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Abstract – The auditory system possesses remarkable characteristics: super sensitivity and fre-
quency selectivity. However, these traits come at the cost of non-fidelity due to non-linear effects.
The culprit behind this active behavior is likely the haircells, as suggested by some in vivo obser-
vations and theoretical studies. These haircells appear to operate as non-linear oscillators near
a Hopf bifurcation. In this article, we experimentally design a single delayed Hopf resonator to
examine its dynamic responses and uncover striking parallels with the human ear. After a sys-
tematic characterization of this resonator, we experimentally verify on this single resonator two
non-linear phenomena that mimic hearing distortions. This provides further support for hearing
models based on Hopf bifurcation.
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Introduction. – The human ear is an extremely sensi-
tive and discriminating sensor. It is able to detect sound-
wave–induced vibrations of the eardrum having a large
dynamic range of 120 dB, and a wide spectral range from
20 Hz to 20 kHz [1]. To understand these impressive per-
formances, the hearing mechanics has been first explained
with the resonance theory by Helmholtz [2], but most of
the knowledge is inherited from the work of Békésy [3]. His
travelling wave theory states that the sound pressure ap-
plied at the entrance of the cochlea —the inner ear’s part
responsible for the mechano-transduction— generates an
elastic vibration that propagates along the basilar mem-
brane. This guided wave presents peaks of displacements
that are located on this membrane depending on its fre-
quencies: high frequencies are peaked at the base (the
entrance) as opposed to low frequencies spreading to the
apex (the other extremity of the cochlea). Nevertheless,
his strategy for observing these vibrations was strongly in-
vasive so his theory represents only the “dead” mechanics
of the cochlea.

Even if Békésy did leave some of the best observations
to his descendants, he did not remark some key features
when studying the hearing: the oto-acoustic emissions [4]
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or the cochlear amplification [5] which are manifestations
of the living nature of the ear. These modern explorations
support the work of Gold [6] who did regard in 1948 the
cochlea no longer as passive, but as an active sensor [7].
The additional source of energy in it is fundamental since
it increases the dynamics of the sensor [8,9]. But, this
comes with a cost: the ear is not a high-fidelity device.
Indeed, two evidences of this can be sensed in the daily life.
The first occurs when a second tone is played along with
an original tone. The sensitivity to detect the quietness
vanishes. The second tone reduces the ability to detect
the original one: this is the “masking effect” [10]. Second,
someone listening at once to two pure tones with nearby
frequencies hears a third tone that is not in the initial
acoustic signal. This distortion product is called “Tartini”
or “phantom” tone [11].

Following these observations, it has been proposed that
the cells operating the mechano-transduction in the in-
ner ear, namely the haircells, are responsible for this ac-
tive behaviour. And new models of the inner ear suggest
that it is a collection of many critical oscillators operat-
ing near a Hopf bifurcation [12,13]. The latter denotes
an oscillatory instability that involves the sudden emer-
gence or disappearance of self-sustained oscillations as a
particular parameter undergoes continuous change [14].
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When this parameter reaches a specific value, namely its
critical point, a change in its behavior is reached, this
is the bifurcation. We can characterize this active sys-
tem near the critical point as a critical oscillator, and its
dynamics can be described by a dynamic equation, which
we elaborate on later. This theory is supported by several
experimental evidences made on isolated living haircells of
bullfrogs [15–18]. In a previous study [19], the coupling
between multiple resonators operating near a Hopf bifur-
cation was experimentally examined, successfully replicat-
ing certain characteristics of the active amplifier found in
the living cochlea. In the current investigation, our fo-
cus shifts to the behavior of a single resonator, specifi-
cally emulating the behavior of a hearing hair cell that
acts as a Hopf resonator, as opposed to replicating the en-
tire cochlea. Consequently, some filtering effects resulting
from the tonotopy of the cochlea are overlooked. How-
ever, this approach allows for a direct comparison to ex-
periments conducted on isolated hair cells. The logical
next step involves reintegrating the current design into a
multiresonant system. Following a comprehensive and de-
tailed description of the physical role of each parameter in
the design, we delve into the consequences of its non-linear
nature. This includes the identification of masking effects
and the manifestation of phantom tones within this single
resonator. This article presents experimental observations
on such a Hopf resonator, with the theoretical framework
detailed in other references [13,20,21].

