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Abstract

Localized surface plasmons are charge density oscillations confined to metallic
nanoparticles. Excitation of localized surface plasmons by an electromagnetic field
at an incident wavelength where resonance occurs results in a strong light scattering
and an enhancement of the local electromagnetic fields. This paper is devoted to
the mathematical modeling of plasmonic nanoparticles. Its aim is fourfold: (1) to
mathematically define the notion of plasmonic resonance and to analyze the shift
and broadening of the plasmon resonance with changes in size and shape of the
nanoparticles; (2) to study the scattering and absorption enhancements by plasmon
resonant nanoparticles and express them in terms of the polarization tensor of the
nanoparticle; (3) to derive optimal bounds on the enhancement factors; (4) to show,
by analyzing the imaginary part of the Green function, that one can achieve super-
resolution and super-focusing using plasmonic nanoparticles. For simplicity, the
Helmholtz equation is used to model electromagnetic wave propagation.
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1. Introduction

Plasmon resonant nanoparticles haveunique capabilities of enhancing thebright-
ness of light and confining strong electromagnetic fields [40]. A thriving interest
in optical studies of plasmon resonant nanoparticles is due to their recently pro-
posed use as labels in molecular biology [27]. New types of cancer diagnostic
nanoparticles are constantly being developed. Nanoparticles are also being used
in thermotherapy as nanometric heat-generators that can be activated remotely by
external electromagnetic fields [17].

According to the quasi-static approximation for small particles, the surface
plasmon resonance peak occurs when the particle’s polarizability is maximized.
Plasmon resonances in nanoparticles can be treated at the quasi-static limit as
an eigenvalue problem for the Neumann–Poincaré integral operator, which lead-
s to direct calculation of resonance values of permittivity and optimal design of
nanoparticles that resonate at specified frequencies [2,6,25,34,35]. At this limit,
they are size-independent. However, as the particle size increases, they are deter-
mined from scattering and absorption blow up and become size-dependent. This
was experimentally observed, for instance, in [26,38,41].

In [6], we have provided a rigorous mathematical framework for localized sur-
face plasmon resonances. We have considered the full Maxwell equations. Using
layer potential techniques, we have derived the quasi-static limits of the electromag-
netic fields in the presence of nanoparticles. We have proved that the quasi-static
limits are uniformly valid with respect to the nanoparticle’s bulk electron relaxation
rate. We have introduced localized plasmonic resonances as the eigenvalues of the
Neumann–Poincaré operator associated with the nanoparticle. We have described
a general model for the permittivity and permeability of nanoparticles as functions
of the frequency and rigorously justified the quasi-static approximation for surface
plasmon resonances.
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In this paper, we first prove that, as the particle size increases and crosses it-
s critical value for dipolar approximation which is justified in [6], the plasmonic
resonances become size-dependent. The resonance condition is determined from
absorption and scattering blow up and depends on the shape, size and electromag-
netic parameters of both the nanoparticle and the surrounding material. Then, we
precisely quantify the scattering absorption enhancements in plasmonic nanopar-
ticles. We derive new bounds on the enhancement factors given the volume and
electromagnetic parameters of the nanoparticles. At the quasi-static limit, we prove
that the averages over the orientation of scattering and extinction cross-sections of
a randomly oriented nanoparticle are given in terms of the imaginary part of the
polarization tensor. Moreover, we show that the polarization tensor blows up at
plasmonic resonances and derive bounds for the absorption and scattering cross-
sections. We also prove the blow-up of the first-order scattering coefficients at
plasmonic resonances. The concept of scattering coefficients was introduced in [9]
for scalar wave propagation problems and in [10] for the full Maxwell equations,
rendering a powerful and efficient tool for the classification of the nanoparticle
shapes. Using such a concept, we have explained in [3] the experimental results
reported in [16]. Finally, we consider the super-resolution phenomenon in plas-
monic nanoparticles. Super-resolution is meant to cross the barrier of diffraction
limits by reducing the focal spot size. This resolution limit applies only to light
that has propagated for a distance substantially larger than its wavelength [18,19].
Super-focusing is the counterpart of super-resolution. It is a concept for waves to
be confined to a length scale significantly smaller than the diffraction limit of the
focused waves. The super-focusing phenomenon is being intensively investigated
in the field of nanophotonics as a possible technique to focus electromagnetic radi-
ation in a region of order of a few nanometers beyond the diffraction limit of light
and thereby causing an extraordinary enhancement of the electromagnetic fields. In
[12,13], a rigorousmathematical theory is developed to explain the super-resolution
phenomenon inmicrostructureswith high contrastmaterial around the source point.
Such microstructures act like arrays of subwavelength sensors. A key ingredient is
the calculation of the resonances and the Green function in the microstructure. By
following the methodology developed in [12,13], we show in this paper that one
can achieve super-resolution using plasmonic nanoparticles as well.

The paper is organized as follows. In Section 2 we introduce a layer poten-
tial formulation for plasmonic resonances and derive asymptotic formulas for the
plasmonic resonances and the near- and far-fields in terms of the size. In Section
3 we consider the case of multiple plasmonic nanoparticles. Section 4 is devoted
to the study of the scattering and absorption enhancements. We also clarify the
connection between the blow up of the scattering frequencies and the plasmonic
resonances. The scattering coefficients are simply the Fourier coefficients of the
scattering amplitude [9,10]. In Section 5 we investigate the behavior of the scat-
tering coefficients at the plasmonic resonances. In Section 6 we prove that using
plasmonic nanoparticles one can achieve super resolution imaging. “Appendix A”
is devoted to the derivation of asymptotic expansions with respect to the frequency
of some boundary integral operators associated with the Helmholtz equation and
a single particle. These results are generalized to the case of multiple particles in
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“Appendix B”. In “Appendix C” we provide the technical modifications needed in
order to study the shift in the plasmon resonance in the two-dimensional case. In
“Appendix D” we prove useful sum rules for the polarization tensor.

2. Layer Potential Formulation for Plasmonic Resonances

2.1. Problem formulation and some basic results

We consider the scattering problem of a time-harmonic wave incident on a
plasmonic nanoparticle. For simplicity, we use the Helmholtz equation instead of
the full Maxwell equations. The homogeneous medium is characterized by elec-
tric permittivity εm and magnetic permeability μm , while the particle occupying
a bounded and simply connected domain D � R

3 (the two-dimensional case is
treated in “Appendix C”) of class C1,α for some 0 < α < 1 is characterized by
electric permittivity εc and magnetic permeability μc, both of which may depend
on the frequency. Assume that �μc < 0,�μc > 0,�εc > 0, and define

km = ω
√

εmμm, kc = ω
√

εcμc,

and

εD = εmχ(R3\D̄) + εcχ(D̄), μD = εmχ(R3\D̄) + εcχ(D),

where χ denotes the characteristic function. Let ui (x) = eikm d·x be the incident
wave. Here, ω is the frequency and d is the unit incidence direction. Throughout
this paper, we assume that εm andμm are real and strictly positive and that�kc > 0.

Using dimensionless quantities, we assume that the particle D has size of order
one and also that the following condition holds:

Condition 1. We assume that the numbers εm, μm, εc, μc are dimensionless and
are of order one. In addition, �μc = o(1). We also assume that ω is dimensionless
and is of order o(1).

It is worth emphasizing that in this section the variable ω refers to the ratio
between the size of the particle and the incident wavelength. For real plasmonic
nanoparticles made of noble metals such as silver and gold, their electric permit-
tivity is only negative over a small range of frequencies in the optical regime. This
is also the frequency range in which Condition 1 holds and plasmonic resonance
occurs. For the frequencies that are beyond that range, especially those near the
origin, we shall assume that εc and μc are constant there. This assumption avoids
complicated discussion on the dispersive property of electromagnetic parameters in
that regime, and enables us to focus on the interesting frequency range when plas-
monic resonance occurs. We also note that ω = o(1) implies that the plamsmonic
nanoparticles have a size much smaller than the incident wavelength. This is the
case when plamsonic resonance occurs.
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The scattering problem can be modeled by the following Helmholtz equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · 1

μD
∇u + ω2εDu = 0 in R3\∂ D,

u+ − u− = 0 on ∂ D,

1

μm

∂u

∂ν

∣
∣
∣
∣+

− 1

μc

∂u

∂ν

∣
∣
∣
∣−

= 0 on ∂ D,

us := u − ui satisfies the Sommerfeld radiation condition.

(2.1)

Here, ∂/∂ν denotes the normal derivative and the Sommerfeld radiation condition
can be expressed in dimension d = 2, 3, as follows:

∣
∣
∣
∣

∂u

∂|x | − ikmu

∣
∣
∣
∣ � C |x |−(d+1)/2

as |x | → +∞ for some constant C independent of x .
The model problem (2.1) is referred to as the transverse magnetic case. Note

that all the results of this paper hold true in the transverse electric case where εD

and μD are interchanged.
Let

F1(x) = −ui (x) = −eikm d·x ,

F2(x) = − 1

μm

∂ui

∂ν
(x) = − i

μm
kmeikm d·x d · ν(x),

with ν(x) being the outward normal at x ∈ ∂ D. Let G be the Green function for
the Helmholtz operator � + k2 satisfying the Sommerfeld radiation condition. In
dimension three, G is given by

G(x, y, k) = − eik|x−y|

4π |x − y| .

By using the following single-layer potential and the Neumann–Poincaré integral
operator

Sk
D[ψ](x) =

∫

∂ D
G(x, y, k)ψ(y)dσ(y), x ∈ R

3,

(Kk
D)∗[ψ](x) =

∫

∂ D

∂G(x, y, k)

∂ν(x)
ψ(y)dσ(y), x ∈ ∂ D,

we can represent solution u in the following form:

u(x) =
{

ui + Skm
D [ψ], x ∈ R

3\D̄,

Skc
D [φ], x ∈ D,

(2.2)
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where ψ, φ ∈ H− 1
2 (∂ D) satisfy the following system of integral equations on ∂ D

[7]:
⎧
⎨

⎩

Skm
D [ψ] − Skc

D [φ] = F1,

1
μm

( 1
2 I d +

(
Kkm

D

)∗ )[ψ] + 1
μc

( 1
2 I d −

(
Kkc

D

)∗ )[φ] = F2,
(2.3)

where I d denotes the identity operator. In the sequel, we set S0
D = SD .

We are interested in the scattering in the quasi-static regime, that is, for ω 
 1.
Note that forω small enough, Skc

D is invertible [7].We have φ = (Skc
D )−1

(Skm
D [ψ]−

F1
)
, whereas the following equation holds for ψ :

AD(ω)[ψ] = f, (2.4)

where

AD(ω) = 1

μm

(
1

2
I d +

(
Kkm

D

)∗) + 1

μc

(
1

2
I d −

(
Kkc

D

)∗)
(Skc

D )−1Skm
D ,(2.5)

f = F2 + 1

μc

(
1

2
I d −

(
Kkc

D

)∗)(
Skc

D

)−1 [F1]. (2.6)

It is clear that

AD(0) = AD,0 = 1

μm

(
1

2
I d + K∗

D

)

+ 1

μc

(
1

2
I d − K∗

D

)

=
(

1

2μm
+ 1

2μc

)

I d −
(

1

μc
− 1

μm

)

K∗
D, (2.7)

where the notation K∗
D = (K0

D)∗ is used for simplicity.
We are interested in finding AD(ω)−1. We first recall some basic facts about

the Neumann–Poincaré operator K∗
D [7,14,29,31].

Lemma 2.1. (i) The following Calderón identity holds: KDSD = SDK∗
D;

(ii) The operator K∗
D is self-adjoint in the Hilbert space H− 1

2 (∂ D) equipped with
the following inner product:

(u, v)H∗ = −(u,SD[v])− 1
2 , 12

(2.8)

with (·, ·)− 1
2 , 12

being the duality pairing between H− 1
2 (∂ D) and H

1
2 (∂ D),

which is equivalent to the original one;

(iii) Let H∗(∂ D) be the space H− 1
2 (∂ D) with the new inner product. Let (λ j , ϕ j ),

j = 0, 1, 2, . . . be the eigenvalue and normalized eigenfunction pair of K∗
D

in H∗(∂ D), then λ j ∈ (− 1
2 ,

1
2 ] and λ j → 0 as j → ∞;

(iv) The following trace formula holds: for any ψ ∈ H∗(∂ D),
(

−1

2
I d + K∗

D

)

[ψ] = ∂SD[ψ]
∂ν

∣
∣
∣−;
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(v) The following representation formula holds: for any ψ ∈ H−1/2(∂ D),

K∗
D[ψ] =

∞∑

j=0

λ j (ψ, ϕ j )H∗ ⊗ ϕ j .

It is clear that the following result holds:

Lemma 2.2. Let H(∂ D) be the space H
1
2 (∂ D) equipped with the following equiv-

alent inner product

(u, v)H =
(
(−SD)−1[u], v

)

− 1
2 , 12

. (2.9)

Then, SD is an isometry between H∗(∂ D) and H(∂ D).

We now present other useful observations and basic results. The following
holds:

Lemma 2.3. (i) We have (− 1
2 I d + K∗

D)S−1
D [χ(∂ D)] = 0 with χ(∂ D) being the

characteristic function of ∂ D;
(ii) Let λ0 = 1

2 . Then the corresponding eigenspace has dimension one and is

spanned by the function ϕ0 = cS−1
D [χ(∂ D)] for some constant c such that

||ϕ0||H∗ = 1;
(iii) Moreover, H∗(∂ D) = H∗

0(∂ D) ⊕ {μϕ0, μ ∈ C}, where H∗
0(∂ D) is the

zero mean subspace of H∗(∂ D) and ϕ j ∈ H∗
0(∂ D) for j � 1, that is,

(ϕ j , χ(∂ D))− 1
2 , 12

= 0 for j � 1. Here, {ϕ j } j is the set of normalized eigen-

functions of K∗
D.

