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We present numerical and analytical predictions of mucociliary clearance based on the
continuum description of a viscoelastic mucus film, where momentum transfer from the
beating cilia is represented via a Navier-slip boundary condition introduced by Bottier
et al. (PLoS Comput. Biol., vol. 13, issue 7, 2017a, e1005552). Mucus viscoelasticity is
represented via the Oldroyd-B model, where the relaxation time and the viscosity ratio
have been fitted to experimental data for the storage and loss moduli of different types of
real mucus, ranging from healthy to diseased conditions. We solve numerically the fully
nonlinear governing equations for inertialess flow, and develop analytical solutions via
asymptotic expansion in two limits: (i) weak viscoelasticity, i.e. low Deborah number;
(ii) low cilia beat amplitude (CBA). All our approaches predict a drop in the mucus
flow rate in relation to the Newtonian reference value, as the cilia beat frequency is
increased. This relative drop increases with decreasing CBA and slip length. In diseased
conditions, e.g. mucus properties characteristic of cystic fibrosis, the drop reaches 30 %
in the physiological frequency range. In the case of healthy mucus, no significant
drop is observed, even at very high frequency. This contrasts with the deterioration
of microorganism propulsion predicted by the low-amplitude theory of Lauga (Phys.
Fluids, vol. 19, issue 8, 2007, 083104), and is due to the larger beat amplitude and
slip length associated with mucociliary clearance. In the physiological range of the cilia
beat frequency, the low-amplitude prediction is accurate for both healthy and diseased
conditions. Finally, we find that shear-thinning, modelled via a multi-mode Giesekus
model, does not significantly alter our weakly viscoelastic and low-amplitude predictions
based on the Oldroyd-B model.
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1. Introduction

Mucociliary clearance (MCC) designates the transport of pulmonary mucus towards the
trachea via the coordinated beating of cilia, which cover the epithelium within the first 16
airway generations of the human respiratory network. The cilia are organized in a dense
brush-like array (Button et al. 2012) and immersed in a layer of low-viscosity Newtonian
liquid, called the periciliary liquid (PCL), as shown in figure 1(a). On top of the PCL layer
lies a layer of viscoelastic mucus, which is responsible for capturing and evacuating alien
particles and pathogens (Grotberg 2021). The non-symmetric beat cycle of individual cilia,
composed of an active forward and a passive backward stroke, propagates in the form of a
so-called antiplectic metachronal wave (Mitran 2007) with frequency f �, wavelength Λ�,
and wave speed c� (star superscripts designate dimensional variables throughout), which
imparts momentum to the mucus layer and produces a net flow in the opposite direction
(Bottier et al. 2017b). In the present paper, we study the effect of viscoelasticity on this
net MCC flow, both under healthy conditions and in the case of pulmonary diseases that
are known to exacerbate mucus viscoelasticity (Fahy & Dickey 2010), e.g. cystic fibrosis
(CF), chronic obstructive pulmonary disorder (COPD) and bronchiectasis. According to
Spagnolie (2015), the reason for reduced MCC in such diseases is an open question, and
there is a need for predictive models that evaluate clearance efficiency versus viscoelastic
characterization. Relatively few studies have accounted for the viscoelastic nature of
mucus (Vanaki et al. 2020; Sedaghat, Behnia & Abouali 2023), which is imparted by
mucins produced by goblet cells situated in the epithelium (Levy et al. 2014).

Smith, Gaffney & Blake (2007) developed a three-layer model, where a thin traction
layer was introduced between the PCL and mucus to account for the protrusion of cilia tips
into the mucus layer (Fulford & Blake 1986). Mucus viscoelasticity was modelled via the
linear Maxwell model, introducing the relaxation time λ. The authors reported a significant
and non-monotonic variation of the net mucus flow rate with increasing λ. Owing to the
use of the linear Maxwell model, the observed viscoelastic effect stems entirely from the
traction layer. As we will show, viscoelastic corrections in the force-free mucus layer can
enter the problem only at O(De2), where De denotes the Deborah number De = λω�,
based on the angular frequency ω� = 2πf �. We go beyond this limitation by accounting
for nonlinearity in the constitutive model, allowing us to uncover the role of viscoelasticity
within the mucus layer itself, where an intricate flow pattern of counter-rotating vortices
develops (figure 1b).

Sedaghat et al. (2016) used the immersed boundary method (IBM) to simulate arrays
of cilia beating within a layer of airway surface liquid (representing mucus and PCL).
Viscoelasticity was described with the Oldroyd-B model, introducing the viscosity ratio
β = μs/(μs + μp), where μs and μp denote the solvent and polymer viscosities. However,
the authors used cilia density 0.1 cilia per μm2, which is significantly lower than typical
physiological values, i.e. 5–8 cilia per μm2 (Bottier et al. 2017b). It was not clear from this
study whether viscoelasticity helps or hinders MCC in real mucus.

In the current study, we analyse MCC via an inertialess continuum hydrodynamic
model sketched in figure 1(a). We focus only on the mucus layer of height h�

0, and model
momentum transfer from the beating cilia via an experimentally validated moving-carpet
Navier-slip boundary condition applied at y = 0 (Bottier et al. 2017b,a). This boundary
condition introduces a tangential wall velocity uw(x, t) that mimics the metachronal wave.
Mucus viscoelasticity is described with the Oldroyd-B model. Following Vasquez et al.
(2016), we fit the model parameters λ and β to experimental mucus data for the storage
and loss moduli G′ and G′′ (Hill et al. 2014).
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Figure 1. Continuum model of mucociliary clearance. (a) Schematic situating our model of the mucus
layer (dashed blue frame) within the mucus/PCL bilayer system. Momentum transfer from the beating
cilia is represented via a Navier condition (2.4b) applied at y� = 0 (Bottier et al. 2017b), introducing the
wave function: u�

w = a�ω� cos(θ) + ζ 1
2 (a�)2ω�k�[1 − cos(2θ)], with k� = 2π/Λ�, θ = kx + ωt, and ω = 2πf .

(b) Flow structure within the mucus layer for viscoelastic mucus (where BC means boundary condition). DNS
with the code Basilisk, using the Oldroyd-B model (2.2) and periodic boundary conditions: λ = 52 ms,
β = 0.1, h�

0 = 10 μm, Λ� = 20 μm, a� = 1.6 μm, φ� = 0, f � = 10 Hz, t�ω� = 9π. Streamlines in the
laboratory reference frame.

We solve our continuum model via two approaches. First, we perform direct numerical
simulations (DNS) based on the full governing equations via the finite-volume solver
Basilisk (Popinet & collaborators 2013–2020). Second, we derive analytical solutions
for the stream function within the mucus film, based on asymptotic expansion in two
different limits: (1) the weakly viscoelastic limit (De � 1), and (2) the limit of small cilia
beat amplitude (a � 1). The low-amplitude expansion is inspired by Lauga (2007), who
used this approach to investigate the effect of mucus viscoelasticity on the propulsion
of microorganisms modelled as swimming sheets. As discussed in Lauga (2020), that
problem is in some ways equivalent to the mucociliary transport problem considered here.
However, there is one important difference. The discrete nature of the cilia, which are
packed with some finite density, implies the existence of slip between the mucus and the
imaginary envelope of the cilia tips. This effect is accounted for in the moving-carpet
Navier boundary condition used in the current paper, where we have set the slip length
φ based on an empirical relation (Bottier et al. 2017a), linking φ to the cilia density.
Accounting for slip represents an extension of the low-amplitude analytical solution of
Lauga (2007), and we find that this effect is significant in the case of MCC. In contrast to
the work of Man & Lauga (2015), who investigated the effect of wall slip on the propulsion
of sheet-like microorganisms swimming in a Newtonian fluid, slip affects our problem only
in the presence of viscoelasticity. This is because of the stress-free boundary condition
imposed at the free surface, which implies zero average shear within the mucus layer in
the Newtonian limit.