The experimental resonator, featured in fig. 1, follows
a basic quarter-wavelength acoustic design. It comprises
a 10 cm long, 1 cm diameter Plexiglas tube with one open
end and one closed end. The closure component is a 3D-
printed plastic piece. This piece was meticulously designed
and tested to ensure precise component fitting, and exten-
sive trials were conducted to determine the optimal place-
ment within the printed cap. This keen focus on 3D print
design was essential to attain peak functionality for our
electronics and, consequently, our feedback loop. The real
goal of this design is to inject in real time a signal that is
directly related to the acoustic pressure inside the tube: a
feedback loop is built.

The design of this resonator is a follow-up of a previous
work [19] where the loop was controlled through a sound-
card connected to a computer. This revealed to be very
limited in the number of resonators that can be controlled
in the same time. Here, the computer and its soundboard
are replaced by a microcontroller (Adafruit Trinket M0)
which possesses analog input and output ports. Due
to digital conversion and numerical processing, a delay
is introduced in the loop hence the name of delayed
resonator. To probe the physics of the system we use
a Presonus Audiobox soundcard that allows generating
sound from outside the resonator and measuring the
response with a second electret microphone placed inside.
Although the diameter of this microphone is somewhat
large compared to the diameter of the resonator, it did
not pose any issues in measuring the response inside. In

Fig. 1: A quarter-wavelength acoustic resonator converted onto
a delayed resonator. A 10 cm long Plexiglas tube is terminated
by a 3D printed top. A microcontroller (Adafruit Trinket M0)
allows to create a feedback loop between a microphone and a
speaker with their respective dedicated electronics. Measure-
ments inside the tube are made thanks to an electret micro-
phone connected to an extra soundboard.

fact, we leveraged its extended wire length to facilitate its
insertion and optimize measurements in close proximity
to the feedback loop.

From a mathematical point of view, the pressure field
p(t) near the closed end of the resonator is governed by
the equation

p′′(t) +
ω0

2Q
p′(t) + ω0

2p(t) = S(t) + eloop(t), (1)

where ω0 is the natural resonance frequency of the quarter-
wavelength resonator and Q its quality factor. We will
refer to these parameters as the passive parameters since
they represent the response of the resonator with no feed-
back. S(t) is the source term corresponding to the exci-
tation with the speaker near the open end, while eloop(t)
corresponds to the source term associated to the feedback.
The latter can be rewritten by introducing the delay τ and
the gain G(t) of the loop as

eloop(t) = p(t − τ)G(t). (2)

Thanks to the use of a microcontroller (or a computer
as in [19]) the loop’s gain G(t) or its delay τ can be modi-
fied in real time and can include complex non-linear func-
tions. In this article, we will end on a gain that allows
to mimic a system operating near a Hopf bifurcation [12].
But, before showing how we reach this ultimate goal, we
describe step by step the effect of each parameter.

Resonator with a constant gain. – In order to show
the impact of the gain and the delay, a set of experiments
is conducted where one of the values remained constant
while the other varies.