From (2.7), it is easy to see that

AD,0[ψ] =
∞∑

j=0

τ j (ψ, ϕ j )H∗ϕ j , (2.10)

where

τ j = 1

2μm
+ 1

2μc
− ( 1

μc
− 1

μm

)
λ j . (2.11)

We now derive the asymptotic expansion of the operatorA(ω) asω → 0. Using
the asymptotic expansions in terms of k of the operators Sk

D , (Sk
D)−1 and (Kk

D)∗
proved in “Appendix A”, we can obtain the following result:

Lemma 2.4. As ω → 0, the operator AD(ω) : H∗(∂ D) → H∗(∂ D) admits the
asymptotic expansion

AD(ω) = AD,0 + ω2AD,2 + O(ω3),

where

AD,2 = (εm − εc)KD,2 + εmμm − εcμc

μc

(
1

2
I d − K∗

D

)

S−1
D SD,2. (2.12)
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Proof. Recall that

AD(ω) = 1

μm

(
1

2
I d +

(
Kkm

D

)∗)+ 1

μc

(
1

2
I d −

(
Kkc

D

)∗)(
Skc

D

)−1 Skm
D . (2.13)

By a straightforward calculation, it follows that

(
Skc

D

)−1 Skm
D = I d + ω

(√
εcμcBD,1SD + √

εmμmS−1
D SD,1

) + ω2(εcμcBD,2SD

+√
εcμcεmμmBD,1SD,1 + εmμmS−1

D SD,2
) + O(ω3),

= I d + ω
(√

εmμm − √
εcμc

)S−1
D SD,1 + ω2( (εmμm − εcμc)

S−1
D SD,2 + √

εcμc
(√

εcμc − √
εmμm

)S−1
D SD,1S−1

D SD,1
)

+O(ω3),

where BD,1 and BD,2 are defined by (A.5). Using the facts that
(
1

2
I d − K∗

D

)

S−1
D SD,1 = 0

and

1

2
I d − (Kk

D)∗ =
(
1

2
I d − K∗

D

)

− k2KD,2 + O(k3),

the lemma immediately follows. �
We regard AD(ω) as a perturbation to the operator AD,0 for small ω. Using

standard perturbation theory [39], we can derive the perturbed eigenvalues and their
associated eigenfunctions. For simplicity, we consider the case when λ j is a simple
eigenvalue of the operator K∗

D .
We let

R jl = (AD,2[ϕ j ], ϕl
)

H∗ , (2.14)

where AD,2 is defined by (2.12).
As ω goes to zero, the perturbed eigenvalue and eigenfunction have the follow-

ing form:

τ j (ω) = τ j + ω2τ j,2 + O(ω3), (2.15)

ϕ j (ω) = ϕ j + ω2ϕ j,2 + O(ω3), (2.16)

where

τ j,2 = R j j , (2.17)

ϕ j,2 =
∑

l �= j

R jl
( 1

μm
− 1

μc

)
(λ j − λl)

ϕl . (2.18)
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2.2. First-order correction to plasmonic resonances and field behavior at the
plasmonic resonances

We first introduce different notions of plasmonic resonance as follows:

Definition 1. (i) We say that ω is a plasmonic resonance if

|τ j (ω)| 
 1 and is locally minimal for some j;
(ii) We say that ω is a quasi-static plasmonic resonance if |τ j | 
 1 and is locally

minimized for some j . Here, τ j is defined by (2.11);
(iii) We say that ω is a first-order corrected quasi-static plasmonic resonance if

|τ j + ω2τ j,2| 
 1 and is locally minimized for some j . Here, the correction
term τ j,2 is defined by (2.17).

Note that quasi-static resonances are size independent and is therefore a zero-
order approximation of the plasmonic resonance in terms of the particle size while
the first-order corrected quasi-static plasmonic resonance depends on the size of the
nanoparticle (or equivalently on ω in view of the non-dimensionalization adopted
herein).

We are interested in solving the equationAD(ω)[φ] = f when ω is close to the
resonance frequencies, that is, when τ j (ω) is very small for some j’s. In this case,
the major part of the solution would be the contributions of the excited resonance
modes ϕ j (ω). We introduce the following definition:

Definition 2. We call J ⊂ N index set of resonance if τ j ’s are close to zero when
j ∈ J and are bounded from below when j ∈ J c. More precisely, we choose a
threshold number η0 > 0 independent of ω such that

|τ j | � η0 > 0 for j ∈ J c.

Remark 2.1. Note that for j = 0, we have τ0 = 1/μm , which is of size one by
our assumption. As a result, throughout this paper, we always exclude 0 from the
index set of resonance J .

Fromnowon,we shall use J as our index set of resonances.We assume through-
out that the following conditions hold:

Condition 2. Each eigenvalue λ j for j ∈ J is a simple eigenvalue of the operator
K∗

D.

Condition 3. Let

λ = μm + μc

2(μm − μc)
. (2.19)

We assume that λ �= 0 or equivalently, μc �= −μm.

Condition 3, which is crucial to our analysis, implies that the set J is finite.
Otherwise, infinity resonance modes may be excited and the problem becomes
unstable. We refer to [23,24,37] for detailed discussion on this case.
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Remark 2.2. Note that in the ideal case when �μc = 0, we know that τ j = 0 if λ

defined in (2.19) is equal to λ j . This the usual definition in the quasi-static limiting
case when the wavelength is infinite. In the case�μc �= 0 but�μc = o(1), one may
neglect the imaginary part and still use the definition to find the resonance frequency.
The drawback of this definition is that the resonance frequency is independent
of the size of the particle. Now, with the asymptotic expansion (2.15), we may
find ω, the resonance frequency, according to the criterion in Definition 1 (i) in a
small neighborhood of the resonant frequency of the quasi-static limiting case. The
difference of the two frequency yields the shift of resonance frequency with respect
to size of the particle.

We now define the projection PJ (ω) such that

PJ (ω)[ϕ j (ω)] =
{

ϕ j (ω), j ∈ J,

0, j ∈ J c.

In fact, we have

PJ (ω) =
∑

j∈J

Pj (ω) =
∑

j∈J

1

2π i

∫

γ j

(ξ − AD(ω))−1dξ, (2.20)

where γ j is a Jordan curve in the complex plane enclosing only the eigenvalue
τ j (ω) among all the eigenvalues.

To obtain an explicit representation of PJ (ω), we consider the adjoint operator
AD(ω)∗. By a similar perturbation argument,we can obtain its perturbed eigenvalue
and its eigenfunction, which have the following form:

τ̃ j (ω) = τ j (ω), (2.21)

ϕ̃ j (ω) = ϕ j + ω2ϕ̃ j,2 + o(ω2). (2.22)

Using the eigenfunctions ϕ̃ j (ω), we can show that

PJ (ω)[x] =
∑

j∈J

(
x, ϕ̃ j (ω)

)

H∗ϕ j (ω). (2.23)

Throughout this paper, for two Banach spaces X and Y , by L(X, Y ) we denote the
set of bounded linear operators from X into Y .

We are now ready to solve the equation AD(ω)[ψ] = f . First, it is clear that

ψ = AD(ω)−1[ f ] =
∑

j∈J

(
f, ϕ̃ j (ω)

)

H∗
τ j (ω)

+ AD(ω)−1[PJ c(ω)[ f ]]. (2.24)

The following lemma holds:

Lemma 2.5. The norm ‖AD(ω)−1PJ c (ω)‖L(H∗(∂ D),H∗(∂ D)) is uniformly bounded
in ω for ω sufficiently small.
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Proof. Consider the operator

AD(ω)|J c : PJ c (ω)H∗(∂ D) → PJ c (ω)H∗(∂ D).

For ω small enough, we can show that dist(σ (AD(ω)|J c ), 0) � η0
2 , where

σ(AD(ω)|J c) is the discrete spectrum of AD(ω)|J c . Then, it follows that

‖AD(ω)−1(PJ c (ω) f )‖ = ‖(AD(ω)|PJc

)−1
(PJ c (ω) f )‖

� 1

η0
exp

(
C1

η20

)

‖PJ c (ω) f ‖,

where the notation A � B means that A � C B for some constant C .
On the other hand,

PJ (ω) f =
∑

j∈J

(
f, ϕ̃ j (ω)

)

H∗ϕ j (ω) =
∑

j∈J

(
f, ϕ j + O(ω)

)

H∗
(
ϕ j + O(ω)

)

=
∑

j∈J

(
f, ϕ j

)

H∗ϕ j (ω) + O(ω).

Thus,

‖PJ c (ω)‖ = ‖(I d − PJ (ω))‖ � (1 + O(ω)),

from which the desired result follows immediately. �
Second, we have the following asymptotic expansion of f given by (2.6) with

respect to ω:

Lemma 2.6. Let

f1 = −i
√

εmμmeikm d·z
(

1

μm
[d · ν(x)] + 1

μc

(1

2
I d − K∗

D

)S−1
D [d · (x − z)]

)

and let z be the center of the domain D. In the space H∗(∂ D), as ω goes to zero,
we have

f = ω f1 + O(ω2),

in the sense that, for ω small enough,

‖ f − ω f1‖H∗ � Cω2

for some constant C independent of ω.

Proof. A direct calculation yields

f = F2 + 1

μc

(
1

2
I d −

(
Kkc

D

)∗)
(Skc

D )−1[F1]

= −ω
i

μm

√
εmμmeikm d·z [d · ν(x)] + O(ω2)
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+ 1

μc

((1

2
I d − K∗

D

)(
(SD)−1 + ωBD,1

) + O(ω2)
)

[
−eikm d·z(χ(∂ D) + iω

√
εmμm [d · (x − z)]

) + O(ω2)
]

= −eikm d·z

μc

(
1

2
I d − K∗

D

)

S−1
D [χ(∂ D)] − ωeikm d·z

μc

(
1

2
I d − K∗

D

)

BD,1[χ(∂ D)]

−ωi
√

εmμmeikm d·z
(

1

μm
[d · ν(x)] + 1

μc

(
1

2
I d − K∗

D

)

S−1
D [d · (x − z)]

)

+ O(ω2)

= −ωi
√

εmμmeikm d·z
(

1

μm
[d · ν(x)] + 1

μc

(
1

2
I d − K∗

D

)

S−1
D [d · (x − z)]

)

+O(ω2),

where we have made use of the facts that
(
1

2
I d − K∗

D

)

S−1
D [χ(∂ D)] = 0

and

BD,1[χ(∂ D)] = cS−1
D [χ(∂ D)]

for some constant c; again, see “Appendix A”. �
Finally, we are ready to state our main result in this section.

Theorem 2.1. Let D has size of order one. Under Conditions 1, 2, and 3 the scat-
tered field us = u − ui due to a single plasmonic particle D has the following
representation in the quasi-static regime:

us = Skm
D [ψ],

where

ψ =
∑

j∈J

ω
(

f1, ϕ̃ j (ω)
)

H∗ϕ j (ω)

τ j (ω)
+ O(ω),

=
∑

j∈J

ikmeikm d·z(d · ν(x), ϕ j
)

H∗ϕ j + O(ω2)

λ − λ j + O(ω2)
+ O(ω)

with λ being given by (2.19).

Proof. We have

ψ =
∑

j∈J

(
f, ϕ̃ j (ω)

)

H∗ϕ j (ω)

τ j (ω)
+ AD(ω)−1(PJ c (ω) f ),

=
∑

j∈J

ω
(

f1, ϕ j
)

H∗ϕ j + O(ω2)

1
2μm

+ 1
2μc

− ( 1
μc

− 1
μm

)
λ j + O(ω2)

+ O(ω).
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We now compute
(

f1, ϕ j
)

H∗ with f1 given in Lemma 2.6. We only need to
show that

(
(1

2
I d − K∗

D

)S−1
D [d · (x − z)]), ϕ j

)

H∗
= (d · ν(x), ϕ j )H∗ . (2.25)

Indeed, we have

((1

2
I d − K∗

D

)

S−1
D [d · (x − z)] , ϕ j

)

H∗

= −
(
S−1

D [d · (x − z)] ,
(1

2
I d − KD

)SD[ϕ j ]
)

− 1
2 , 12

= −
(
S−1

D [d · (x − z)],SD
(1

2
I d − K∗

D

)[ϕ j ]
)

− 1
2 , 12

= −
(

d · (x − z),
(1

2
I d − K∗

D

)[ϕ j ]
)

− 1
2 , 12

= −
(

d · (x − z),−∂SD[ϕ j ]
∂ν

∣
∣
∣−

)

− 1
2 , 12

=
∫

∂ D

∂[d · (x − z)]
∂ν

SD[ϕ j ]dσ

−
∫

D

(
�[d · (x − z)]SD[ϕ j ] − �SD[ϕ j ][d · (x − z)]

)
dx

= −
(

d · ν(x), ϕ j

)

H∗ ,

where we have used the fact that SD[ϕ j ] is harmonic in D. This proves the desired
identity and the rest of the theorem follows immediately. �
Corollary 2.1. Assume the same conditions as in Theorem2.1. Under the additional
condition that

min
j∈J

|τ j (ω)| � ω3, (2.26)

we have

ψ =
∑

j∈J

ikmeikm d·z(d · ν(x), ϕ j
)

H∗ϕ j + O(ω2)

λ − λ j + ω2
( 1

μc
− 1

μm

)−1
τ j,2

+ O(ω).