In terms of physical insight, we find that mucus elasticity reduces MCC significantly
relative to the Newtonian limit, causing a drop in mucus flow rate that increases with
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increasing De, decreasing a, and decreasing slip-length φ. In the case of diseased mucus
(characteristic of CF), we find a 30 % reduction of MCC in the physiological frequency
range f � ∼ 10 Hz. By contrast, Vasquez et al. (2016), who also applied a continuum
approach but assumed a spatially invariant (temporally asymmetric) wall velocity uw(t),
concluded that the mucus flow rate is insensitive to mucus rheology. It turns out that our
account of the metachronal cilia wave via uw(x, t) is necessary for capturing the effect
of viscoelasticity on MCC. Interestingly, a flow rate reduction also occurs in the limit of
a zero-mean wall velocity ūw = ∫ Λ

0 uw dx = ∫ 1/f
0 uw dt = 0. In that case, viscoelasticity

produces a net negative flow rate, i.e. in the direction of the metachronal wave, as a result of
memory effects. This result contrasts with Stokes’ second problem for viscoelastic liquids
(Mitran et al. 2008; Ortín 2020), where uw = uw(t) is spatially invariant and the net flow
rate is zero, and it further underlines the importance of the metachronal wave in MCC.
Past studies have shown that a change in the waveform underlying the swimming motion
of sheet-like microorganisms (Riley & Lauga 2015) or the geometry of the swimmer itself
(Angeles et al. 2021) can switch the effect of viscoelasticity from hindering to enhancing
propulsion.

Although we focus mainly on the role of viscoelasticity by using the Oldroyd-B
model, we have also checked the additional effect of shear-thinning, another known
non-Newtonian property of mucus (Jory et al. 2022). For this, we have employed the
Giesekus model, which accounts accurately for both viscoelasticity and shear-thinning
properties of mucus (Vasquez et al. 2016; Sedaghat et al. 2022). We find that neither our
low-amplitude prediction nor our weakly viscoelastic prediction is affected significantly by
shear-thinning. This is due to the nature of the associated nonlinear terms in the Giesekus
model, which are quadratic in the stresses and scaled by the Deborah number. As a result,
shear-thinning is weak at small amplitudes and subordinate to viscoelasticity. We find
that this leads to a qualitatively different MCC response versus a generalized Newtonian
description of mucus via the Carreau model (Chatelin et al. 2017).

Our paper is structured as follows. In § 2, we introduce the governing equations
constituting our mathematical model of MCC. Next, in § 3, we quantify the viscoelastic
properties of the different types of mucus considered in our computations, as well as
relevant kinematic parameters linked to MCC. Section 4 details the methods employed. In
§ 4.1, we derive analytical solutions for the mucus flow rate based on asymptotic expansion
in different limits. In § 4.2, we describe the solver employed for our DNS. Results are
presented in § 5, where we first focus on characterizing the effect of viscoelasticity on the
mucus flow rate (§ 5.1) by comparing with the Newtonian limit. Then, in § 5.2, we discuss
the additional effect of shear-thinning via calculations based on the (multi-mode) Giesekus
model. Conclusions are drawn in § 6, and the paper is completed by Appendices A and
B, where we have written out several expressions intervening in the analytical solutions
derived in § 4.1.

2. Mathematical description

We consider a viscoelastic mucus layer of constant height h�
0 on the interval y� = 0

to y� = h�
0, as sketched in figure 1(a). The mucus rheology is represented via the

Oldroyd-B model, with solvent and polymeric viscosities μs and μp, and relaxation
time λ. Both the Reynolds number Re = ρ h�2

0 ω�/μs ∼ 10−3 and the capillary number
Ca = μsh�

0ω
�/σ ∼ 10−3, where ρ and σ denote the liquid mass density and surface

tension, are small, thus we assume inertialess flow and a flat surface of the mucus layer
(Smith et al. 2007). In this limit, the flow is governed by the (dimensionless) continuity
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and Stokes equations with additional polymeric viscous stresses τij:

∂xu + ∂yv = 0, (2.1a)

0 = −∂xp + (
∂xxu + ∂yyu

) + ∂xτ xx + ∂yτ xy, (2.1b)

0 = −∂yp + (
∂xxv + ∂yyv

) + ∂xτ xy + ∂yτ yy, (2.1c)

where we have scaled lengths with L = h�
0, velocities with U = h�

0 ω�, and τij as well
as pressure p with P = μsU/L, using the angular frequency of the cilia beat cycle ω�.
The components of the polymeric stress tensor τij are governed by the upper-convected
Maxwell model:

τxx + De
[
∂tτ xx + u ∂xτ xx + v ∂yτ xx − 2τxx ∂xu − 2τxy ∂yu

] = 2
1 − β

β
∂xu, (2.2a)

τxy + De
[
∂tτ xy + u ∂xτ xy + v ∂yτ xy − τxx ∂xv − τyy ∂yu

]
= 1 − β

β

(
∂yu + ∂xv

)
, (2.2b)

τyy + De
[
∂tτ yy + u ∂xτ yy + v ∂yτ yy − 2τxy ∂xv − 2τyy ∂yv

]
= 2

1 − β

β
∂yv, (2.2c)

where we have scaled time with T = 1/ω�, yielding the Deborah number De = λω� and
the viscosity ratio β = μs/(μs + μp). The system is closed with the following boundary
conditions. At the film surface, y = 1, we impose

∂yu + τxy = 0, (2.3a)

v = 0, (2.3b)

where we have assumed impermeability and neglected viscous stresses in the gas above
the mucus layer. At the bottom boundary, y = 0, we impose the Navier-slip boundary
condition introduced by Bottier et al. (2017a) for modelling momentum transfer from the
beating cilia:

u − φ ∂yu = uw(x, t), v = 0, (2.4a)

where φ denotes the (dimensionless) slip length. Here, the cilia kinematics is represented
via the wave function

uw(x, t) = a cos(kx + t) + ζ 1
2 a2k [1 − cos{2(kx + t)}] , (2.4b)

introducing the cilia beat amplitude a, and the metachronal wavenumber k = 2π/Λ, where
the dimensionless wavelength Λ = Λ�/h�

0, due to the scaling chosen, sets the aspect ratio
of our geometry. Without loss of generality, we have phase shifted uw(x, t) by π/2 with
respect to the classical formulation of Bottier et al. (2017a). The parameter ζ is a binary
parameter that takes values ζ = 0 and 1, and can be used to deactivate the second and
third right-hand-side terms in (2.4b). In that limit, i.e. ζ = 0, the phase average ūw is zero,
which, in the case of a Newtonian fluid, leads to a symmetrical cellular flow pattern (e.g.
figure 2a). This reference case is convenient for illustrating the signature of viscoelasticity,
which tends to break the symmetry of the flow field (e.g. figure 6e). The moving-carpet
boundary condition written in (2.4) has been validated versus particle image velocimetry
measurements in the vicinity of live beating cilia (Bottier et al. 2017b).
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Figure 2. Flow structure within the mucus film. Newtonian limit: De = 0, Λ� = 20 μm. (a,b) Streamlines for
two forms of the wave function (2.4b): a� = 1.6 μm, φ� = 0, t = π. Solid red line indicates analytical solution
(4.3a); dashed blue line indicates DNS using 
x = 1/64; dotted black line (almost perfectly overlapping solid
red line) indicates DNS using 
x = 1/128. Here: (a) ζ = 0, cellular flow pattern; (b) ζ = 1, meandering flow;
(c) estimation of maximum film surface deflection according to (4.5) for different values of the slip length φ�,
with a� = 5 μm, Ca = 1 × 10−3. Dashed line indicates φ� = 0; dotted line indicates φ� = 2 μm; dot-dashed
line indicates φ� = 5 μm; solid line indicates φ� = 10 μm.