Effect of the gain G0. Everything starts by setting the
delay τ within the microcontroller to its smaller possible
value, but one has to remember that the loop still adds
an electronic delay due to the analog to digital conversion
and reciprocally. Then, the gain G(t) is set to a constant
value G0. The first set of experiments consists in emitting
a short pulse (typically one cycle) whose central frequency
corresponds to ω0. Starting from a value of G0 equal
to zero, the transient field inside the tube is measured
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Fig. 2: Delayed resonator with static gain and delay. (a) The
envelope of oscillation decaying after a pulse excitation for dif-
ferent values of the gain G0 below the critical gain. (b) Sponta-
neous growths of the envelope for different values of G0 bigger
than the critical gain. (c) Exponential constant α of the re-
spective decays and growths. (d) Influence of the delay time τ
on the measured resonance frequency.

in response to this short stimulus. The measured signal
corresponds to an oscillating signal with an exponential
decay, as for any resonating system. The envelope of this
signal is kept using the Hilbert transform and results are
represented in logarithmic scale in fig. 2(a) for various val-
ues of G0. The decay rate strongly depends on the value
of G0: the higher the gain, the longer the oscillations. If
we keep increasing the gain, a critical value Gc is reached
for which the re-injected energy matches the lost one. The
attenuation time has become infinitely long.

Above this critical value, the delayed resonator supports
self-sustained oscillations even in the absence of stimulus:
this is the well-known acoustic feedback [22,23]. No exter-
nal source is needed. To probe the dynamics of the sys-
tem, the experiment consists in turning off the feedback
loop and measuring the transient response of the oscillator
when it is turned on back. The envelope of the signals now
shows an exponential increase, before reaching a satura-
tion value of self-sustained oscillations [24]. The curves for
various values of G0 above Gc are represented in fig. 2(b).
The characteristic time of each experiment is extracted by
a linear fit before saturation.

Combining the results of these two experiments, the
graph of fig. 2(c) is built. It corresponds to the attenuation

or the increase coefficient α as a function of G0. A change
in sign is observed at the critical value Gc: Below this
threshold α is negative and the response corresponds to
damped oscillations; above this critical value α is positive
and the oscillator is unstable. The relationship between α
and G0 is linear.

Effect of the delay τ . To study the impact of the delay
on the feedback loop, we define a delay time τs in software
which corresponds to multiple values of the sampling time
of the microcontroller (here the sampling frequency is cho-
sen to be equal to 48 kHz, thus giving a resolution time of
roughly 21 μs). Note that the total delay also includes the
incompressible electronic ones. The measurements con-
sist in evaluating the frequency in the limit cycle slightly
above the critical gain. Repeating the experiment while
changing τs one obtains the points of fig. 2(d). To under-
stand this behaviour, we perform the Fourier transform of
eq. (1):

p(ω) =
S(ω)

ω0
2 − ω2 − G0 cos(ωτ) − i

(
ωω0
2Q + G0 sin(ωτ)

) .

(3)
An easy interpretation is to recall that a diverging fre-
quency near ω0 is expected. Thus, the real part of the
pole is almost ω0, and the cosine must be negligible. It
occurs when τ = (n + 1/2)π/ω0 with n ∈ N. These curves
(red and pink depending on the parity of n in the fig-
ure) are an easy way to follow the experimental resonance
when increasing the delay. This approach neglects the de-
tails and one can notice that the experimental resonance
switches from the red curve to the pink one while increas-
ing the delay. This is a direct consequence of the π-phase
shift introduced by the passive resonance. From now, we
choose τs to be equal to 0.

A non-linear resonator operating near a Hopf
bifurcation. –

From linear to non-linear resonator. In mammalian’s
hearing, the outer haircells produce amplification of low
sound level [25]. This effect, known as the cochlear am-
plifier, permits to enlarge the range of audible sound
amplitudes. The transition between the low and high am-
plitude sounds reveals a cubic non-linearity [26]. We now
aim at demonstrating that it is possible to mimic such a
behaviour with our low-cost delayed resonator. We turn
our resonator onto a non-linear one operating near a Hopf
bifurcation. The gain is thus defined as

G(t) =

⎧⎪⎨
⎪⎩

G0

(
1 −

(
p(t − τ)

P0

)2
)

, if |p(t − τ)| < P0,

0, otherwise,

where the extra parameter P0 has been introduced.
The limit cases of this non-linear resonator are relatively

easy to understand. At low amplitude, i.e., p(t − τ) �
P0, the gain is almost G0 and the case of a static gain
detailed previously is recovered. The value of G0 is chosen

37001-p3



Jana Reda et al.