More generally, under the additional condition that

min
j∈J

τ j (ω) � ωm+1,

for some integer m > 2, we have

ψ =
∑

j∈J

ikmeikm d·z(d · ν(x), ϕ j
)

H∗ϕ j + O(ω2)

λ − λ j + ω2
( 1

μc
− 1

μm

)−1
τ j,2 + · · · + ωm

( 1
μc

− 1
μm

)−1
τ j,m

+ O(ω).
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Rescaling back to original dimensional variables, we suppose that the magnetic
permeabilityμc of the nanoparticle is changingwith respect to the operating angular
frequency ω while that of the surrounding medium, μm , is independent of ω. Then
we can write

μc(ω) = μ′(ω) + iμ′′(ω). (2.27)

Because of causality, the real and imaginary parts ofμc obey the followingKramer–
Kronig relations:

μ′′(ω) = − 1

π
p.v.

∫ +∞

−∞
1

ω − s
μ′(s)ds,

μ′(ω) = 1

π
p.v.

∫ +∞

−∞
1

ω − s
μ′′(s)ds,

(2.28)

where p.v. stands for the principle value.
The magnetic permeability μc(ω) can be described by the Drude model; see,

for instance, [40]. We have

μc(ω) = μ0

(

1 − F
ω2

ω2 − ω2
0 + iτ−1ω

)

, (2.29)

where τ > 0 is the nanoparticle’s bulk electron relaxation rate (τ−1 is the damping
coefficient), F is a filling factor, and ω0 is a localized plasmon resonant frequency.
When

(1 − F)(ω2 − ω2
0)

2 − Fω2
0(ω

2 − ω2
0) + τ−2ω2 < 0,

the real part of μc(ω) is negative.
We suppose that D = z + δB. The quasi-static plasmonic resonance is defined

by ω such that

� μm + μc(ω)

2(μm − μc(ω))
= λ j

for some j , where λ j is an eigenvalue of the Neumann–Poincaré operator K∗
D(=

K∗
B). It is clear that such definition is independent of the nanoparticle’s size. In

view of (2.15), the shifted plasmonic resonance is defined by

argmin

∣
∣
∣
∣

1

2μm
+ 1

2μc(ω)
− ( 1

μc(ω)
− 1

μm

)
λ j + ω2δ2τ j,2

∣
∣
∣
∣,

where τ j,2 is given by (2.17) with D replaced by B.
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3. Multiple Plasmonic Nanoparticles

3.1. Layer potential formulation in the multi-particle case

We consider the scattering of an incident time harmonic wave ui by multiple
weakly coupled plasmonic nanoparticles in three dimensions. Our motivation is
to demonstrate the principle of super-resolution in resonant media; see Section 6.
The scattering from multiple weakly coupled, non-resonant small particles can be
analyzed in the same way. However, no super-resolution can be achieved in this
case.

For ease of exposition, we consider the case of L particles with an identical
shape. We assume that Condition 1 holds. Moreover, in contrast to Section 2 where
the size of the particle is assumed to be of order one, we assume the following
condition in the section.

Condition 4. All the identical particles have size of order δ which is a small pa-
rameter and the distances between neighboring ones are of order one.

We write Dl = zl + δ D̃, l = 1, 2, . . . , L , where D̃ has size one and is centered
at the origin. Moreover, we denote D0 = δ D̃ as our reference nanoparticle. Denote
by

D =
L⋃

l=1

Dl , εD = εmχ(R3\D̄) + εcχ(D̄), μD = μmχ(R3\D̄) + μcχ(D).

The scattering problem can be modeled by the following Helmholtz equation:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · 1

μD
∇u + ω2εDu = 0 in R3\∂ D,

u+ − u− = 0 on ∂ D,

1

μm

∂u

∂ν

∣
∣
∣
∣+

− 1

μc

∂u

∂ν

∣
∣
∣
∣−

= 0 on ∂ D,

us := u − ui satisfies the Sommerfeld radiation condition.

(3.1)

Let

ui (x) = eikm d·x ,
Fl,1(x) = −ui (x)

∣
∣
∂ Dl

= −eikm d·x ∣∣
∂ Dl

,

Fl,2(x) = −∂ui

∂ν
(x)

∣
∣
∣
∣
∂ Dl

= −ikmeikm d·x d · ν(x)
∣
∣
∂ Dl

,

and define the operator Kk
Dp,Dl

by

Kk
Dp,Dl

[ψ](x) =
∫

∂ Dp

∂G(x, y, k)

∂ν(x)
ψ(y) dσ(y), x ∈ ∂ Dl .
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Analogously, we define

Sk
Dp,Dl

[ψ](x) =
∫

∂ Dp

G(x, y, k)ψ(y) dσ(y), x ∈ ∂ Dl .

The solution u of (3.1) can be represented as follows:

u(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ui +
L∑

l=1

Skm
Dl

[ψl ], x ∈ R
3\D̄,

L∑

l=1

Skc
Dl

[φl ], x ∈ D,

where φl , ψl ∈ H− 1
2 (∂ Dl) satisfy the following system of integral equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Skm
Dl

[ψl ] − Skc
Dl

[φl ] +
∑

p �=l

Skm
Dp,Dl

[ψp] = Fl,1,

1

μm

(
1

2
I d +

(
Kkm

Dl

)∗) [ψl ] + 1

μc

(1

2
I d −

(
Kkc

Dl

)∗ )[φl ]

+ 1

μm

∑

p �=l

Kkm
Dp,Dl

[ψp] = Fl,2,

and
⎧
⎪⎨

⎪⎩

Fl,1 = −ui on ∂ Dl ,

Fl,2 = − 1

μm

∂ui

∂ν
on ∂ Dl .

3.2. First-order correction to plasmonic resonances and field behavior at
plasmonic resonances in the multi-particle case

We consider the scattering in the quasi-static regime, that is, when the incident
wavelength is much greater than one. With proper dimensionless analysis, we can
assume that ω 
 1. As a consequence, Skc

D is invertible. Note that

φl =
(
Skc

Dl

)−1 (Skm
Dl

[ψl ] +
∑

p �=l

Skm
Dp,Dl

[ψp] − Fl,1
)
.

We obtain the following equation for ψl ’s:

AD(w)[ψ] = f,
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where

AD(w) =

⎛

⎜
⎜
⎜
⎝

AD1(ω)

AD2(ω)

. . .

ADL (ω)

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

0 A1,2(ω) · · · A1,L(ω)

A2,1(ω) 0 · · · A2,L(ω)
... · · · 0

...

AL ,1(ω) · · · AL ,L−1(ω) 0

⎞

⎟
⎟
⎟
⎠

,

ψ =

⎛

⎜
⎜
⎜
⎝

ψ1
ψ2
...

ψL

⎞

⎟
⎟
⎟
⎠

, f =

⎛

⎜
⎜
⎜
⎝

f1
f2
...

fL

⎞

⎟
⎟
⎟
⎠

,

and

Al,p(ω) = 1

μc

(
1

2
I d −

(
Kkc

Dl

)∗)(
Skc

Dl

)−1 Skm
Dp,Dl

+ 1

μm
Kkm

Dp,Dl
,

fl = Fl,2 + 1

μc

(
1

2
I d − (Kkc

Dl
)∗
)

(Skc
Dl

)−1[Fl,1].

The following asymptotic expansions hold:

Lemma 3.1. (i) Regarded as operators from H∗(∂ Dp) into H∗(∂ Dl), we have

AD j (ω) = AD j ,0 + O(δ2ω2);
(ii) Regarded as operators from H∗(∂ Dl) into H∗(∂ D j ), we have

Al,p(ω) = 1

μc

(
1

2
I d − K∗

Dl

)

S−1
Dl

(Sp,l,0,1 + Sp,l,0,2
)

+ 1

μm
Kp,l,0,0 + O(δ2ω2) + O(δ4).

Moreover,
(
1

2
I d − K∗

Dl

)

◦ S−1
Dl

◦ Sp,l,0,1 = O(δ2),

(
1

2
I d − K∗

Dl

)

◦ S−1
Dl

◦ Sp,l,0,2 = O(δ3),

Kp,l,0,0 = O(δ2).

Proof. The proof of (i) follows from Lemmas 2.4 and B.3. We now prove (ii).
Recall that
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1

2
I d −

(
Kkc

Dl

)∗ = 1

2
I d − K∗

Dl
+ O(δ2ω2),

(
Skc

Dl

)−1 = S−1
Dl

− kcS−1
Dl

SDl ,1S−1
Dl

+ O(δ2ω2),

Skm
Dp,Dl

= Sp,l,0,0 + Sp,l,0,1 + Sp,l,0,2

+kmSp,l,1 + k2mSp,l,2,0 + O(δ4) + O(ω2δ2)

Kkm
Dp,Dl

= Kp,l,0,0 + O(ω2δ2).

Using the identity
(
1

2
I d − K∗

Dl

)

S−1
Dl

[χ(Dl)] = 0,

we can derive that

Al,p(ω) = 1

μc

(
1

2
I d − K∗

Dl

)

(Skc
Dl

)−1Skm
Dp,Dl

+ 1

μm
Kp,l,0,0 + O(δ2ω2)

= 1

μc

(
1

2
I d − K∗

Dl

)

S−1
Dl

Skm
Dp,Dl

+ 1

μm
Kp,l,0,0 + O(δ2ω2)

= 1

μc

(
1

2
I d − K∗

Dl

)

S−1
Dl

(Sp,l,0,0 + Sp,l,0,1 + Sp,l,0,2

+kmSp,l,1 + k2mSp,l,2,0 + O(δ4)
) + 1

μm
Kp,l,0,0 + O(δ2ω2)

= 1

μc

(
1

2
I d − K∗

Dl

)

S−1
Dl

(Sp,l,0,1 + Sp,l,0,2
)

+ 1

μm
Kp,l,0,0 + O(δ2ω2) + O(δ4).

The rest of the lemma follows from Lemmas B.3 and B.6. �
Denote byH∗(∂ D) = H∗(∂ D1)× . . .×H∗(∂ DL), which is equipped with the

inner product

(ψ, φ)H∗ =
L∑

l=1

(ψl , φl)H∗(∂ Dl ).

With the help of Lemma 3.1, the following result is obvious:

Lemma 3.2. Regarded as an operator from H∗(∂ D) into H∗(∂ D), we have

A(ω) = AD,0 + AD,1 + O(ω2δ2) + O(δ4),

where

AD,0 =

⎛

⎜
⎜
⎝

AD1,0
AD2,0

. . .

ADL ,0

⎞

⎟
⎟
⎠ , AD,1 =

⎛

⎜
⎜
⎝

0 AD,1,12 AD,1,13 . . .

AD,1,21 0 AD,1,23 . . .

. . .

AD,1,L1 . . . AD,1,L L−1 0

⎞

⎟
⎟
⎠
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with

ADl ,0 =
(

1

2μm
+ 1

2μc

)

I d −
(

1

μc
− 1

μm

)

K∗
Dl

,

AD,1,pq = 1

μc

(
1

2
I d − K∗

Dp

)

S−1
Dp

(Sq,p,0,1 + Sq,p,0,2
) + 1

μm
Kq,p,0,0.

It is evident that

AD,0[ψ] =
∞∑

j=0

L∑

l=1

τ j (ψ, ϕ j,l)H∗ϕ j,l , (3.2)

where

τ j = 1

2μm
+ 1

2μc
−
(

1

μc
− 1

μm

)

λ j , (3.3)

ϕ j,l = ϕ j el (3.4)

with el being the standard basis of RL .
We take A(ω) as a perturbation to the operator AD,0 for small ω and small δ.

Using a standard perturbation argument, we can derive the perturbed eigenvalues
and eigenfunctions. For simplicity, we assume that the following conditions hold:

Condition 5. Each eigenvalue λ j , j ∈ J , of the operator K∗
D1

is simple. Moreover,

we have ω2 
 δ.

In what follows, we only use the first order perturbation theory and derive the
leading order term, that is, the perturbation due to the term AD,1. For each l, we
define an L × L matrix Rl by letting

Rl,pq = (AD,1[ϕl,p], ϕl,q
)

H∗ ,

=
(
AD,1[ϕl ep], ϕl eq

)

H∗ ,

= (AD,1,pq [ϕl ], ϕl
)

H∗ .

Lemma 3.3. The matrix Rl = (Rl,pq)p,q=1,...,L has the following explicit expres-
sion:

Rl,pp = 0,

Rl,pq = 3

4πμc

(

λ j − 1

2

) ∑

|α|=|β|=1

∫

∂ D0

∫

∂ D0

(z p − zq)α+β

|z p − zq |5 xα yβϕl(x)ϕl(y)

dσ(x) dσ(y)

+
(

1

4πμc
− 1

4πμm

)(

λ j − 1

2

)∫

∂ D0

∫

∂ D0

x · y

|z p − zq |3 ϕl(x)ϕl(y)

dσ(x) dσ(y)

= O(δ3), p �= q.
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Proof. It is clear that Rl,pp = 0. For p �= q, we have

Rl,pq = RI
l,pq + RI I

l,pq + RI I I
l,pq ,

where

RI
l,pq = 1

μc

((1

2
I d − K∗

Dp

)S−1
Dp

Sq,p,0,1[ϕl ], ϕl

)

H∗(∂ Dl )
,

RI I
l,pq = 1

μc

((1

2
I d − K∗

Dp

)S−1
Dp

Sq,p,0,2[ϕl ], ϕl

)

H∗(∂ Dl )
,

RI I I
l,pq = 1

μm

(Kq,p,0,0[ϕl ], ϕl
)

H∗(∂ Dl )
.

We first consider RI
l,pq . By the identity

(
1

2
I d − K∗

Dp

)

SDl [ϕl ] = SDl

(
1

2
I d − KDp

)

[ϕl ] =
(

λ j − 1

2

)

ϕl ,

we obtain

RI
l,pq = − 1

μc

((1

2
I d − K∗

Dp

)S−1
Dp

Sq,p,0,1[ϕl ],SDl [ϕl ]
)

L2(∂ Dl )
,

= 1

μc

(

λ j − 1

2

)
(Sq,p,0,1[ϕl ],SDl [ϕl ]

)

L2(∂ Dl )
.