As a key observable in our study, we evaluate the net mucus flow rate

q =
∫ 1

0
u dy, (2.5)

which is spatially invariant due to continuity and the flat-surface assumption, i.e. ∂xq =
−∂th = 0, and time-invariant due to the wave nature of uw (see (2.4b)). In the Newtonian
limit (subscript N), the governing equations become linear, thus the flow field is a simple
superposition of the solutions associated with the three terms in the wave function (2.4b).
Because the phase average of the two harmonic terms is zero, only the constant term
contributes to the net flow, yielding

qN = ζqref , with qref ≡ 1
2 a2k, (2.6)

which corresponds to a plug flow with wall velocity uw = ζa2k/2. Throughout the paper,
we will use qN (and qref ) as a reference value to quantify the effect of viscoelasticity.

3. MCC scenarios: mucus types and cilia parameters

Experimentally, the mechanical response of viscoelastic mucus is quantified via the
complex modulus G = G′ + iG′′, containing the storage and loss moduli G′ and G′′, which
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Mucus type G′ (Pa) G′′ (Pa) λ (ms) β a� (μm)

HBE-2 wt% 0.02 0.179 3 0.4 5
HBE-3 wt% 0.12 0.3 10 0.19 4
HBE-4 wt% 0.3 0.5 16 0.13 3
HBE-5 wt% 9.09 2.98 52 0.002 1.6

Table 1. Human bronchial epithelial (HBE) mucus types and cilia beat amplitude a� used in our simulations.
Measurement data for G′ and G′′, ranging from healthy to diseased mucus, are taken at f � ∼ 10 Hz from Hill
et al. (2014). Oldroyd-B model parameters λ and β were fitted via (3.1a,b), assuming μs = 1 mPa s.

1

2

3 y
4

5

6

0 5 10 15 20

f � (Hz)

ū�
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Figure 3. Features of the flow within a viscoelastic mucus layer: HBE-5 wt% mucus, h�
0 = 10 μm, Λ� =

20 μm, a� = 1.6 μm, φ� = 10 μm. (a) Average mucus velocity ū� = q�/h�
0. The solid line indicates the

Newtonian limit; the dot-dashed line is based on (4.9) with λ = 52 ms, β = 0.1; the dashed line is based
on (4.9) with frequency-dependent λ and β according to G′ and G′′ data in Hill et al. (2014). Symbols indicate
our DNS: circles, 
x = 1/32; squares, 
x = 1/64; plus signs, 
x = 1/128. (b) Streamlines and contours of
the trace tr(C) of the conformation tensor C = De τ ij + I based on the Oldroyd-B model: λ = 52 ms, β = 0.1,
f � = 19 Hz, t = 9π.

are related to the parameters of the Oldroyd-B model according to Siginer (2014):

G′

μsω�
= 1 − β

β

λω�

1 + (λω�)2 ,
G′′

μsω�
= 1 + 1 − β

β[1 + (λω�)2]
. (3.1a,b)

We focus on four types of mucus corresponding to human bronchial epithelial (HBE)
cultures with varying mucin concentration (Hill et al. 2014), ranging from healthy patients
(2 wt%) to patients diagnosed with CF or COPD (5 wt%). The properties of these mucus
types are provided in table 1. We have assumed water as the solvent phase, i.e. μs =
1 mPa s, and fitted β and λ to experimental values of G′ and G′′ (Hill et al. 2014) at a
representative cilia beat frequency f � ∼ 10 Hz. Accounting for the frequency dependence
of β and λ does not change our results significantly (as shown in figure 3a).

In the case of CF, the PCL layer is depleted in favour of the mucus layer, which can
reduce considerably the mucus velocity imparted by the cilia (Guo & Kanso 2017). We
account for this by adjusting the beat amplitude a in terms of the mucin concentration (see
table 1), by interpolating between experiments for healthy mucus (Bottier et al. 2017b),
a� = 5 μm, and diseased mucus (Bottier et al. 2022), a� = 1.6 μm.

Bottier et al. (2017b) established experimentally a relation between the cilia density and
the slip length φ�. We use 86 % cilia density in our simulations, which is representative of
the patient data reported in that reference, yielding slip length φ� = 10 μm.
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4. Methods

4.1. Analytical solutions via asymptotic expansion
We obtain analytical solutions for our boundary value problem (2.1)–(2.4) in two different
limits: (i) small Deborah number (De � 1), and (ii) small cilia beat amplitude (a � 1).
For this, we introduce the stream function Ψ ,

∂yΨ = u, −∂xΨ = v, (4.1a,b)

to which we apply a regular perturbation expansion

Ψ (x, y, t) = Ψ0(x, y, t) + ε Ψ1(x, y, t) + ε2 Ψ2(x, y, t), (4.2)

where the small parameter ε is either De or a, depending on the expansion considered.
Then, introducing (4.2) into (2.1)–(2.4) and truncating appropriately, we may obtain Ψi
order by order. We point out that Ψ0 is the solution of the biharmonic equation, obtained by
eliminating pressure from the truncated forms of (2.1b) and (2.1c) via cross-differentiation.

In the weakly viscoelastic limit, we expand in terms of ε = De and obtain at O(De2),

Ψ0(x, y, t) =
[
(A1 + B1ky) eky + (C1 + D1ky) e−ky

]
cos(kx + t) + ζA2y

+ζ
[
(A3 + 2B3ky) e2ky + (C3 + 2D3ky) e−2ky

]
cos{2(kx + t)}, (4.3a)

Ψ1(x, y, t) = 0, (4.3b)

Ψ2(x, y, t) = ΨH(x, y, t) + ΨP(x, y, t), (4.3c)

where Ai, Bi, Ci and Di are integration constants, and ΨH(x, y, t) and ΨP(x, y, t) denote
homogeneous and particular solutions, which are all written out in Appendix A, and in
a supplementary Mathematica notebook available at https://doi.org/10.1017/jfm.2023.682.
A simple relation for the flow rate q = Ψ |y=1 − Ψ |y=0 can be obtained by considering
(4.3) in the limit ζ = 0:

q
qref

∣∣∣∣
ζ=0

= −(1 − β) De2 S2 + 6kφSC
(S + 2kφC)2 + O(De3), (4.4)

where S = sinh(2k) − 2k and C = cosh(2k) − 1. We see that viscoelasticity enters at
O(De2), and constitutes a negative flow rate contribution. The full form of q/qref for ζ = 1
is too long to be written here. Instead, we provide it in the supplementary Mathematica
notebook. In the Newtonian limit (De = 0), (4.2) reduces to Ψ0, which we have plotted in
figures 2(a) and 2(b) for the reduced (ζ = 0) and full (ζ = 1) forms of (2.4b), respectively.
In the former case, the flow pattern is cellular (figure 2a), and, in the latter, it is meandering
(figure 2b).