Fig. 3: An active resonator near a Hopf bifurcation. (a) The
non-linear response inside the resonator is studied with respect
to the excitation’s normalized frequency, f/f0 (where f0 is the
resonance frequency). As we manipulate both the amplitude
and frequency of the incoming wave, we notice a transition
from a sharp resonance at f0 for low excitation amplitudes to
a progressively broader resonance as the excitation’s amplitude
increases. (b) The so-called sensitivity curve that mirrors data
in panel (a) focuses solely on the response amplitude at f0. No-
tably, panel (b) reveals dual linear regimes (blue and red dots)
for low and high amplitudes, with an inverse cubic response for
medium amplitudes. (c) and (d): influence of G0 and P0 on
the response at f0.

to be near the critical gain in order to have a high-quality
factor for low amplitudes. Unlike for high amplitudes, i.e.,
p(t − τ) � P0, the gain is null and a low-quality factor
of a passive quarter-wavelength resonator is obtained. In
between these two extreme cases, G(t) contains a square
dependence on the instantaneous pressure which gives an
overall cubic dependence on the pressure in the feedback.

The experiment now consists in exciting monochromat-
ically the resonator with different amplitudes and frequen-
cies. For each excitation, the response is measured at the
same frequency. All the results are shown in fig. 3(a).
Note that the definition of decibel in these experiments is
arbitrary and does not correspond to true sound pressure
level but rather to normalized units: a value of 0 dB is
chosen for the maximal measure. As expected, an excita-
tion with a low amplitude gives a sharp resonance (blue
lines). With the increase of the excitation’s amplitude, the
response broadens (yellow lines) and becomes even wider
(red lines) at high amplitudes.

From all these measurements, we build fig. 3(b), where
only the response at resonance is kept. The three
regimes previously discussed are easily highlighted by this

curve [27]. At high amplitudes the resonator has a lin-
ear response (slope is 1): the response is proportional to
the excitation. Decreasing the amplitude of excitation,
an inverse-cubic power law is observed with a transition
near −10 dB. This is the consequence of the cubic non-
linearity in the feedback. At low amplitudes, the slope
recovers a value of 1 (near −50 dB). To get the slope of
one at low amplitudes the resonator must operate in sub-
critical regime where G0 < Gc. If not, the feedback would
already be on and an activity even in the absence of exci-
tation would happen.

Influence of the parameters. To fully complete the
study, experiments are conducted where the two parame-
ters of the feedback loop are varied separately. The role
of G0 in the active mechanism is summarized in fig. 3(c).
The value G0 = 1 corresponds to the data of fig. 3(a) and
(b). Thanks to the sharpening of the resonance at low am-
plitude, the higher G0, the bigger the difference between
the two linear parts of the response is. In other words,
the value of G0 governs the amplification gain for low am-
plitudes compared to the high ones. When G0 is equal to
0 (green curve), a linear resonator in the entire dynamic
range is recovered, and no amplification of low-amplitude
sounds occurs as in a dead cochlea.

The role of P0 is presented in fig. 3(d). Again, the value
of 1 corresponds to the data of fig. 3(a) and (b). P0 is the
transition point between the linear regime and the inverse-
cubic law. Experimentally, decreasing P0 this transition
decreases from −10 dB down to −18 dB for 0.4.

Non-linear interferences in hearing. – In this series
of experiments, we aim to replicate non-linear effects in the
behavior of the ear, particularly focusing on the masking
effect. This phenomenon demonstrates that one sound’s
perception can be significantly influenced by the presence
of another sound.