Using the explicit representation ofSq,p,0,1 and the fact that (χ(∂ D j ), φl)L2(∂ D j )
=

0 for j �= 0, we further conclude that

RI
l,pq = 0.

Similarly, we have

RI I
l,pq = 1

μc

(

λ j − 1

2

)
(Sq,p,0,2[ϕl ],SDl [ϕl ]

)

L2(∂ Dl )
,

= 1

μc

(

λ j − 1

2

) ∑

|α|=|β|=1

∫

∂ D0

∫

∂ D0

(3(z p − zq)α+β

4π |z p − zq |5 xα yβ + δαβ xα yβ

4π |z p − zq |3
)
ϕl(x)ϕl(y) dσ(x) dσ(y)

= 3

4πμc

(

λ j − 1

2

) ∑

|α|=|β|=1

∫

∂ D0

∫

∂ D0

(z p − zq)α+β

|z p − zq |5 xα yβϕl(x)ϕl(y)

dσ(x) dσ(y)

+ 1

4πμc

(

λ j − 1

2

) ∑

|α|=1

∫

∂ D0

∫

∂ D0

1

|z p − zq |3 xα yαϕl(x)ϕl(y)

dσ(x) dσ(y).
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Finally, note that

Kq,p,0,0[ϕl ] = 1

4π |z p − zq |3 a · ν(x) = 1

4π |z p − zq |3
3∑

m=1

amνm(x),

where am = (
(y − zq)m, ϕl

)

L2(∂ Dq )
, and a = (a1, a2, a3)T .

By identity (2.25), we have

RI I I
l,pq = − 1

μm

(Kq,p,0,0[ϕl ], ϕl
)

H∗(∂ Dl )

= − 1

4π |z p − zq |3μm

(
a · ν(x), ϕl

)

H∗(∂ Dl )

= − 1

4π |z p − zq |3μm

(
(1

2
I d − K∗

Dp

)S−1
Dp

(a · (x − z p)), ϕl

)

H∗(∂ Dl )

= − 1

4π |z p − zq |3μm

(

λ j − 1

2

)
(
a · (x − z p), ϕl

)

L2(∂ Dp)

= − 1

4π |z p − zq |3μm

(

λ j − 1

2

)∫

∂ D0

∫

∂ D0

x · yϕl(x)ϕl(y) dσ(x) dσ(y).

This completes the proof of the lemma. �
We now have an explicit formula for the matrix Rl . It is clear that Rl is sym-

metric, but not self-adjoint. For ease of presentation, we assume the following
condition:

Condition 6. Rl has L-distinct eigenvalues.

We remark that Condition 6 is not essential for our analysis. Without this con-
dition, the perturbation argument is still applicable, but the results may be quite
complicated. We refer to [30] for a complete description of the perturbation theory.

Let τ j,l and X j,l = (X j,l,1, · · · , X j,l,L)T , l = 1, 2, . . . , L , be the eigenvalues
and normalized eigenvectors of the matrix R j . Here, T denotes the transpose. We
remark that each X j,l may be complex valued and may not be orthogonal to other
eigenvectors.

Under perturbation, each τ j is split into the following L eigenvalues of A(ω):

τ j,l(ω) = τ j + τ j,l + O(δ4) + O(ω2δ2). (3.5)

The associated perturbed eigenfunctions have the form

ϕ j,l(ω) =
L∑

p=1

X j,l,pepϕ j + O(δ4) + O(ω2δ2). (3.6)

We are interested in solving the equation AD(ω)[ψ] = f when ω is close to
the resonance frequencies, that is, when τ j (ω) are very small for some j’s. In this
case, the major part of the solution would be based on the excited resonance modes
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ϕ j,l(ω). For this purpose, we introduce the index set of resonance J as we did in
the previous section for a single particle case.

We define

PJ (ω)ϕ j,m(ω) =
{

ϕ j,m(ω), j ∈ J,

0, j ∈ J c.

In fact,

PJ (ω) =
∑

j∈J

Pj (ω) =
∑

j∈J

1

2π i

∫

γ j

(ξ − AD(ω))−1 dξ, (3.7)

where γ j is a Jordan curve in the complex plane enclosing only the eigenvalues
τ j,l(ω) for l = 1, 2, . . . , L among all the eigenvalues.

To obtain an explicit representation of PJ (ω), we consider the adjoint operator
AD(ω)∗. By a similar perturbation argument,we can obtain its perturbed eigenvalue
and eigenfunctions. Note that the adjoint matrix R̄T

j = R̄ j has eigenvalues τ j,l and

corresponding eigenfunctions X j,l . Then the eigenvalues and eigenfunctions of
AD(ω)∗ have the form

τ̃ j,l(ω) = τ j + τ j,l + O(δ4) + O(ω2δ2),

ϕ̃ j,l(ω) = ϕ̃ j,l + O(δ4) + O(ω2δ2),

where

ϕ̃ j,l =
L∑

p=1

X̃ j,l,pepϕ j

with X̃ j,l,p being a multiple of X j,l,p.
We normalize ϕ̃ j,l in a way such that the following holds:

(ϕ j,p, ϕ̃ j,q)H∗(∂ D) = δpq ,

which is also equivalent to the condition

X j,p
T

X̃ j,q = δpq .

Then, we can show that the following result holds:

Lemma 3.4. In the space H∗(∂ D), as ω goes to zero, we have

f = ω f0 + O(ω2δ
3
2 ),

where f0 = ( f0,1, . . . , f0,L)T with

f0,l = −i
√

εmμmeikm d·zl

(
1

μm
d · ν(x) + 1

μc

(
1

2
I d − K∗

Dl

)

S−1
Dl

[d · (x − z)]

)

= O(δ
3
2 ).
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Proof. We first show that

‖u‖H∗(∂ D0) = δ
3
2+m‖u‖H∗(∂ D̃), ‖u‖H(∂ D0) = δ

1
2+m‖u‖H(∂ D̃)

for any homogeneous function u such that u(δx) = δmu(x). Indeed, we have

η(u)(x) = δmu(x). Since ‖η(u)‖H∗(∂ D̃) = δ− 3
2 ‖u‖H∗(∂ D0) (see “Appendix B”),

we obtain

‖u‖H∗(∂ D0) = δ
3
2 ‖η(u)‖H∗(∂ D̃) = δ

3
2+m‖u‖H∗(∂ D̃),

which proves our first claim. The second claim follows in a similar way. Using this
result, by an argument similar to the proof of Lemma 2.6, we arrive at the desired
asymptotic result. �

Denote by Z = (Z1, . . . , ZL), where Z j = ikmeikm d·z j .We are ready to present
our main result in this section.

Theorem 3.1. Under Conditions 1, 2, 3, 4 and 6, the scattered field by L plasmonic
particles in the quasi-static regime has the following representation:

us = Skm
D [ψ],

where

ψ =
∑

j∈J

L∑

l=1

(
f, ϕ̃ j,l(ω)

)

H∗ϕ j,l(ω)

τ j,l(ω)
+ AD(ω)−1(PJ c (ω) f )

=
∑

j∈J

L∑

l=1

(d · ν(x), ϕ j )H∗(∂ D0)Z X̃ j,l ϕ j,l + O(ω2δ
3
2 )

λ − λ j + ( 1
μc

− 1
μm

)−1
τ j,l + O(δ4) + O(δ2ω2)

+ O(ωδ
3
2 ).

Proof. The proof is similar to that of Theorem 2.1. �
As a consequence, we have

Corollary 3.1. With the same notation as in Theorem 3.1 and under the additional
condition that

min
j∈J

|τ j,l(ω)| � ωqδ p,

for some integer p and q, and

τ j,l(ω) = τ j,l,p,q + o(ωqδ p),

we have

ψ =
∑

j∈J

L∑

l=1

(d · ν(x), ϕ j )H∗(∂ D0)Z X̃ j,l ϕ j,l + O(ω2δ
3
2 )

τ j,l,p,q
+ O(ωδ

3
2 ).
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4. Scattering and Absorption Enhancements

In this section we analyze the scattering and absorption enhancements. We
prove that, at the quasi-static limit, the averages over the orientation of scattering
and extinction cross-sections of a randomly oriented nanoparticle are given by
(4.10) and (4.11), where M given by (4.7) is the polarization tensor associated with
the nanoparticle D and the magnetic contrast μc(ω)/μm . In view of (4.15), the
polarization tensor M blows up at the plasmonic resonances,which yields scattering
and absorption enhancements. A bound on the extinction cross-section is derived
in (4.17). As shown in (4.20) and (4.22), it can be sharpened for nanoparticles of
elliptical or ellipsoidal shapes.

4.1. Far-field expansion

For simplicity, we assume throughout this section that D contains the origin.
We first prove the following representation for the scattering amplitude:

Proposition 4.1. Let ui = eikm d·x with d being a unit vector. Let x ∈ R
3 be such

that |x | � 1/ω. Then, we have

us(x) = eikm |x |

|x | A∞
(

x

|x | , d

)

+ O

(
1

|x |2
)

(4.1)

with

A∞
(

x

|x | , d

)

= − 1

4π

∫

∂ D
e−ikm

x
|x | ·yψ(y) dσ(y) (4.2)

being the scattering amplitude and ψ being defined by (2.3).

Proof. We recall that the scattered field us can be represented as follows:

us(x) = Skm
D [ψ](x)

= − 1

4π

∫

∂ D

eikm |x−y|

|x − y| ψ(y) dσ(y).

From

|x − y| = |x |
(

1 − x · y

|x |2 + O

(
1

|x |2
))

,

it follows that

us(x) = −eikm |x |

4π |x |
∫

∂ D
e−ikm

x
|x | ·yψ(y)

(

1 + (x · y)

|x |2
)

dσ(y) + o

(
1

|x |2
)

,

which yields the desired result. �
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4.2. Energy flow

The following definitions are from [22]. We include them here for the sake of
completeness. The analogous quantity of the Poynting vector in scalar wave theory
is the energy flux vector; see [22]. We recall that for a real monochromatic field

U (x, t) = �
[
u(x)e−iωt

]
,

the averaged value of the energy flux vector, taken over an interval which is long
compared to the period of the oscillations, is given by

F(x) = −iC [u(x)∇u(x) − u(x)∇u(x)] ,

whereC is a positive constant depending on the polarizationmode. In the transverse
electric case,C = ω/μm while in the transversemagnetic caseC = ω/εm . Assume
that the particle is contained in the ball BR of radius R and center the origin. We
now consider the outward flow of energy through the sphere ∂ BR to be

W =
∫

∂ BR

F(x) · ν(x) dσ(x),

where ν(x) is the outward normal at x ∈ ∂ BR .
As the total field can be written as U = us + ui , the flow can be decomposed

into three parts as follows

W = W i + Ws + W ′,

where

W i = −iC
∫

∂ BR

[
ui (x)∇ui (x) − ui (x)∇ui (x)

]
· ν(x) dσ(x),

Ws = −iC
∫

∂ BR

[
us(x)∇us(x) − us(x)∇us(x)

] · ν(x) dσ(x),

W ′ = −iC
∫

∂ BR

[
ui (x)∇us(x) − us(x)∇ui (x) − ui (x)∇us(x) + us(x)∇ui (x)

]

· ν(x) dσ(x).

It is straightforward to check thatW ,W i ,Wa andW ′ in the above definitions are
independent of the radius R as long as the particle is contained in BR . In the case
where ui is a plane wave, we can see that W i = 0:

W i = −iC
∫

∂ BR

[
ui (x)∇ui (x) − ui (x)∇ui (x)

]
dσ(x),

= −iC
∫

∂ BR

[
e−ikm d·x ikmdeikm d·x + eikm d·x kmde−ikm d·x] · ν(x) dσ(x),

= 2Ckmd ·
∫

∂ BR

ν(x) dσ(x),

= 0.
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In a non-absorbing medium with a non-absorbing scatterer, W is equal to zero
because the electromagnetic energy would be conserved by the scattering process.
However, if the scatterer is an absorbing body, the conservation of energy gives the
rate of absorption as

Wa = −W.

Therefore, we have

Wa + Ws = −W ′.

Here,W ′ is called the extinction rate. It is the rate at which the energy is removed
by the scatterer from the illuminating plane wave, and it is the sum of the rate of
absorption and the rate at which energy is scattered.

4.3. Extinction, absorption, and scattering cross-sections and the optical theorem

Denote by Ui the quantity Ui (x) =
∣
∣
∣ui (x)∇ui (x) − ui (x)∇ui (x)

∣
∣
∣. In the case

of a plane wave illumination, Ui (x) is independent of x and is given by Ui = 2km .

Definition 3. The scattering cross-section Qs , the absorption cross-section Qa and
the extinction cross-section are defined by

Qs = Ws

U i
, Qa = Wa

Ui
, Qext = −W ′

Ui
.

Note that these quantities are independent of x for a plane wave illumination.

Theorem 4.1 (Optical theorem). If ui (x) = eikm d·x , where d is a unit direction,
then

Qext =Qs + Qa = 4π

km
� [A∞(d, d)] , (4.3)

Qs =
∫

S2
|A∞(x̂, d)|2 dσ(x̂) (4.4)

with A∞ being the scattering amplitude defined by (4.2).