The leading-order solution Ψ0 can also be used to estimate the deflection of the
liquid–gas interface h′:

h′ = Ca
{

4a cosh(k)
S + 2kφC

− 4a2kζ cosh(2k) cos(kx + t)
S′ + 2k′φC′

}
sin(kx + t), (4.5)

where S′ = sinh(2k′) − 2k′ and C′ = cosh(2k′) − 1, introducing k′ = 2k. This relation is
obtained by balancing the normal stress acting at our flat liquid–gas interface, y = 1, with
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Role of viscoelasticity in mucociliary clearance

the capillary pressure jump of a deformable film surface, h = 1 + h′:

p − 2 ∂yv − τyy = −Ca−1 ∂xxh, (4.6)

where we have neglected the gas stresses, then truncating at O(De0), and substituting the
leading-order solutions for Ψ (4.3a) and for p (4.7) into (4.6). The leading-order pressure
p0 is obtained by integrating (2.1c) in the y-direction and (2.1b) in the x-direction, after
having applied (4.2), truncated, and substituted (4.3a):

p0 = 2e−2ky k2 sin(kx + t) {eky (D1 + B1 e2ky) + 8ζ cos(kx + t) (D3 + B3 e4ky)}, (4.7)

where, without loss of generality, we have assumed p0(x = 0, y = 0, t) = 0.
Figure 2(c) represents the maximum displacement h′

max obtained from (4.5) versus the
dimensional film height h�

0, demonstrating that our flat-surface assumption (∂xh = ∂xxh =
0) is valid within the physiological film thickness range h�

0 = 5–20 μm, for the largest cilia
beat amplitude considered, i.e. a� = 5 μm.

In the low-amplitude limit, we expand (4.2) in terms of ε = a and seek a solution for
the time-averaged stream function Ψ̄ ( y). For ζ = 1, we obtain

Ψ̄ ( y) = a2 Ψ̄2( y) + O(a3),

Ψ̄2( y) =
(

I0 + I1y + I2y2
)

e2ky +
(

J0 + J1y + J2y2
)

e−2ky + K1y + K2y2,

⎫⎬
⎭ (4.8)

where the constants Ii, Ji and Ki are given in Appendix B. Based on (4.8), we obtain the
normalized flow rate:

q
qN

= 1 − (1 − β) De2 (S2 + 6φkSC)

(1 + De2)(S + 2φkC)2
+ O(a3). (4.9)

In the no-slip limit φ = 0, (4.9) collapses with (26) in Lauga (2007), which predicts the
normalized swimming speed U/UN of microorganisms represented as Taylor swimming
sheets. In figure 3(a), we have plotted the average mucus velocity ū� = q�/h�

0 based on
(4.9) versus the cilia beat frequency f �. The dot-dashed and dashed red curves correspond
to viscoelastic mucus, assuming constant (dot-dashed) or frequency-dependent (dashed)
values of G′ and G′′, based on experimental data of Hill et al. (2014). Comparing these
curves, we may conclude that our approximation to neglect the frequency dependence
of G′ and G′′ is reasonable in the considered frequency range. The solid black curve
in figure 3(a) corresponds to the Newtonian limit (De = 0), where q� increases linearly
with f � (Blake 1973; Sedaghat et al. 2016). The exact relation underlying this curve is
q� = q�

N = πa�2kf �, which follows from (2.6) upon re-dimensionalizing with the scale
UL = h�2

0 ω�.

4.2. Direct numerical simulations
We solve numerically the fully nonlinear governing equations (2.1)–(2.4) on a periodic
domain using the academic code Basilisk, which employs the log-conform approach
(López-Herrera, Popinet & Castrejón-Pita 2019) for resolving the constitutive relations
(2.2). It is a pressure-based solver, thus the Poisson equation for the pressure is solved
instead of (2.1a) to enforce continuity (Popinet 2015), using the boundary conditions
∂yp = 0 at y = 0 and (4.6) at y = h, in the limit h = 1. The same code was used recently
by Romano et al. (2021) to investigate the effect of viscoelasticity on airway occlusion,
and validated versus several relevant benchmarks. The code relies on a finite-volume
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spatial discretization, using the second-order upwind Bell–Colella–Glaz advection scheme
(Bell, Colella & Glaz 1989). Time discretization is implicit for diffusion and explicit for
advection terms, and the time step is adapted according to a CFL criterion. Our DNS were
typically performed on a uniform quadtree grid, with grid size 
x = 2−6 = 1/64, and the
time step was limited by a lower bound 
t = 10−7. A typical DNS run took 5–18 h on
8 CPUs to reach a fully developed state (after 3–10 periods).

In figures 2(a) and 2(b), we have included grid convergence results obtained with our
DNS for the Newtonian reference case. Dashed blue curves correspond to grid size 
x =
1/64, and dotted black curves to 
x = 1/128. Agreement with our analytical predictions
(solid red curves) according to (4.3a) is visually perfect for the fine grid and remains
excellent for the reference grid. The same conclusion can be drawn from figure 3(a), which
confronts DNS using three different grids (symbols) with our low-amplitude asymptotic
solution (dot-dashed curve) according to (4.9), for a viscoelastic mucus film.

Figure 3(b) represents streamlines for one of our DNS from figure 3(a). In the same plot,
we have represented contours of the trace tr(C) of the conformation tensor C = De τ ij + I
based on the Oldroyd-B model, where I is the identity matrix. The quantity tr(C) allows us
to gauge the polymer extension associated with our flow field. We find that the maximum
value, observed near the cilia–mucus interface, is tr(C) ∼ 2.5, which implies a moderate
fluid element extension relative to the Newtonian limit tr(C) = 2. Thus the Oldroyd-B
model employed here is expected to behave well for our flow.

In our problem, the mucus viscosities μs and μp intervene only via β. Thus the total
viscosity μ = μs + μp can be chosen freely. For numerical convenience, we choose a low
value μ = 1 mPa s, allowing us to limit the viscous diffusion time scale. The log-conform
approach is an effective remedy against numerical instabilities associated with large values
of De (Fattal & Kupferman 2005), and we have encountered no such instabilities in our
DNS. However, in our simulations of HBE-5 wt% mucus, we needed to increase β from its
target value β = 0.002 to β = 0.1, because of the degeneracy of the constitutive relations
(2.2) in the limit β → 0. We have checked via (4.9) that this change in β has no appreciable
effect on the MCC flow rate.

5. Results and discussion

Our main results are presented in § 5.1, where we focus solely on the effect of
viscoelasticity. In § 5.2, we will discuss the additional implications of shear-thinning,
which is another non-Newtonian property of mucus.

