
simple pendulum, therefore if we set φ = η then the amplitude of the ray-ellipses is inversely proportional to
the square root of the angular velocity of the pendulum. Another way to look at it is to assume that the
amplitude is constant, say A= 1, then the solution of the angular variable φ follows the dynamics of the
pendulum where η plays the role of time. The connection to the simple pendulum becomes clearer after
taking the second derivative of the previous equation, leading to

φ ′ ′ − cR sinφ = 0. (B14)

This is the defining equation of a simple pendulum
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