Proof. The Sommerfeld radiation condition gives, for any x ∈ ∂ BR ,

∇us(x) · ν(x) ∼ ikmus(x). (4.5)

Hence, from (4.1), we get

us(x)∇us(x) · ν(x) − us(x)∇us(x) · ν(x) ∼ −2ikm

|x |2
∣
∣
∣
∣A∞

(
x

|x | , d

)∣
∣
∣
∣

2

,

which yields (4.4). We now compute the extinction rate. We have

∇ui (x) · ν(x) = ikmd · ν(x)eikm d·x . (4.6)
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Therefore, using 4.5 and 4.6, it follows that

ui (x)∇us(x) · ν(x) − us(x)∇ui (x) · ν(x)

∼ (
ikm

eikm (|x |−d·x)

|x | d · ν + ikm
eikm (|x |−d·x)

|x |
)

A∞
(

x

|x | , d

)

= ikmeikm |x |−d·ν(x)

|x | (d · ν(x) + 1) A∞
(

x

|x | , d

)

.

For x ∈ ∂ BR , we can write

ui (x)∇us(x) · ν(x) − us(x)∇ui (x) · ν(x)

∼ ikme−ikm Rν(x)·(d−ν(x))

R
(d · ν(x) + 1) A∞

(
x

|x | , d

)

.

We now use Jones’ lemma (see, for instance, [22, Chapter 13.3]) to write the
following asymptotic expansion as R → ∞:

1

R

∫

∂ BR

G(ν(x))e−ikm d·ν(x) dσ(x) ∼ 2π i

km

(
G(d)e−ikm R − G(−d)eikm R

)
,

to obtain
∫

∂ BR

[
ui (x)∇us(x) − us(x)∇ui (x)

]
· ν(x) ∼ −4π A∞(d, d) as R → ∞.

Therefore,

W ′ = − i4πC
[
A∞(d) − A∞(d)

] = 8πC� [A∞(d)] .

Since
∣
∣
∣ui (x)∇ui (x) − ui (x)∇ui (x)

∣
∣
∣ = 2km,

we get the result. �

4.4. The quasi-static limit

We start by recalling the small volume expansion for the far-field. Let λ be
defined by (2.19) and let

M(λ, D) :=
∫

∂ D
(λI d − K∗

D)−1[ν]x dσ(x) (4.7)

be the polarization tensor. The asymptotic expansion that follows holds. It can be
proved by exactly the same arguments as those in [6].
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Proposition 4.2. Assume that D = δB + z. As δ goes to zero the scattered field us

can be written as follows:

us(x) = −k2m

(
εc

εm
− 1

)

|D|G(x, z, km)ui (z) − ∇zG(x, z, km) · M(λ, D)∇ui (z)

+O

(
δ4

dist(λ, σ (K∗
D))

)

(4.8)

for x away from D. Here, dist(λ, σ (K∗
D)) denotes min j |λ − λ j | with λ j being the

eigenvalues of K∗
D.

We denote the first term in the right hand side of (4.8) by us
1 and the second term

by us
2. It is clear that us

1 represent monopole radiation and us
2 the dipole radiation.

We explicitly compute the scattering amplitude A∞ in (4.1). Take ui (x) = eikm d·x
and assume again for simplicity that z = 0. Note that

us
2(x) = eikm |x |

4π |x | ikm

(

ikm
x

|x | − x

|x |2
)

· M(λ, D)d.

In the far-field region, that is for |x | � 1
ω
,

us
2(x) = −k2m

eikm |x |

4π |x |
(

x

|x | · M(λ, D)d

)

+ O

(
1

|x |2
)

.

On the other hand,

us
1(x) = k2m

eikm |x |

4π |x |
(

εc

εm
− 1

)

· |D|.

Throughout the paper, we are interested in the case when the frequency is near the
plasmonic resonant frequency, then the polarization tensor M(λ, D) blow up and
hence the magnitude of the dipole part us

2 is much greater than that of the monopole
part us

1. Therefore, the leading term in the scattered field (4.8) is given by the dipole
part, that is

us(x) ≈ −k2m
eikm |x |

4π |x |
(

x

|x | · M(λ, D)d

)

. (4.9)

In the next proposition we write the extinction and scattering cross-sections in
terms of the polarization tensor.

Proposition 4.3. Near plasmonic resonant frequency, the leading-order term (as δ

goes to zero) of the average over the orientation of the extinction cross-section of
a randomly oriented nanoparticle is given by

Qext
m = 4πkm

3
� [TrM(λ, D)] , (4.10)



Mathematical Analysis of Plasmonic Nanoparticles 625

where Tr denotes the trace of a matrix. The leading-order term of the average
over the orientation scattering cross-section of a randomly oriented nanoparticle
is given by

Qs
m = k4m

9π
|TrM(λ, D)|2 . (4.11)

Proof. Remark from (4.9) that the scattering amplitude A∞ in the case of a plane
wave illumination is given by

A∞
(

x

|x | , d

)

= − k2m
4π

x

|x | · M(λ, D)d. (4.12)

Using Theorem 4.1, we can see that for a given orientation

Qext = −4πkm� [d · M(λ, D)d] .

Therefore, if we integrate Qext over all illuminations we find that

Qext
m = − km�

[∫

S2
d · M(λ, D)d dσ(d)

]

.

Since �M(λ, D) is symmetric, it can be written as �M(λ, D) = Pt N (λ)P where
P is unitary and N is diagonal and real. Then, by the change of variables d = Pt x
and using spherical coordinates, it follows that

Qext
m = −km

[∫

S2
x · N (λ)x dσ(x)

]

,

and therefore,

Qext
m = −4πkm

3
[TrN (λ)] = −4πkm

3
� [TrM(λ, D)] . (4.13)

Now,wecompute the averaged scattering cross-section.Let�M(λ, D)= P̃ t Ñ (λ)P̃
where P̃ is unitary and Ñ is diagonal and real. We have

Qs
m = k4m

16π2

∫∫

S2×S2
|x · M(λ, D)d|2 dσ(x) dσ(d),

= k4m
16π2

[ ∫∫

S2×S2

∣
∣̃x · N (λ)d̃

∣
∣2 dσ (̃x) dσ(d̃)

+ ∫∫

S2×S2

∣
∣̃x · Ñ (λ)d̃

∣
∣2 dσ (̃x) dσ(d̃)

]

.

Then a straightforward computation in spherical coordinates gives

Qs
m = k4m

9π
|TrM(λ, D)|2 ,

which completes the proof. �
From Theorem 4.1, we obtain that the averaged absorption cross-section is

given by

Qa
m = −4πkm

3
� [TrM(λ, D)] − k4m

9π
|TrM(λ, D)|2 .

Therefore, under the condition (2.26), Qa
m blows up at plasmonic resonances.
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4.5. An upper bound for the averaged extinction cross-section

The goal of this section is to derive an upper bound for the modulus of the
averaged extinction cross-section Qext

m of a randomly oriented nanoparticle. Recall
that the entries Ml,m(λ, D) of the polarization tensor M(λ, D) are given by

Ml,m(λ, D) :=
∫

∂ D
xl(λI − K∗

D)−1[νm](x) dσ(x). (4.14)

For a C1,α domain D in R
d , K∗

D is compact and self-adjoint in H∗ (defined in
Lemma 2.1 for d = 3 and in Lemma C.1 for d = 2). Thus, we can write

(λI d − K∗
D)−1[ψ] =

∞∑

j=0

(ψ, ϕ j )H∗ ⊗ ϕ j

λ − λ j
,

with (λ j , ϕ j ) being the eigenvalues and eigenvectors of K∗
D in H∗ (see Lemma

2.1). Hence, the entries of the polarization tensor M can be decomposed as

Ml,m(λ, D) =
∞∑

j=1

α
( j)
l,m

λ − λ j
, (4.15)

where α
( j)
l,m := (νm, ϕ j )H∗(ϕ j , xl)− 1

2 , 12
. Note that (νm, χ(∂ D))− 1

2 , 12
= 0. So,

considering the fact that λ0 = 1/2, we have (νm, ϕ0)H∗ = 0 and so, α(0)
l,m = 0.

The following lemmas are useful for us:

Lemma 4.1. We have

α
( j)
l,l � 0, j � 1.

Proof. For d = 3, we have

(ϕ j , xl)− 1
2 , 12

=
((1

2
− λ j

)−1(1

2
I d − K∗

D

)[ϕ j ], xl

)

− 1
2 , 12

= −1

1/2 − λ j

(∂SD[ϕ j ]
∂ν

∣
∣
∣−, xl

)

− 1
2 , 12

=
∫

∂ D

∂xl

∂ν
SD[ϕ j ] dσ −

∫

D

(
�xlSD[ϕ j ] − xl�SD[ϕ j ]

)
dx

= (νl , ϕ j )H∗

1/2 − λ j
,

where we used the fact that SD[ϕ j ] is harmonic in D. The same result holds for
d = 2 if we change SD by S̃D (see “Appendix C”). Since |λ j | < 1/2 for j � 1,
we obtain the result. �
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Lemma 4.2. Let

Ml,m(λ, D) =
∞∑

j=1

α
( j)
l,m

λ − λ j

be the (l, m)-entry of the polarization tensor M associated with a C1,α domain
D � R

d . Then, the following properties hold:

(i)

∞∑

j=1

α
( j)
l,m = δl,m |D|;

(ii)

∞∑

j=1

λi

d∑

l=1

α
( j)
l,l = (d − 2)

2
|D|;

(iii)

∞∑

j=1

λ2j

d∑

l=1

α
( j)
l,l = (d − 4)

4
|D| +

d∑

l=1

∫

D
|∇SD[νl ]|2 dx .

Proof. The proof can be found in “Appendix D”. �
Let λ = λ′ + iλ′′. We have

∣
∣�(Tr(M(λ, D)))

∣
∣ =

∞∑

j=1

|λ′′|∑d
l=1 α

( j)
l,l

(λ′ − λ j )2 + λ′′2 . (4.16)

For d = 2 the spectrum σ(K∗
D)\{1/2} is symmetric. For d = 3 this is no

longer true. Nevertheless, for our purposes, we can assume that σ(K∗
D)\{1/2} is

symmetric by defining α
( j)
l,l = 0 if λ j is not in the original spectrum.

Without loss of generality we assume for ease of notation that Conditions 2 and
3 hold. Then we define the bijection ρ : N+ → N

+ such that λρ( j) = −λ j and we
can write

∣
∣�(Tr(M(λ, D)))

∣
∣ = 1

2

⎛

⎝
∞∑

j=1

|λ′′|β j

(λ′ − λ j )2 + λ′′2 +
∞∑

j=1

|λ′′|β(ρ( j))

(λ′ + λ j )2 + λ′′2

⎞

⎠

= |λ′′|
2

∞∑

j=1

(λ′2 + λ′′2 + λ2j )(β
( j) + β(ρ( j))) + 2λ′λ j (β

( j) − β(ρ( j)))
(
(λ′ − λ j )2 + λ′′2)((λ′ + λ j )2 + λ′′2) ,

where β j =
d∑

l=1

α
( j)
l,l .
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From Lemma 4.1 it follows that

(λ′2 + λ′′2 + λ2j )(β
( j) + β(ρ( j))) + 2λ′λ j (β

( j) − β(ρ( j)))
(
(λ′ − λ j )2 + λ′′2)((λ′ + λ j )2 + λ′′2) � 0.

Moreover,

(λ′2 + λ′′2 + λ2j )(β
( j) + β(ρ( j))) + 2λ′λ j (β

( j) − β(ρ( j)))
(
(λ′ − λ j )2 + λ′′2)((λ′ + λ j )2 + λ′′2)

�
(λ′2 + λ′′2 + λ2j )(β

( j) + β(ρ( j))) + 2λ′λ j (β
( j) − β(ρ( j)))

λ′′2(4λ′2 + λ′′2)

+ O(
λ′′2

4λ′2 + λ′′2 ).

Hence,

∣
∣�(Tr(M(λ, D)))

∣
∣

� |λ′′|
2

∞∑

j=1

(λ′2 + λ′′2 + λ2j )(β
( j) + β(ρ( j))) + 2λ′(λ jβ

( j) + λρ( j)β
(ρ( j)))

λ′′2(4λ′2 + λ′′2)

+O

(
λ′′2

4λ′2 + λ′′2

)

.

Using Lemma 4.2 we obtain

Theorem 4.2. Let M(λ, D) be the polarization tensor associated with a C1,α do-
main D � R

d with λ = λ′ + iλ′′ such that |λ′′| 
 1 and |λ′| < 1/2. Then,

∣
∣�(Tr(M(λ, D)))

∣
∣

� d|λ′′||D|
λ′′2 + 4λ′2 + 1

|λ′′|(λ′′2 + 4λ′2)
(

dλ′2|D| + (d − 4)

4
|D| +

d∑

l=1

∫

D
|∇SD[νl ]|2 dx + 2λ′ (d − 2)

2
|D|

)

+ O

(
λ′′2

4λ′2 + λ′′2

)

.

The bound in the above theorem depends not only on the volume of the particle
but also on its geometry. Nevertheless, we remark that, since |λ j | < 1

2 ,

∞∑

j=1

λ2j

d∑

l=1

α
( j)
l,l <

d|D|
4

.

Hence, we can find a geometry independent, but not optimal, bound.
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Corollary 4.1. We have

∣
∣�(Tr(M(λ, D)))

∣
∣ � 1

|λ′′|(λ′′2 + 4λ′2)

(

d|D|(λ′2 + 1

4

) + 2λ′ (d − 2)

2
|D|

)

+ d|λ′′||D|
λ′′2 + 4λ′2 + O

(
λ′′2

4λ′2 + λ′′2

)

. (4.17)

4.5.1. Bound for ellipses If D is an ellipse whose semi-axes are on the x1- and
x2- axes and of length a and b, respectively, then its polarization tensor takes the
form [7]

M(λ, D) =

⎛

⎜
⎜
⎜
⎝

|D|
λ − 1

2
a−b
a+b

0

0
|D|

λ + 1
2

a−b
a+b

⎞

⎟
⎟
⎟
⎠

. (4.18)

On the other hand, it is known that inH∗(∂ D) [31]

σ(K∗
D)\{1/2} =

{

±1

2

(
a − b

a + b

) j

, j = 1, 2, . . .