5.1. Role of viscoelasticity
We seek to quantify the effect of mucus viscoelasticity on MCC by comparing the actual
flow rate q (2.5) to its Newtonian limit qN . For this, we characterize the ratio q/qN versus
three control parameters of our problem, i.e. De, φ and a. We start with figure 4 by
establishing the effect of the slip length φ and beat amplitude a, in order to assess to
what extent the no-slip low-amplitude theory of Lauga (2007) is applicable to the MCC
problem studied here. Figure 4(a) shows predictions of q/qN based on our low-amplitude
solution (4.9) for different slip lengths φ and representative values of De and β. First, we
see that viscoelasticity can greatly reduce the MCC flow rate (q/qN < 1). Second, this
effect is much larger in the no-slip limit (long dashes) than for realistic values of φ (solid
curve). Third, the no-slip limit cannot represent the q/qN variation in terms of the film
height h�

0.
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Figure 4. Effect of slip length φ and CBA a on the MCC flow rate of viscoelastic mucus: Λ� = 20 μm.
(a) Effect of slip-length: De = 3, β = 0.1. Low-amplitude prediction (4.9). Dashed line indicates φ� = 0;
dotted line indicates φ� = 2 μm; dot-dashed line indicates φ� = 5 μm; solid line indicates φ� = 10 μm.
(b) Effect of CBA: φ = 0, β = 0.5, h�

0 = 10 μm. Dotted lines based on low-De prediction (4.3); dashed
line indicates (4.9). Symbols indicate DNS: circles, a� = 1.6 μm; triangles, a� = 3 μm; squares, a� = 5 μm;
diamonds, a� = 8 μm.

Figure 4(b) represents the effect of the cilia beat amplitude (CBA) a in the no-slip limit
φ = 0 via DNS data (symbols). We see that q/qN becomes very small at the lowest CBA
(circles, a� = 1.6 μm), which corresponds to CF conditions. The low-amplitude analytical
prediction (4.9) (black dashed curve) is able to capture accurately this scenario versus
the DNS (open circles). By contrast, a significant discrepancy is observed for the CBA
corresponding to healthy conditions (diamonds, a� = 8 μm). Thus the low-amplitude
asymptotic expansion is not applicable in the entire physiological range of MCC, owing
to potentially large values of CBA. The dotted curves in figure 4(b) represent our low-De
solution (4.3). These show good agreement with the DNS for low values of De, but cannot
predict the levelling off of q/qN with increasing De. The deviation from the DNS data sets
in at lower values of De the larger a becomes.

We now turn to the MCC scenarios characterized in table 1. If not mentioned otherwise,
we use h�

0 = 10 μm, φ� = 10 μm and Λ� = 20 μm. Figures 5(a) and 5(b) represent DNS
and analytical predictions of q/qN for the four considered mucus types versus the Deborah
number De and versus the cilia beat frequency f �, respectively. In the case of healthy
mucus (HBE-2 wt%, blue circles), which is characterized by a rather small relaxation
time λ, viscoelasticity reduces MCC only slightly (q/qN ∼ 0.995 − 0.98) within the
physiological frequency range f � = 5 − 20 Hz (green shaded region in figure 5b). This
contrasts with the very significant reduction in the swimming speed U of non-ciliated
microorganisms (dot-dashed blue curve), which operate at much greater frequencies
( f � > 80 Hz, pink shaded region) and do not experience slip, as predicted by the theory
of Lauga (2007). We point out, however, that particular types of swimming motions and
swimmer geometries can lead to a viscoelasticity-induced increase of the swimming speed
(Riley & Lauga 2015; Angeles et al. 2021).

In the case of mucus corresponding to CF conditions (HBE-5 wt%, red diamonds in
figure 5), which displays a much greater relaxation time λ, the MCC flow rate drops by
as much as 30 % versus the Newtonian limit. This is due mainly to the reduced CBA
associated with CF conditions. Dashed curves in figure 5(b) represent our low-amplitude
analytical prediction (4.9). Upon comparing these with our DNS data (symbols), we may
conclude that the analytical prediction captures accurately q/qN in the MCC frequency
range for the healthy mucus (circles) and for the most unhealthy mucus (diamonds).
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Figure 5. Viscoelasticity-induced flow rate reduction for mucus types from table 1: φ� = 10 μm, h�
0 = 10 μm,

Λ� = 20 μm. Symbols indicate DNS: blue circles, HBE-2 wt%; cyan triangles, HBE-3 wt%; magenta squares,
HBE-4 wt%; red diamonds, HBE-5 wt%. Dotted lines based on (4.3); dashed lines indicate (4.9). (a) Versus
Deborah number De = λω�. (b) Versus cilia beat frequency f �. Dot-dashed lines (right ordinate) indicate
normalized swimming speed U/UN of microorganisms according to Lauga (2007). Green/pink shaded regions
mark the frequency ranges for MCC and microorganism propulsion, respectively.

However, significant deviations are observed for the intermediate mucus types (triangles
and squares).

Next, we turn to the mechanism underlying the viscoelasticity-induced flow rate drop
observed in figure 5. To this end, it is useful to reduce the problem to a simpler version by
setting φ = 0 and ζ = 0 in (2.4b), which leads to ūw = 0. We have shown in figure 2(a)
that the corresponding flow pattern in the Newtonian limit is cellular and symmetrical, and
consequently, q = qN = 0. Adding viscoelasticity, which we now know to affect the flow
rate q, will thus cause a topological change in the flow field.

Figure 6(a) demonstrates via DNS data (symbols) that a similar flow rate reduction
is observed for the reduced form of the wave function (2.4b), i.e. ζ = 0 (squares), as
compared to the full form, i.e. ζ = 1 (circles). Further, the mucus flow rate q becomes
negative for ζ = 0, and this effect holds at arbitrarily low De. The effect is captured by
our low-De solution (4.4), which is represented via a dotted blue curve in figure 6(a).
Figure 6(b) shows how viscoelasticity modifies the flow field in this limit, by plotting
Ψ0 and Ψ2 according to (4.3). We see that the O(De2) correction (dashed lines) causes
a net flow to the left, which distorts the O(De0) cellular flow pattern (solid lines) when
superimposed on the latter. Figures 6(c)–6( f ) display the total flow field obtained from
DNS for the points marked by filled symbols in figure 6(a). We see that viscoelasticity
causes a negative meander (as opposed to the positive meander observed in figures 1(b)
and 2(b)), which winds between the counter-rotating vortices and increases in thickness
as De is increased (from figures 6c–f ). This negative meander transports mucus in the
direction of the metachronal wave, i.e. in the negative x-direction, and thus the wrong
direction from the point of view of MCC. It is associated with the cos(kx + t) term in the
wall velocity uw (see (2.4b)), and, in the full MCC problem (ζ = 1), it opposes the positive
flow induced by the term with the form a2k/2.

To unravel what causes the negative meander observed in figure 6, we analyse the
different terms in the x-momentum equation (2.1b) evaluated at y = 0, based on our
low-De solution (4.3) in the limit ζ = φ = 0. Profiles of these terms, which we denote
Ξi, are plotted in figure 7(a), and their phase averages Ξ̄i are given in the caption.
The dashed blue curve represents the contribution of the solvent stresses Ξ1 = ∂xxu +
∂yyu, which allows one to gauge the degree of symmetry of the flow field. This curve
is shifted towards positive values compared to the Newtonian limit Ξ0 = Ξ1|De=0 =
971 A33-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

68
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.682


Role of viscoelasticity in mucociliary clearance

10–1 100
–1.0

–0.5

0

0.5

1.0

De

0.2

0.4

0.6

0.8

1.0

0

0.5

1.0

0 0.5 1.0 1.5 2.0

0.3 0.5 0.7

y

y

x

0

0.5

1.0

0.3 0.5 0.7

x

0

0.5

1.0

0.3 0.5 0.7

x

0

0.5

1.0

0.3 0.5 0.7

x

x

q/
q re

f

(e)

(b)(a)