Masking effect. Our experiments involve subjecting
the non-linear resonator to a two-tone excitation, where
one tone operates at the resonance frequency, denoted as
f1, and the second tone is labeled as f2. We measure the
response at f1. In the first set of measurements (fig. 4(a)),
we manipulate the amplitude of the second tone, while in
the second set (fig. 4(b)), we adjust the spectral detuning.
When we introduce a second tone with relatively high am-
plitude (A2 = −6 dB) and a frequency f2 = 1.0048f0, the
amplification for low amplitudes vanishes, resulting in a
linear response at f1 (as depicted in fig. 4(a)). This high-
amplitude second tone elevates the threshold of hearing
for the first tone, giving it the name of “masking” tone.
The higher the amplitude of this masking tone, the more
pronounced its effect. When we deactivate the masking
tone (as indicated in the reference curve), the amplifica-
tion is naturally restored, leading to the recovery of the
characteristic non-linear cubic curve shown in fig. 3(b). In
the middle ground between these two limit scenarios, we
observe that the impact on the low-amplitude amplifier di-
minishes with increasing A2 (ranging from A2 = −56 dB
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Fig. 4: Two-tone-excitation of the non-linear resonator. Panels (a) and (b) correspond to the masking effect, the response at
f1 when the second tone is present with different amplitudes in (a) and with different detuning in (b). The presence of the
second tone “masks” the amplification of low-amplitude sounds. Panel (c) corresponds to the generation of phantom tones: the
spectral response of the non-linear resonators displays cubic distortions; and they are more pronounced at higher level.

to A2 = −25 dB), depending on the presence and the
amplitude of the second masking tone. Similarly, when
the masking tone’s frequency closely aligns with the res-
onance frequency (Δf2 = 0.0012f0), the effect becomes
more pronounced compared to cases with higher detun-
ings (Δf2 = ±0.1307f0). In essence, this masking effect
obscures the typical gain we observe, resulting in a linear
response curve (as illustrated in fig. 4(b)).

Phantom tones. The last experiment consists in re-
producing the generation of phantom tones in the inner
ear [11]. This is done by determining the full spectral re-
sponse to a two-tone stimulus with equal amplitudes and
close frequencies around the resonance frequency (Δf2 =
10 Hz (fig. 4(c)). The response exhibits the presence of
distortion products. Exciting with a weak stimulus of
−42.4 dB a cubic difference products starts appearing at
frequencies 2f1 − f2 and 2f2 − f1. Increasing the excita-
tion amplitude, the cubic distortions are rapidly increasing
and distortion products with an increased order are more
pronounced. As opposed to the cochlea we here measure
symmetric distortion peaks, because we are working with
a single resonator and we do not benefit from the cochlear
spatial filter.

Conclusion. – To sum it up, we have succeeded in
making a delayed resonator which does operate near a
Hopf bifurication using only three elements: a micro-
controller, a microphone and a speaker. These three
agents team together building a loop where a tunable
programmable non-linear gain G(t) is added. With this
combination, a resonator that mimics well the response of
a single bullfrog’s haircell [15–18] is built. Notably, the
sensitivity curve showing the low-amplitude amplifier of
the cochlea is reproduced and the possibility to tune the
response has been extensively studied. Not only this res-
onator shows the cochlear amplifier but it also exhibits
two effects in hearing that come as a result of this non-
linearity: the masking effect and the phantom tones.

With just one resonator working exactly as intended,
the next step is naturally to couple at least two. When the
coupling is sufficiently important and when the frequency

is closer to the characteristic frequency all in the sub-
threshold Hopf regime, we expect more complex be-
haviours [28]. Later, by properly accomplishing a correct
coupling between many resonators [29], we plan to obtain
the cochlear model and get closer to the human behavioral
hearing. No longer all distortions products are expected
but only 2f1 − f2 when studying the phantom tones. We
therefore expect to provide experimental evidence on the
superiority of having a non-linear sensor for different cog-
nitive tasks such as speech recognition or sound detection.
Also, we strongly think that any cochlear implant should
incorporate such non-linearities and will aim at designing
them.
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