}

.

Then, from (4.15), we also have

M(λ, D) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∞∑

j=1

α
( j)
1,1

λ − 1
2

(
a−b
a+b

) j

∞∑

j=1

α
( j)
1,2

λ − 1
2

(
a−b
a+b

) j

∞∑

j=1

α
( j)
1,2

λ − 1
2

(
a−b
a+b

) j

∞∑

j=1

α
( j)
2,2

λ − 1
2

(
a−b
a+b

) j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let λ1 = 1

2

a − b

a + b
and V(λ j ) = {i ∈ N such that K∗

D[ϕi ] = λ jϕi }. It is clear now
that

∑

i∈V(λ1)

α
(i)
1,1 =

∑

i∈V(−λ1)

α
(i)
2,2 = |D|,

∑

i∈V(λ j )

α
(i)
1,1 =

∑

i∈V(−λ j )

α
(i)
2,2 = 0 (4.19)

for j � 2 and

∑

i∈V(λ j )

α
(i)
1,2 = 0

for j � 1.
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Fig. 1. Optimal bound for ellipses.

In view of (4.19), we have

β( j)

(λ′ − λ j )2 + λ′′2 + β(ρ( j))

(λ′ + λ j )2 + λ′′2 � 4λ′2β( j) + λ′′2(β( j) + β( j))

λ′′2(4λ′2 + λ′′2)

+ O

(
λ′′2

4λ′2 + λ′′2

)

.

Hence,

|�(Tr(M(λ, D)))| � |λ′′|
2

∞∑

j=1

4λ′2β( j) + λ′′2(β( j) + β( j))

λ′′2(4λ′2 + λ′′2)
+ O

(
λ′′2

4λ′2 + λ′′2

)

.

Note that for for any ellipse D̃ of semi-axes of lengtha andb,�(Tr(M(λ, D̃))) =
�(Tr(M(λ, D))). Then using Lemma 4.2 we obtain the following result:

Corollary 4.2. For any ellipse D̃ of semi-axes of length a and b, we have

|�(Tr(M(λ, D̃)))| � |D̃|4λ′2

|λ′′|(λ′′2 + 4λ′2)
+ 2|λ′′||D̃|

λ′′2 + 4λ′2 + O

(
λ′′2

4λ′2 + λ′′2

)

. (4.20)

Figure 1 shows (4.20) and the average extinction of two ellipses of semi-axis a
and b, where the ratio a/b = 2 and a/b = 4, respectively.

We can see from (4.16), Lemma 4.1 and the first sum rule in Lemma 4.2 that for
an arbitrary shape B, |�(Tr(M(λ, B)))| is a convex combination of |λ′′|

(λ′−λ j )
2+λ′′2 for
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λ j ∈ σ(K∗
B)\{1/2}. Since ellipses put all the weight of this convex combination in

±λ1 = ± 1
2

a−b
a+b , we have for any ellipse D̃ and any shape B such that |B| = |D̃|,

|�(Tr(M(λ∗, B)))| � |�(Tr(M(λ∗, D̃)))|
with λ∗ = ± 1

2
a−b
a+b + iλ′′.

Thus, bound (4.20) applies for any arbitrary shape B in dimension two. This
implies that, for a given material and a given desired resonance frequency ω∗, the
optimal shape for the extinction resonance (in the quasi-static limit) is an ellipse of
semi-axis a and b such that λ′(ω∗) = ± 1

2
a−b
a+b .

4.5.2. Bound for ellipsoids Let D be an ellipsoid given by

x21
p21

+ x22
p22

+ x23
p23

= 1. (4.21)

The following holds [7]:

Lemma 4.3. Let D be the ellipsoid defined by (4.21). Then, for x ∈ D,

SD[νl ](x) = sl xl , l = 1, 2, 3,

where

sl = − p1 p2 p3
2

∫ ∞

0

1

(p2l + s)
√

(p21 + s)(p22 + s)(p23 + s)
ds.

Then we have

3∑

l=1

∫

D
|∇SD[νl ]|2dx = (s21 + s22 + s23 )|D|.

For a rotated ellipsoid D̃ = RDwithRbeing a rotationmatrix,wehave M(λ, D̃) =
RM(λ, D)RT and so Tr(M(λ, D̃)) = Tr(M(λ, D)). Therefore, for any ellipsoid
D̃ of semi-axes of length p1, p2 and p3, we have

Corollary 4.3. For any ellipsoid D̃ of semi-axes of length p1, p2 and p3, we have

�(Tr(M(λ, D̃))) �
|D̃| (3λ′2 + λ′ − 1

4 + (s21 + s22 + s23 )
)

|λ′′|(λ′′2 + 4λ′2)
+ 3|λ′′||D̃|

λ′′2 + 4λ′2

+ O

(
λ′′2

4λ′2 + λ′′2

)

, (4.22)

where for j = 1, 2, 3,

s j = − p1 p2 p3
2

∫ ∞

0

1

(p2j + s)
√

(p21 + s)(p22 + s)(p23 + s)
ds.
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5. Link with the Scattering Coefficients

Our aim in this section is to exhibit the mechanism underlying plasmonic res-
onances in terms of the scattering coefficients corresponding to the nanoparticle.
The concept of scattering coefficients was first introduced in [9]. It plays a key
role in constructing cloaking structures. It was extended in [10] to the full Maxwell
equations. The scattering coefficients are simply the Fourier coefficients of the scat-
tering amplitude A∞. In Theorem 5.1 we provide an asymptotic expansion of the
scattering amplitude in terms of the scattering coefficients of order±1. Our formula
shows that, under physical conditions, the scattering coefficients of orders ±1 are
the only scattering coefficients inducing the scattering cross-section enhancement.
For simplicity we only consider here the two-dimensional case.

5.1. The notion of scattering coefficients

From Graf’s addition formula [7] and (2.2) the following asymptotic formula
holds as |x | → ∞

us(x) = (u − ui )(x)=− i

4

∑

n∈Z
H (1)

n (km |x |)einθx

∫

∂ D
Jn(km |y|)e−inθy ψ(y) dσ(y),

where x = (|x |, θx ) in polar coordinates, H (1)
n is the Hankel function of the first

kind and order n, Jn is the Bessel function of order n and ψ is the solution to (2.4).
For ui (x) = eikm d·x we have

ui (x) =
∑

m∈Z
am(ui )Jm(km |x |)eimθx ,

where am(ui ) = eim( π
2 −θd ). By the superposition principle, we get

ψ =
∑

m∈Z
am(ui )ψm,

where ψm is solution to (2.4) replacing f by

f (m) := F (m)
2 + 1

μc

(
1

2
I d −

(
Kkc

D

)∗)(
Skc

D

)−1 [
F (m)
1

]

with

F (m)
1 (x) = −Jm(km |x |)eimθx ,

F (m)
2 (x) = − 1

μm

∂ Jm(km |x |)eimθx

∂ν
.

We have

us(x) = (u − ui )(x) = − i

4

∑

n∈Z
H (1)

n (km |x |)einθx
∑

m∈Z
Wnmeim( π

2 −θd),
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where

Wnm =
∫

∂ D
Jn(km |y|)e−inθy ψm(y) dσ(y). (5.1)

The coefficients Wnm are called the scattering coefficients.

Lemma 5.1. In the space H∗(∂ D), as ω goes to zero, we have

f (0) = O(ω2),

f (±1) = ω f (±1)
1 + O(ω2),

f (m) = O(ωm), |m| > 1,

where

f (±1)
1 = ∓

√
εmμm

2

( 1

μm
ei±θν + 1

μc

(
1

2
I d − K∗

D

)

S̃−1
D

[
|x |ei±θx

] )
.

Proof. Recall that J0(x) = 1 + O(x2). By virtue of the fact that
(
1

2
I d −

(
Kkc

D

)∗)(
Skc

D

)−1
[χ(∂ D)] = O(ω2),

we arrive at the estimate for f (0) (see “Appendix C”). Moreover,

J±1(x) = ± x

2
+ O(x3),

together with the fact that
(
1

2
I d −

(
Kkc

D

)∗)(
Skc

D

)−1 =
(
1

2
I d − K∗

D

)

S̃−1
D + O(ω2 logω),

gives the expansion of f (±1) in terms of ω (see “Appendix C”).
Finally, Jm(x) = O(xm) immediately yields the desired estimate for f (m). �
From Theorem C.1, it is easy to see that

ψm =
∑

j∈J

(
f (m), ϕ̃ j (ω)

)

H∗ϕ j (ω)

τ j (ω)
+ AD(ω)−1(PJ c (ω) f ). (5.2)

Hence, from the definition of the scattering coefficients,

Wnm =
∑

j∈J

(
f (m), ϕ̃ j (ω)

)

H∗
(
ϕ j (ω), Jn(km |x |)e−inθx

)

− 1
2 , 12

τ j (ω)

+
∫

∂ D
Jn(km |y|)e−inθy O(ω) dσ(y). (5.3)

Since

Jm(x) ∼ 1√
(2π |m|)

( ex

2|m|
)|m|
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as m → ∞, we have

| f (m)| � C |m|

|m||m| .

Using the Cauchy-Schwarz inequality and Lemma 5.1, we obtain the following
result:

Proposition 5.1. For |n|, |m| > 0, we have

|Wnm | �
O
(
ω|n|+|m|)

min j∈J |τ j (ω)|
C |n|+|m|

|n||n||m||m|

for a positive constant C independent of ω.

5.2. The leading-order term in the expansion of the scattering amplitude

In the following, we analyze the first-order scattering coefficients.

Lemma 5.2. Assume that Conditions 1 and 2 hold. Then,

ψ0 =
∑

j∈J

O(ω2)

τ j (ω)
+ O(ω),

ψ±1 =
∑

j∈J

±ω
√

εmμm
2

(
1

μm
− 1

μc

)
(e±iθν , ϕ j )H∗ϕ j + O(ω3 logω)

τ j (ω)
+ O(ω).

Proof. The expression of ψ0 follows from (5.2) and Lemma 5.1. Changing SD

by S̃D in Theorem 2.1 gives
(
(
1

2
I d −K∗

D)S̃−1
D [|x |eiθx ], ϕ j

)

H∗ = −(eiθν , ϕ j )H∗ .

Using now Lemma 5.1 in (5.2) yields the expression of ψ±1. �
Recall that in two dimensions,

τ j (ω) = 1

2μm
+ 1

2μc
−
(

1

μc
− 1

μm

)

λ j + O(ω2 logω),

where λ j is an eigenvalue ofK∗
D and λ0 = 1/2. Recall also that for 0 ∈ J we need

τ j → 0 and so μm → ∞, which is a limiting case that we can ignore. In practice,
PJ (ω)[ϕ0(ω)] = 0. We also have (ϕ j , χ(∂ D))− 1

2 , 12
= 0 for j �= 0.

It follows then from the above lemmas and the expression (5.3) of the scattering
coefficients that

W00 =
∑

j∈J

O(ω4 logω)

τ j (ω)
+ O(ω),

W0±1 =
∑

j∈J

O(ω3 logω)

τ j (ω)
+ O(ω),
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W±10 =
∑

j∈J

O(ω3)

τ j (ω)
+ O(ω2).

Note that W±1±1 has a special structure. Indeed, from Lemma 5.2 and equation
(5.3), we have

W±1±1

=
∑

j∈J

± ± ω
√

εmμm
2

(
1

μm
− 1

μc

)(
ϕ j , J1(km |x |)e∓iθx

)

− 1
2 , 12

(
e±iθν , ϕ j

)

H∗ + O(ω4 logω)

τ j (ω)

+O(ω2),

=
∑

j∈J

± ± ω2 εmμm
4

(
1

μm
− 1

μc

)(
ϕ j , |x |e∓iθx

)

− 1
2 , 12

(
e±iθν , ϕ j

)

H∗ + O(ω4 logω)

τ j (ω)

+O(ω2),

= k2m
4

⎛

⎝
∑

j∈J

± ± (
ϕ j , |x |e∓iθx

)

− 1
2 , 12

(
e±iθν , ϕ j

)

H∗ + O(ω2 logω)

λ − λ j + O(ω2 logω)
+ O(1)

⎞

⎠ ,

where λ is defined by (2.19). Now, assume that min j∈J |τ j (ω)| � ω2 logω. Then,

W±1±1 = k2m
4

⎛

⎝
∑

j∈J

± ± (
ϕ j , |x |e∓iθx

)

− 1
2 , 12

(
e±iθν , ϕ j

)

H∗

λ − λ j
+ O(1)

⎞

⎠ . (5.4)

Define the contracted polarization tensors by

N±,±(λ, D) :=
∫

∂ D
|x |e±iθx (λI − K∗

D)−1[e±iθν ](x) dσ(x).

It is clear that

N+,+(λ, D) = M1,1(λ, D) − M2,2(λ, D) + i2M1,2(λ, D),

N+,−(λ, D) = M1,1(λ, D) + M2,2(λ, D),

N−,+(λ, D) = M1,1(λ, D) + M2,2(λ, D),

N−,−(λ, D) = M1,1(λ, D) − M2,2(λ, D) − i2M1,2(λ, D),

where Ml,m(λ, D) is the (l, m)—entry of the polarization tensor given by (4.7).
Finally, considering the above we can state the following result.

Theorem 5.1. Let A∞ be the scattering amplitude in the far-field defined in (4.2)
for the incoming plane wave ui (x) = eikm d·x . Assume Conditions 1 and 2 and

min
j∈J

|τ j (ω)| � ω2 logω.

Then, A∞ admits the following asymptotic expansion

A∞
(

x

|x |
)

= x

|x |
T

W1d + O(ω2),
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where

W1 =
(

W−11 + W1−1 − 2W11 i
(
W1−1 − W−11

)

i
(
W1−1 − W−11

) −W−11 − W1−1 − 2W11

)

.