(c) (d ) ( f )

Figure 6. Change in flow topology within a viscoelastic mucus film under an increase of the cilia beat
frequency: HBE-5 wt% (see table 1), φ = 0, a� = 1.6 μm, Λ� = 20 μm, h�

0 = 10 μm. (a) Normalized flow
rate for two forms of (2.4b). Circles indicate DNS for ζ = 1; squares indicate DNS for ζ = 0; dotted blue
curves indicate low-De solutions based on (4.3). (b) Plots of Ψ0 (solid) and Ψ2 (dashed) according to (4.3):
De = 0.1. (c–f ) Streamlines from DNS corresponding to filled squares in (a), showing the emergence of
a negative meander (black lines) sandwiched between clockwise (red lines) and anticlockwise (blue lines)
vortices, as De is increased: (c) De = 0.1, (d) De = 0.5, (e) De = 1, and ( f ) De = 2.
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Figure 7. Mechanism underlying the negative meander in figure 6: φ = 0, ζ = 0, h�
0 = 10 μm, Λ� = 20 μm,

De = 0.1. (a) Profiles of terms Ξi in the x-momentum equation (2.1b) evaluated at y = 0, based on our
low-De solution (4.3), and their phase averages Ξ̄i. Dashed line indicates Ξ1 = ∂xxu + ∂yyu, Ξ̄1 = 0.18;
solid line indicates Ξ0 = Ξ1|De=0 = ∂xxu(0) + ∂yyu(0), Ξ̄0 = 0; dotted line indicates Ξ2 = ∂xτxx, Ξ̄2 = 0.004;
dot-dashed line indicates Ξ3 = ∂yτyx, Ξ̄3 = −0.16; dot-dot-dashed line indicates Ξ4 = ∂xp, Ξ̄4 = 0.024
(long dashes). (b) Polymeric wall shear stress τVE

xy according to (5.1). Solid line indicates τVE
yx , τ̄VE

yx = 0.013
(dot-dashed); dashed line indicates τ res

yx , τ̄ res
yx = 0.0003; dotted line indicates τmem

yx , τ̄mem
yx = 0.0127.

∂xxu(0) + ∂yyu(0) (solid blue curve, Ξ̄0 = 0), i.e. its phase average is non-zero (Ξ̄1 = 0.18),
indicating a viscoelasticity-induced loss of symmetry. This is caused mainly by the
contribution of the tangential polymeric stress Ξ3 = ∂yτyx (dot-dashed red curve, Ξ̄3 =
−0.16), the contributions of the normal stress Ξ2 = ∂yτyx (dotted red curve, Ξ̄3 = 0.004)
and the pressure Ξ2 = ∂xp (dot-dot-dashed black curve, Ξ̄2 = 0.024) being weaker.

971 A33-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

68
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.682


A. Choudhury, M. Filoche, N.M. Ribe, N. Grenier and G.F. Dietze

We focus next on the tangential polymeric stress at y = 0:

τyx
∣∣
y=0 = 1 − β

β
∂yu(0)

∣∣∣
y=0

+ De τ (1)
yx

∣∣∣
y=0

+ De2 τ (2)
yx

∣∣∣
y=0︸ ︷︷ ︸

τVE
yx

+O(De3), (5.1a)

where τVE
yx is the viscoelastic contribution, which we decompose formally into a memory

term τmem
yx , containing all time derivatives intervening through (2.2), and a residual term

τ res
yx , containing all other contributions:

τVE
yx ≡ τmem

yx + τ res
yx . (5.1b)

Figure 7(b) represents profiles of τVE
yx (solid black), τmem

yx (dotted magenta) and τ res
yx

(dashed green), and the corresponding phase averages are given in the caption. We see
that τ̄VE

yx is positive (dot-dashed black line, τ̄VE
yx = 0.013), which corresponds to a negative

tangential stress acting on the mucus, and that this non-zero phase average is due mainly
to the memory term (τ̄mem

yx = 0.0127). Thus it is the memory terms in the viscoelastic
constitutive relations (2.2) that cause a non-symmetrical stress distribution, breaking the
symmetry of the cellular flow pattern observed in the Newtonian limit. We point out that
τmem

xy contains time derivatives stemming from (2.2a) and (2.2c), due to the nonlinear
terms in the upper-convected derivative.

5.2. Additional role of shear-thinning
It has been demonstrated by Jory et al. (2022) that mucus also exhibits a shear-thinning
behaviour over a considerable range of strain rate γ̇ , which we quantify via the second
principal invariant of the deformation tensor D:

γ̇ = DxxDyy − DxyDyx, D = Dij = 1
2

{
∂xiuj + ∂xjui

}
, (5.2a,b)

xi = [x, y]T, ui = [u, v]T , (5.3a,b)

where we have used Einstein notation. In figure 8(a), we have reproduced the steady-state
rheometry data (open circles) measured by Jory et al. (2022) via a viscosity μ versus
γ̇ plot. The green shaded region marks the range of γ̇ observed in one of our MCC
computations from § 5.1, for which figure 8(b) represents streamlines and γ̇ contours.
Based on these data alone, one would expect the shear-thinning nature of mucus to greatly
affect MCC in our configuration. However, the extent of this effect depends on how
shear-thinning enters the constitutive relations for the viscous stresses.

Vasquez et al. (2016) have shown that a five-mode Giesekus model is required to capture
quantitatively both the viscoelastic and shear-thinning behaviours of mucus:

τ =
N∑

m=1

τm, τm + Dem

[
∇
τm + αm

1 − βm

βm
τm · τm

]
= 1 − βm

βm
D, (5.4a)

∇
τm = ∂tτm + u · ∇τm − (∇u)T · τm − τm · ∇u, (5.4b)

where N is the number of modes (N = 5 for the 5-mode model), m is the mode
index, Dem = λmω�, βm = μs/(μs + μ

(m)
p ), and αm � 0.5 denotes the so-called mobility

parameter. Here, we have used Gibbs notation for brevity, and the decoration ∇ denotes
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Figure 8. Additional effect of shear-thinning on MCC. (a) Steady-state stress–strain responses for constitutive
models according to table 2. Total mucus viscosity μ versus strain rate γ̇ � (see (5.2a,b)). Thin red curves
indicate HBE-5wt%; thick blue curves indicate HBE-2 wt%. Circles indicate experimental data of Jory et al.
(2022); dot-dashed line indicates Carreau–Yasuda model (5.6) with λ = 1 × 103 s, μ0 = 200 Pa s, μ∞ = 0,
m = 2, n = 0.15; solid line indicates Oldroyd-B; dashed line indicates single-mode Giesekus; dotted line
indicates 5-mode Giesekus. (b) Streamlines and contours of γ̇ � for parameters according to figure 3(b).
(c) Corresponding low-De predictions of MCC flow rate for the three viscoelastic models from (a). (d)
Corresponding MCC flow rate for Carreau–Yasuda model (5.6) from (a). Squares indicate DNS; dot-dashed
line indicates low-λ asymptotic solution; dashed/solid line indicates Giesekus/Oldroyd-B predictions from (c).

the upper-convected derivative. For N = 1 and α = 0, (5.4) reduces to the (single-mode)
Oldroyd-B model (2.2), which is devoid of shear-thinning.