Here, Wnm are the scattering coefficients defined by (5.1).

Proof. From (4.12), we have

A∞
(

x

|x |
)

= −k2m
x

|x |
T

M(λ, D)d.

Since K∗
D is compact and self-adjoint inH∗, we have

N±,±(λ, D) =
∞∑

j=1

(
ϕ j , |x |e±iθx

)

− 1
2 , 12

(
e±iθν , ϕ j

)

H∗

λ − λ j

=
∑

j∈J

(
ϕ j , |x |e±iθx

)

− 1
2 , 12

(
e±iθν , ϕ j

)

H∗

λ − λ j
+ O(1).

We have then from (5.4) that

−k2m
4

N+,+(λ, D) = W−11 + O(ω2),

−k2m
4

N+,−(λ, D) = −W11 + O(ω2),

−k2m
4

N−,+(λ, D) = −W11 + O(ω2),

−k2m
4

N−,−(λ, D) = W1−1 + O(ω2).

In view of

M11 = 1

4

(
N+,+ + N−,− + 2N+,−

)
,

M22 = 1

4

(−N+,+ − N−,− + 2N+,−
)
,

M12 = −i

4

(
N+,+ − N−,−

)
,

we get the result. �
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6. Super-Resolution (Super-Focusing) by Using Plasmonic Particles

It is known that the resolution limit (or the diffraction limit) in a general in-
homogeneous space is determined by the imaginary part of the Green function in
the associated space [1]. By modifying the homogeneous spaces with subwave-
length resonators, we can introduce propagating subwavelength resonance modes
to the space which encode subwavelength information in a neighborhood of the
space embedded by the subwavelenghth resonators, thus yielding a Green’s func-
tion whose imaginary part exhibits subwavelength peaks and therefore breaks the
resolution limit (or diffraction limit) in the homogeneous space. The principle has
been mathematically demonstrated in [12]. Here, using the fact that plasmonic
particles are ideal subwavelength resonators, we consider the possibility of super-
resolution (super-focusing) by using a system of identical plasmonic particles. The
results in this section can be viewed as a consequence of the results in Section 3.
The mechanism of super-resolution in the case considered in this section is due to
propagating subwavelength resonant modes that are generated by weakly coupled
plasmonic particles. For non-resonant small particles, no subwavelength resonance
can be excited and hence no super-resolution can be achieved. The analysis here is
for a point source and can be easily extended by a convolution argument to general
sources.

6.1. Asymptotic expansion of the scattered field

In order to illustrate the superfocusing phenomenon, we set

ui (x) = G(x, x0, km) = − eikm |x−x0|

4π |x − x0| .

Lemma 6.1. In the space H∗(∂ D), as ω goes to zero, we have

f = f0 + O(ωδ
3
2 ) + O(δ

5
2 ),

where f0 = ( f0,1, . . . , f0,L)T with

f0,l = − 1

4π |zl − x0|3
(

1

μm
(zl − x0) · ν(x) + 1

μc

(
1

2
I d − K∗

Dl

)

S−1
Dl

[(zl − x0) · (x − zl)]

)

= O
(
δ
3
2

)
.

Proof. The proof is similar to that of Lemma 2.6. Recall that

fl = Fl,2 + 1

μc

(1

2
I d − (Kkc

Dl
)∗
)
(Skc

Dl
)−1[Fl,1].

We can show that

Fl,2 = − 1

μm

∂ui

∂ν
= − 1

4πμm |zl − x0|3 (zl − x0) · ν(x) + O
(
δ
5
2

)
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+O(ωδ
3
2 ) in H∗(∂ Dl).

Besides,

ui (x)|∂ Dl = − eikm |zl−x0|

4π |zl − x0|χ(∂ Dl) + 1

4π |zl − x0|3 (zl − x0) · (x − zl) + O
(
δ
5
2

)

+O(ωδ
3
2 ) in H(∂ Dl).

Using the identity ( 12 I d − K∗
Dl

)S−1
Dl

[χ(∂ Dl)] = 0, we obtain that

1

μc

(
1

2
I d −

(
Kkc

Dl

)∗)(
Skc

Dl

)−1 [Fl,1]

= − 1

4π |zl − x0|3μc

(
1

2
I d − K∗

Dl

)

S−1
Dl

[(zl − x0) · (x − zl)] .

This completes the proof of the lemma. �
We now derive an asymptotic expansion of the scattered field in an intermediate

regime which is neither too close to the plasmonic particles nor too far away. More
precisely, letting C be a fixed, sufficiently large positive number, we consider the
domain

Dδ,k,C = {
x ∈ R

3; min
1�l�L

|x − zl | � Cδ, max
1�l�L

|x − zl | � 1

Ck

}
.

Lemma 6.2. Let ψl ∈ H∗(∂ Dl) and let v(x) = Sk
Dl

[ψl ](x). Then we have for
x ∈ Dδ,k,C ,

v(x) = G(x, zl , k)

(
1

|x − zl | − ik

)
x − zl

|x − zl | ·
∫

∂ D0

yψl(y)dσ(y)

+O(δ
5
2 )‖ψl‖H∗(∂ Dl ) + G(x, zl , k)

∫

∂ D0

ψl(y)dσ(y).

Moreover, the following estimates hold:

v(x) = O(δ
3
2 ) if

∫

∂ D0

ψl(y) dσ(y) = 0,

v(x) = O(δ
1
2 ) if

∫

∂ D0

ψl(y) dσ(y) �= 0.

Proof. We only consider the case when l = 1. The other case follows similarly or
by coordinate translation. We have

v(x) = Sk
D[ψ](x) =

∫

∂ D0

G(x, y, k)ψ(y) dσ(y)

= −
∫

∂ D0

eik|x−y|

4π |x − y|ψ(y) dσ(y).
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Since

G(x, y, k) = G(x, 0, k) +
∑

|α=1|

∂G(x, 0, k)

∂yα
yα +

∑

m�2

∑

|α=m|

∂m G(x, 0, k)

∂yα
yα,

and

∂G(x, 0, k)

∂yα
= − eik|x |

4π |x |
(

1

|x | − ik

)
x

|x | = G(x, 0, k)

(
1

|x | − ik

)
xα

|x | ,

we obtain the required identity for the case l = 1. The estimate follows from the
fact that

‖yα‖H(∂ D0) = O
(
δ
2|α|+1

2

)
.

This completes the proof of the lemma. �
Denote by

S j,l(x, k) = G(x, zl , k)
x − zl

|x − zl |2 ·
∫

∂ D0

yϕ j (y) dσ(y),

Sl(x, k) = G(x, zl , k)

∫

∂ D0

ϕ0(y) dσ(y),

Hj,l(x0) = − 1

4π |zl − x0|3
(
(zl − x0) · ν(x), ϕ j

)

H∗(∂ D0)
.

It is clear that the following size estimates hold:

S j,l(x, k) = O(δ
3
2 ), Sl(x, k) = O(δ

1
2 ),

Hj,l(x0) = O(δ
3
2 ) for j �= 0, HO,l(x0) = 0.

Theorem 6.1. Under Conditions 1, 2, 3, 4 and 6, the Green function �(x, x0, km)

in the presence of L plasmonic particles has the following representation in the
quasi-static regime: for x ∈ Dδ,km ,C ,

�(x, x0, km) = G(x, x0, km)

+
∑

j∈J

L∑

l=1

Hj,p(x0)X̃ j,l,p X j,l,q S j,q(x, km) + O(δ4) + O(ωδ3)

λ − λ j + ( 1
μc

− 1
μm

)−1
τ j,l + O(δ4) + O(δ2ω2)

+ O(δ3).

Proof. With ui (x) = G(x, x0, km), we have

ψ =
∑

j∈J

∑

1�l�L

a j,lϕ j,l +
∑

1�l�L

a0,lϕ0,l + O
(
δ
3
2

)
,

where

a j,l = ( f, ϕ̃ j,l)H∗(∂ D) = ( f0, ϕ̃ j,l)H∗(∂ D) + O(ωδ
3
2 ) + O

(
δ
5
2

)
,
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=
(

1

μc
− 1

μm

)

X̃ j,l,p Hj,p(x0) + O(ωδ
3
2 ) + O

(
δ
5
2

)
,

a0,l = ( f, ϕ̃0,l)H∗(∂ D) = O
(
δ
5
2

)
.

By Lemma 6.2,

Skm
D [ϕ j,l ](x) =

∑

1�p�L

Skm
D

[
X j,l,pϕ j ep

]
(x) =

∑

1�p�L

X j,l,pSkm
Dp

[ϕ j ](x)

=
∑

1�p�L

X j,l,p S j,p(x, km) + O
(
δ
5
2

)
+ O

(
ωδ

3
2

)
.

On the other hand, for j = 0, we have

Skm
D [ϕ0,l ](x) = O

(
δ
1
2

)
,

τ0,l(ω) = τ0 + O(δ4) + O
(
δ2ω2

)
= O(1).

Therefore, we can deduce that

us = Skm
D [ψ](x) =

∑

j∈J

∑

1�l�L

a j,lSkm
D [ϕ j,l ] +

∑

1�l�L

a0,lSkm
D [ϕ0,l ] + O(δ3),

=
∑

j∈J

L∑

l=1

1

τ j,l(ω)

(( 1

μc
− 1

μm

)

Hj,p(x0)X̃ j,l,p X j,l,q S j,q (x, km) + O(ωδ3) + O(δ4)
)

+O(δ3),

=
∑

j∈J

L∑

l=1

Hj,p(x0)X̃ j,l,p X j,l,q S j,q (x, km) + O(ωδ3) + O(δ4)

λ − λ j + ( 1
μc

− 1
μm

)−1
τ j,l + O(δ4) + O(δ2ω2)

+ O(δ3).

�

6.2. Asymptotic expansion of the imaginary part of the Green function

As a consequence of Theorem 6.1, we obtain the following result on the imag-
inary part of the Green function:

Theorem 6.2. Assume the same conditions as in Theorem 6.1. Under the additional
assumption that

λ − λ j +
(

1

μc
− 1

μm

)−1

τ j,l � O(δ4) + O(δ2ω2),

�
(

λ − λ j +
(

1

μc
− 1

μm

)−1

τ j,l

)

� �
(

λ − λ j +
(

1

μc
− 1

μm

)−1

τ j,l

)

for each l and j ∈ J , we have

��(x, x0, km) = �G(x, x0, km) + O(δ3) +
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∑

j∈J

L∑

l=1

�
(

Hj,p(x0)X̃ j,l,p X j,l,q S j,q(x, 0) + O(ωδ3) + O(δ4)
)

×�
⎛

⎝
1

λ − λ j + ( 1
μc

− 1
μm

)−1
τ j,l

⎞

⎠ ,

where x, x0 ∈ Dδ,km ,C .

Note that � (
Hj,p(x0)X̃ j,l,p X j,l,q S j,q(x, 0)

) = O(δ3). Under the conditions
in Theorem 6.2, if we have additionally that

�
⎛

⎝
1

λ − λ j + ( 1
μc

− 1
μm

)−1
τ j,l

⎞

⎠ = O

(
1

δ3

)

for some plasmonic frequency ω, then the term in the expansion of ��(x, x0, km)

which is due to resonance has size one and exhibits subwavelength peak with width
of order one. This breaks the diffraction limit 1/km in the free space. We also note
that the term �G(x, x0, km) has size O(ω). Thus, we can conclude that super-
resolution (super-focusing) can indeed be achieved by using a system of plasmonic
particles.

7. Concluding Remarks

In this paper, based on perturbation arguments, we studied the scattering by
plasmonic nanoparticles when the frequency is close to a resonant frequency. We
have shown that plasmon resonant nanoparticles provide a possible way not only
of super-resolved imaging but also of scattering and absorption enhancements.

Wehavederived the shift andbroadeningof the plasmon resonancewith changes
in size. We have also consider the case of multiple nanoparticles under the weak
interaction assumption. The localization algorithms developed in [7,8,20] can be
extended to the problem of imaging plasmonic nanoparticles. We have precise-
ly quantified the scattering and absorption cross-section enhancements and gave
optimal bounds on the enhancement factors. We have also linked the plasmonic
resonances to the scattering coefficients and showed that the leading-order term
of the scattering amplitude can be expressed in terms of the ±-one order of the
scattering coefficients.

The generalization to the full Maxwell equations of the methods and results of
the paper is under consideration and will be reported elsewhere. Another challeng-
ing problem will be to optimize the super-focusing phenomenon in terms of the
organization of the nanoparticles. This will also be the subject of a forthcoming
publication.
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Appendix A: Asymptotic Expansion of the Integral Operators: Single
Particle

In this section, we derive asymptotic expansions with respect to k of some
boundary integral operators defined on the boundary of a bounded and simply
connected smooth domain D in dimension three whose size is of order one.

We first consider the single layer potential

Sk
D[ψ](x) =

∫

∂ D
G(x, y, k)ψ(y) dσ(y), x ∈ ∂ D,

where

G(x, y, k) = − eik|x−y|

4π |x − y|
is the Green function of Helmholtz equation in R

3, subject to the Sommerfeld
radiation condition. Note that

G(x, y, k) = −
∞∑

j=0

(ik|x − y|) j

j !4π |x − y| = − 1

4π |x − y| − ik

4π

∞∑

j=1

(ik|x − y|) j−1

j ! .

We get

Sk
D = SD +

∞∑

j=1

k jSD, j , (A.1)

where

SD, j [ψ](x) = − i

4π

∫

∂ D

(i |x − y|) j−1

j ! ψ(y) dσ(y).