The shear-thinning property of mucus is imparted by the αm term in (5.4). From the
quadratic nature of this term, it is straightforward to show that it intervenes only at O(a4)
in a low-amplitude expansion of the governing equations. Thus our result in (4.9) remains
unaltered when using a (single-mode) Giesekus constitutive model (5.4). The equivalence
of the Oldroyd-B and Giesekus models in the low-a limit has been demonstrated by Lauga
(2007), and we have confirmed it for our current configuration. As our low-amplitude
predictions based on (4.9) in figure 5 (dashed curves there) agree very well with our
DNS (symbols in figure 5) for the HBE-2 wt% (circles) and HBE-5 wt% (diamonds)
mucus in the MCC frequency range, we may conclude that these results are unaffected
by shear-thinning.

We now consider the low-De limit. For this, we assume λ1 � λm in (5.4), and define
Dem = Πm De, where De = λ1ω

� and Πm = λm/λ1. This allows us to apply the regular
perturbation expansion (4.2) using ε = De. In the limit ζ = 0, we obtain

q
qref

∣∣∣∣
ζ=0

= −De2
N∑

m=1

β ′
mΠ2

m
S2 + 6kφSC
(S + 2kφC)2 + O(De3), (5.5)
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HBE N [β ′
1, . . . , β

′
N ] [λ1, . . . , λN ] (s) [α1, . . . , αN ]

5 wt% 5 [64, 32, 3.2, 0.3, 0.03] × 10−2 [521, 201, 51, 0.06, 0.03] [0.5, 0.5, 0.5, 0.3, 0.2]
2 wt% 5 [9994, 2, 2, 0.2, 0.2] × 10−4 [1453, 1.85, 1.2, 0.91, 10−5] [0.01, 0.1, 0.1, 0.5, 0.5]
5 wt% 1 [0.998] [0.052] [0.5]
2 wt% 1 [0.6] [0.003] [0.5]
5 wt% 1 [0.998] [0.052] [0]
2 wt% 1 [0.6] [0.003] [0]

Table 2. Parameters according to (5.4) for the constitutive models underlying curves in figure 8(c), i.e. 5-mode
Giesekus, single-mode Giesekus and Oldroyd-B models. The solvent viscosity is μs = 1 × 10−3 Pa s. All
other parameters have been fitted to the complex modulus data of Hill et al. (2014), listed in table 1, and the
shear-thinning rheology measured by Jory et al. (2022). The steady-state stress–strain responses of the three
models are plotted in figure 8(a).

where β ′
m = μ

(m)
p /(μs + ∑N

m=1 μ
(m)
p ). In the limit N = 1, we obtain β ′

1 = 1 − β1, and
(5.5) reduces to our solution (4.4) obtained from the Oldroyd-B model (2.2). This is
because the mobility parameters αm do not enter (5.5), thus shear-thinning plays no role,
at least in the ζ = 0 limit, which was considered in figures 6 and 7. The αm do appear
in the full analytical solution (ζ = 1), which is too long to reproduce here. Instead, we
plot this solution in figure 8(c) for parameters corresponding to HBE-2 wt% (thick blue
curves) and HBE-5 wt% (thin red curves) mucus.

All curves in figure 8(c) represent low-De predictions of q/qN for ζ = 1. Dotted
and dashed curves correspond to the Giesekus model (5.4) with N = 5 and N = 1,
respectively, and solid curves correspond to the Oldroyd-B model (2.1)–(2.2). The
associated rheological parameters, β ′

m, λm and αm, are given in table 2. These were fitted
to recover the complex moduli G′ and G′′ in table 1 based on (3.1a,b), and in the case of
the Giesekus model, additionally to recover the shear-thinning rheology measured by Jory
et al. (2022), based on the material functions given in Bird, Armstrong & Hassager (1987).
The steady-state μ versus γ̇ relationships underlying the different curves in figure 8(c) are
plotted in figure 8(a) using the same line styles. Whereas the total viscosity μ is constant
for the Oldroyd-B model (solid curves in figure 8a), the 5-mode Giesekus model (dotted
curves in figure 8a) reproduces the shear-thinning behaviour displayed by the experimental
data (open circles).

Comparing the dashed and solid curves in figure 8(c), we may conclude that the
shear-thinning nature of mucus does not significantly affect the MCC flow rate in the
low-De limit. Thus all our conclusions based on (4.3) in § 5.1 remain valid. This is due
to the way in which shear-thinning enters the problem via (5.4), i.e. the αm term there
is multiplied by Dem. As a result, the shear-thinning property of mucus is enslaved to
its viscoelastic nature. In that sense, the former effect is subordinate to the latter. In
other words, shear-thinning enters our MCC problem only via viscoelasticity-induced
perturbations of the flow field. Of course, a final account of the role of shear-thinning
requires full DNS based on the Giesekus model (5.4). In particular, this concerns the
intermediate mucus types in figure 5, where neither the low-a nor the low-De predictions
follow the DNS accurately within the MCC frequency range. Such new DNS are outside
the scope of our paper, as they would require substantially modifying the Basilisk
solver to implement the Giesekus model (5.4).

To emphasize the particular way in which shear-thinning enters the Giesekus model,
we compare our results with predictions based on a generalized Newtonian description
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for a shear-thinning fluid. In this case, the mucus is purely viscous, and we choose the
Carreau–Yasuda model (Carreau, De Kee & Daroux 1979) to describe its viscosity:

μ(γ̇ ) = μ∞ + (μ0 − μ∞)
[
1 + (λγ̇ )l

](n−1)/l
, (5.6)

where the relaxation time λ is not to be confused with an elastic relaxation time, μ0
and μ∞ are the low and infinite strain rate limits, and l > 0 and n < 1 are adjustable
parameters. We set μ∞ = 0 and l = 2, and we fit λ, μ0 and n to the experiments of Jory
et al. (2022), which yields the dot-dashed magenta curve in figure 8(a).

Figure 8(d) compares predictions of the MCC flow rate q based on (5.6), as obtained
from our own DNS (open squares) and a low-λ asymptotic solution (dot-dashed black
curve), with our low-De predictions based on the 5-mode Giesekus (dashed red curve) and
Oldroyd-B (solid red curve) models. In the case of the Giesekus model, shear-thinning
amplifies (very slightly) the flow rate reduction caused by viscoelasticity. By contrast, an
increase in flow rate is observed in the case of the Carreau–Yasuda model (q/qref > 1).
At first sight, the latter observation seems to contradict the conclusions of Chatelin et al.
(2017), who reported conditions where the MCC velocity is reduced due to shear-thinning.
However, these authors also found that the shear-thinning effect is highly non-monotonic,
and their figure 3 exhibits regions of parameter space where the MCC velocity is increased.

6. Conclusion

We have studied analytically and numerically the effect of viscoelasticity on MCC in a
continuous force-free mucus layer, where momentum transfer from the beating cilia is
modelled via the experimentally validated Navier-slip moving-carpet boundary condition
of Bottier et al. (2017b). In our continuum model, we have represented physiologically
realistic conditions by choosing appropriately the mucus rheology (healthy and diseased
conditions), cilia kinematics and cilia density (which controls the slip length), based on
literature data. We find that viscoelasticity can reduce the MCC flow rate by as much
as 30 % versus the Newtonian limit, under conditions representative of cystic fibrosis
(CF), whereas no significant reduction is observed under healthy conditions. Moreover,
the observed flow rate reduction is highly sensitive to the slip length and the cilia beat
amplitude (CBA).

Translating the data reported in this study into dimensional terms, our calculations
predict a 90 % reduction of the MCC flow rate under CF conditions versus a healthy
configuration, i.e. the average mucus velocity drops from 24 − 61 μm s−1 for healthy
mucus (a� = 5 − 8 μm, HBE-2 wt%) to 1.7 μm s−1 for CF mucus (a� = 1.6 μm,
HBE-5 wt%). This is a result of two effects associated with respiratory illnesses: reduced
CBA and increased viscoelasticity. The role of CBA is both direct (via the imparted mucus
velocity) and indirect (via viscoelasticity).

Thus accurately predicting the effect of diseased conditions on CBA is an important
modelling task. For example, in the case of CF, the PCL layer is depleted, so the cilia beat
far into the viscoelastic mucus, reducing the CBA. Predicting this requires modelling the
retro-action of mucus rheology on cilia kinematics. Very few studies have accounted for
such a retro-action. A promising route is the traction layer model of Smith et al. (2007),
which could be extended to account for a nonlinear viscoelastic rheology in the mucus
layer.

Our analytical solution in the low-amplitude limit, which extends the theory of Lauga
(2007) by accounting for wall slip, predicts accurately MCC flow rates versus our DNS
for healthy and unhealthy conditions. Such low-cost predictions could be highly useful
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in large-scale models of the pulmonary network (Filoche, Tai & Grotberg 2015). On the
other hand, our low-De asymptotic solution has allowed us to elucidate the mechanism of
viscoelasticity-induced MCC flow rate reduction. We find that memory effects associated
with the metachronal wave are responsible for this, explaining why earlier studies that
did not account for metachronicity (Vasquez et al. 2016; Ortín 2020) did not observe any
effect of rheology on the net mucus flow rate. In the case of microorganisms swimming
in an unbounded fluid domain and modelled via Taylor’s swimming sheet approach,
Riley & Lauga (2015) have shown that a waveform consisting of two superimposed
counter-travelling waves can lead to a viscoelasticity-induced increase in the swimming
speed. However, such a waveform has not been reported in the context of MCC. Our
analytical asymptotic solutions in the low-amplitude and low-De limits are not affected
significantly by the shear-thinning nature of mucus, which we have represented via a
multi-mode Giesekus model following Vasquez et al. (2016) and Sedaghat et al. (2022).
This is because shear-thinning enters this model via a quadratic stress term that is enslaved
to viscoelasticity. As a result, all our conclusions based on the Oldroyd-B model remain
valid when the additional effect of shear-thinning is accounted for.

Our continuum model can be extended in several ways. First, the effect of an adjacent
gas flow can be incorporated, in order to study the role of viscoelasticity in cough-induced
clearance (Modaresi & Shirani 2022). Second, our model can be adapted to account
for altered metachronicity, either due to gaps in the cilia carpet (Loiseau et al. 2020;
Choudhury et al. 2021) or due to ciliary dyskinesia. Third, the model can be modified
to account for mucus secretion and occlusion in axisymmetric configurations (Halpern,
Fujioka & Grotberg 2010; Romano et al. 2021). Finally, DNS based on the multi-mode
Giesekus model would allow us to elucidate the role of shear-thinning for arbitrary CBA
and De. For this, the Basilisk solver needs to be modified significantly.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.682.
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Appendix A. Expressions intervening in the low-De solution (4.3)

The coefficients Ai, Bi, Ci and Di appearing in (4.3a) are given by

A1 = − a
S + 2kφC

, B1 = a e−k sinh(k)
k(S + 2kφC)

, C1 = −A1, D1 = B1 e2k, (A1a–d)

A2 = 1
2 a2k, (A2)
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A3 = a2k′

4(S′ + 2k′φC′)
, B3 = − a2(1 − e−2k′

)

8(S′ + 2k′φC′)
, C3 = −A3, D3 = B3 e2k′

,

(A3a–d)

where we have introduced S = sinh(2k) − 2k, C = cosh(2k) − 1, S′ = sinh(2k′) − 2k′
and C′ = cosh(2k′) − 1, with k′ = 2k. The homogeneous and particular solutions
ΨH(x, y, t) and ΨP(x, y, t) in (4.3c) are

ΨH(x, y, t) = A10y + B10y2

+
6∑

n=1

{
cos(nθ)

(
enky (A1n + B1nky) + e−nky (C1n + D1nky)

)}
,

(A4)

ΨP(x, y, t) =
∑

n=1,2

3∑
p=0

(
e2nky Ipnyp + e−2nky Jpnyp

)

+
∑

n=1,2

5∑
p=2

{
cos(nθ)

(
enky Ypnyp + e−nky Zpnyp

)}

+ cos(θ)
∑

n=1,2

3∑
p=0

(
e(2n+1)ky Qpnyp + e−(2n+1)ky Rpnyp

)

+ cos(2θ)
∑

n=0,2,3

3∑
p=0

(
e2nky Kpnyp + e−2nky Lpnyp

)

+ cos(3θ)
∑

n=0,2

3∑
p=0

(
e(2n+1)ky Epnyp + e−(2n+1)ky Fpnyp

)

+ cos(4θ)

3∑
p=0

(
e2ky Mpyp + e−2ky Npyp + Xpyp)

)

+ cos(5θ)
∑

n=0,1

3∑
p=0

(
e(2n+1)ky Gpnyp + e−(2n+1)ky Hpnyp

)

+ cos(6θ)

3∑
p=0

(
e2ky Opyp + e−2ky Ppyp

)
, (A5)

where θ = kx + t and Lp0 = 0. The constants Aij, Bij, Cij, . . . and Mi, Ni, Oi, Pi, Xi can
be obtained in a straightforward manner via the method of undetermined coefficients.
The fully substituted forms of ΨH and ΨP are given in the supplementary Mathematica
notebook.
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Appendix B. Coefficients intervening in the low-amplitude solution (4.8)
The coefficients contained in (4.8) are given by

I0 = (1 − β) De2 k
(
2k + e−2k − 1

)
4

(
1 + De2) (S + 2kφC)2

, I1 = − (1 − β) De2 (
e2k − 1

)
k
(
e−2k(4k − 1) + e−4k)

8
(
1 + De2) (S + 2kφC)2

,

I2 = (1 − β) De2e−4k (
e2k − 1

)2 k2

8
(
1 + De2) (S + 2kφC)2

, J0 = − (1 − β) De2k
(
2k − e2k + 1

)
4

(
1 + De2) (S + 2kφC)2

J1 = − (1 − β)De2 (
e2k − 1

)
k
(
4k − e2k + 1

)
8

(
1 + De2) (S + 2kφC)2

, J2 = − (1 − β)De2 (
e2k − 1

)2 k2

8
(
1 + De2) (S + 2kφC)2

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B1)

K1 = 1
2 e−2k

[
−8kφ(J0k + J1(k − 1)) − 4J2(2(k − 2)k + 1)φ + e2k (4J0k(2kφ + 1)

− 2J1(4kφ + 1) + 4J2φ + I0k(8kφ − 4) + 8I1kφ + k + 4I2φ − 2I1)

− 4e4k (2k(I0k + I1(k + 1)) + I2(2k(k + 2) + 1)) φ
]
, (B2)

K2 = e−2k
[
2k (− (J0 + J1 + J2) k + J1 + 2J2) − J2 − e4k(2k (I0k + I1(k + 1))

+ I2(2k(k + 2) + 1))
]
, (B3)

where we have once again used S = sinh(2k) − 2k and C = cosh(2k) − 1.
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