In particular, we have

SD,1[ψ](x) = − i

4π

∫

∂ D
ψ(y) dσ(y), (A.2)

SD,2[ψ](x) = − 1

4π

∫

∂ D
|x − y|ψ(y) dσ(y). (A.3)

Lemma A.1. ‖SD, j‖L((H∗(∂ D),H(∂ D)) is uniformly bounded with respect to j . More-
over, the series in (A.1) is convergent in L(H∗(∂ D),H(∂ D)).

Proof. It is clear that

‖SD, j‖L(L2(∂ D),H1(∂ D)) � C,

where C is independent of j . On the other hand, a similar estimate also holds for
the operator S∗

D, j . It follows that

‖SD, j‖L(H−1(∂ D),L2(∂ D)) � C.

Thus, we can conclude that ‖SD, j‖L(H− 1
2 (∂ D),H

1
2 (∂ D))

is uniformly bounded by

using interpolation theory. By the equivalence of norms in the H− 1
2 (∂ D) and

H
1
2 (∂ D), the lemma follows immediately. �
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Note that SD is invertible in dimension three, so is Sk
D for small k. By formally

writing
(Sk

D)−1 = S−1
D + kBD,1 + k2BD,2 + . . . , (A.4)

and using the identity (Sk
D)−1Sk

D = I d, we can derive that

BD,1 = −S−1
D SD,1S−1

D , BD,2 = −S−1
D SD,2S−1

D + S−1
D SD,1S−1

D SD,1S−1
D .

(A.5)
We can also derive the other lower-order terms BD, j .

Lemma A.2. The series in (A.4) converges in L(H(∂ D),H∗(∂ D)) for sufficiently
small k.

Proof. The proof can be deduced from the identity

(
Sk

D

)−1 =
⎛

⎝I d + S−1
D

∞∑

j=1

k jSD, j

⎞

⎠

−1

S−1
D .

�
We now consider the expansion for the boundary integral operator (Kk

D)∗. We
have (

Kk
D

)∗ = K∗
D + kKD,1 + k2KD,2 + . . . , (A.6)

where

KD, j [ψ](x) = − i

4π

∫

∂ D

∂(i |x − y|) j−1

j !∂ν(x)
ψ(y) dσ(y)

= − i j ( j − 1)

4π j !
∫

∂ D
|x − y| j−3(x − y) · ν(x)ψ(y) dσ(y).

In particular, we have

KD,1 = 0, KD,2[ψ](x) = 1

4π

∫

∂ D

(x − y) · ν(x)

|x − y| ψ(y) dσ(y). (A.7)

Lemma A.3. The norm ‖KD, j‖L(H∗(∂ D),H∗(∂ D)) is uniformly bounded for j � 1.
Moreover, the series in (A.6) is convergent in L(H∗(∂ D),H∗(∂ D)).

Appendix B: Asymptotic Expansion of the Integral Operators: Multiple
Particles

In this section, we consider the three-dimensional case. We assume that the
particles have size of order δ which is a small number and the distance between
them is of order one. We write D j = z j + δ D̃, j = 1, 2, . . . , M , where D̃ has size
one and is centered at the origin. Our goal is to derive estimates for various boundary
integral operators considered in the paper that are defined on small particles in terms
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of their size. For this purpose, we denote by D0 = δ D̃. For each function f defined
on ∂ D0, we define a corresponding function on D̃ by

η( f )(̃x) = f (δ x̃).

We first state some useful results.

Lemma B.1. The following scaling properties hold:

(i) ‖η( f )‖L2(∂ D̃) = δ−1‖ f ‖L2(∂ D0)
;

(ii) ‖η( f )‖H(∂ D̃) = δ− 1
2 ‖ f ‖H(∂ D0);

(iii) ‖η( f )‖H∗(∂ D̃) = δ− 3
2 ‖ f ‖H∗(∂ D0).

Proof. The proof of (i) is straightforward and we only need to prove (ii) and (iii).
To prove (iii), we have

‖ f ‖2H∗(∂ D0)
=
∫

∂ D0

∫

∂ D0

f (x) f (y)

4π |x − y| dσ(x) dσ(y)

= δ3
∫

∂ D̃

∫

∂ D̃

η( f )(̃x)η( f )(ỹ)

4π |̃x − ỹ| dσ (̃x) dσ (̃x)

= δ3‖η( f )‖2H∗(∂ D̃)
,

whence (iii) follows. To prove (ii), recall that

‖ f ‖H(∂ D0) = ‖S−1
D0

f ‖H∗(∂ D0).

Let u = S−1
D0

[ f ]. Then f = SD0 [u]. We can show that

η( f ) = δSD̃(η(u)).

As a result, we have

‖η( f )‖H(∂ D̃) = δ‖SD̃(η(u))‖H(∂ D̃) = δ‖η(u)‖H∗(∂ D̃)

= δ− 1
2 ‖u‖H∗(∂ D0) = δ− 1

2 ‖ f ‖H(∂ D0),

which proves (ii). �
Lemma B.2. Let X and Y be bounded and simply connected smooth domains in
R
3. Assume 0 ∈ X, Y and X = δ X̃ , Y = δỸ . Let R and R̃ be two boundary

integral operators from D′(∂Y ) to D′(∂ X) and D′(∂Ỹ ) to D′(∂ X̃), respectively.
Here, D′ denotes the Schwartz space. Assume that both operators have the same
Schwartz kernel R with the following homogeneous scaling property

R(δx, δy) = δm R(x, y).

Then,

‖R‖L(H∗(∂Y ),H∗(∂ X)) = δ2+m‖R̃‖L(H∗(∂Ỹ ),H∗(∂ X̃)),

‖R‖L(H∗(∂Y ),H(∂ X)) = δ1+m‖R̃‖L(H∗(∂Ỹ ),H(∂ X̃)).
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Proof. The result follows from Lemma B.1 and the identity

R = δ2+mη−1 ◦ R̃ ◦ η.

�
We first consider the operators Sk

D j
and (Kk

D j
)∗. The following asymptotic

expansions hold:

Lemma B.3. (i) Regarded as operators from H∗(∂ D j ) into H(∂ D j ), we have

Sk
D j

= SD j + kSD j ,1 + k2SD j ,2 + O(k3δ3),

where SD j = O(1) and SD j ,m = O(δm);
(ii) Regarded as operators from H(∂ D j ) into H∗(∂ D j ), we have

(
Sk

D j

)−1 = S−1
D j

+ kBD j ,1 + k2BD j ,2 + O(k3δ3),

where S−1
D j

= O(1) and BD j ,m = O(δm);

(iii) Regarded as operators from H∗(∂ D j ) into H∗(∂ D j ), we have
(
Kk

D j

)∗ = K∗
D j

+ k2O(δ2),

where K∗
D j

= O(1).

Proof. The proof immediately follows from Lemmas B.2, A.1 and A.3. �
We now consider the operator Sk

D j ,Dl
. By definition,

Sk
D j ,Dl

[ψ](x) =
∫

∂ D j

G(x, y, k)ψ(y) dσ(y), x ∈ ∂ Dl .

Using the expansion

G(x, y, k) =
∞∑

m=0

km Qm(x, y),

where

Qm(x, y) = − im |x − y|m−1

4π
,

we can derive that

Sk
D j ,Dl

=
∑

m�0

kmS j,l,m,

where

S j,l,m[ψ](x) =
∫

∂ D j

Qm(x, y)ψ(y) dσ(y).
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We can further write

S j,l,m =
∑

n�0

S j,l,m,n,

where S j,l,m,n is defined by

S j,l,m,n[ψ](x)

=
∫

∂ D j

∑

|α|+|β|=n

1

α!β!
∂ |α|+|β|

∂xα∂yβ
Qm(zl , z j )(x − zl)

α(y − z j )
βψ(y) dσ(y).

In particular, we have

S j,l,0,0[ψ](x) = − 1

4π |z j − zl | (ψ, χ(∂ D j ))H−1/2(∂ D j ),H1/2(∂ D j )
χ(Dl),

S j,l,0,1[ψ](x) =
∑

|α|=1

(zl − z j )
α

4π |zl − z j |3
(
(x − zl)

α(ψ, χ(∂ Dl))H−1/2(∂ D j ),H1/2(∂ D j )

+(
(y − z j )

α, ψ
)
χ(Dl)

)
,

S j,l,0,2[ψ](x) =
∑

|α|+|β|=2

1

α!β!
∂2Q0(zl , z j )

∂xα∂yβ
(x − zl)

α(y − z j )
βψ(y) dσ(y),

S j,l,1[ψ](x) = − i

4π
(ψ, χ(∂ D j ))H−1/2(∂ D j ),H1/2(∂ D j )

χ(Dl),

S j,l,2,0[ψ](x) = 1

4π
|zl − z j |(ψ, χ(∂ D j ))H−1/2(∂ D j ),H1/2(∂ D j )

χ(Dl).

The following estimate holds:

Lemma B.4. We have ‖S j,l,m,n‖L(H∗(∂ D),H(∂ D)) � O(δn+1).

Proof. After a translation of coordinates, the stated estimate immediately follows
from Lemma B.2. �

Similarly, for the operator Kkm
D j ,Dl

, defined as

Kk
D j ,Dl

[ψ](x) =
∫

∂ D j

∂G(x, y, k)

∂ν(x)
ψ(y) dσ(y), x ∈ ∂ Dl ,

we have

Kk
D j ,Dl

=
∑

m�0

km
∑

n�0

K j,l,m,n,

where

K j,l,m,n[ψ](x) =
∫

∂ D j

∑

|α|+|β|=n

1

α!β!
∂n Km(zl , z j )

∂xβ∂yα
(x − zl)

β(y − z j )
α(x − y)
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·ν(x)ψ(y) dσ(y)

with

Km(x, y) = − im(m − 1)|x − y|m−3

4πm! .

In particular, we have

K j,l,0,0[ψ](x) = 1

4π |zl − z j |3
[
(x − zl) · ν(x)

(
ψ, χ(∂ D j )

)

H−1/2(∂ D j ),H1/2(∂ D j )

−(
ψ, (y − z j ) · ν(x)

)

H−1/2(∂ D j ),H1/2(∂ D j )

+(zl − z j ) · ν(x)
(
ψ, χ(∂ D j )

)

H−1/2(∂ D j ),H1/2(∂ D j )

]
, (B.1)

K j,l,1,m[ψ] = 0 for all m. (B.2)

Lemma B.5. We have ‖K j,l,m,n‖L(H∗(∂ D j ),H∗(∂ Dl )) � O(δn+2).

Proof. Note that

K j,l,m,n[ψ](x) =
∫

∂ D j

∑

|α|+|β|=n

1

α!β!
∂n Km(zl , z j )

∂xβ∂yα
(x − zl)

β(y − z j )
α(x − zl)

·ν(x)ψ(y) dσ(y),

−
∫

∂ D j

∑

|α|+|β|=n

1

α!β!
∂n Km(zl , z j )

∂xβ∂yα
(x − zl)

β(y − z j )
α(y − z j )

·ν(x)ψ(y) dσ(y),

+
∫

∂ D j

∑

|α|+|β|=n

1

α!β!
∂n Km(zl , z j )

∂xβ∂yα
(x − zl)

β(y − z j )
α(zl − z j )

·ν(x)ψ(y) dσ(y).

After a translation of coordinates, we can apply Lemma B.2 to each one of the three
terms above to conclude that K j,l,m,n = O(δn+3) + O(δn+2). This completes the
proof of the lemma. �

To summarize, we have proven the following results:

Lemma B.6. (i) Regarded as an operator from H∗(∂ D j ) into H(∂ Dl) we have,

Sk
D j ,Dl

= S j,l,0,0 + S j,l,0,1 + S j,l,0,2 + kS j,l,1 + k2S j,l,2,0 + O(δ4) + O(k2δ2).

Moreover,

S j,l,m,n = O(δn+1).

(ii) Regarded as an operator from H∗(∂ D j ) into H∗(∂ Dl), we have

Kk
D j ,Dl

= K j,l,0,0 + O(k2δ2).

Moreover,

K j,l,0,0 = O(δ2).
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Appendix C: Adaptation of Results to the Two-Dimensional Case

In this section we adapt the layer potential formulation to plasmonic resonances
in two dimensions. We only consider the single particle case. For the multiple
particle case, a similar analysis holds.

Recall that in R
2 the single-layer potential SD : H−1/2(∂ D) → H1/2(∂ D) is

not, in general, invertible nor injective. Hence, −(u,SD[v])− 1
2 , 12

does not define
an inner product and the symmetrization technique described in Lemma 2.1 is no
longer valid.

To overcome this difficulty, a substitute of SD can be introduced as in [14] by

S̃D[ψ] =
{SD[ψ] if (ψ, χ(∂ D))− 1

2 , 12
= 0,

χ(∂ D) if ψ = ϕ0,
(C.1)

where ϕ0 is the unique (in the case of a single particle) eigenfunction of K∗
D as-

sociated with eigenvalue 1/2 such that (ϕ0, χ(∂ D))− 1
2 , 12

= 1. Note that, from the
jump relations of the layer potentials, SD[ϕ0] is constant.

The operator S̃D : H−1/2(∂ D) → H1/2(∂ D) is invertible. Moreover, the
following Calderón identity holds: KDS̃D = S̃DK∗

D . With this, define

(u, v)H∗ = −(u, S̃D[v])− 1
2 , 12

.

Thanks to the invertibility and positivity of −S̃D , this defines an inner product for
which K∗

D is self-adjoint and H∗ is equivalent to H−1/2. Then, if D is C1,α , we
have the following results:

Lemma C.1. Let D be a C1,α bounded simply connected domain of R2 and let S̃D

be the operator defined in C.1. Then,

(i) The operator K∗
D is compact self-adjoint in the Hilbert space H∗(∂ D) e-

quipped with the inner product defined by

(u, v)H∗ = −(u, S̃D[v])− 1
2 , 12

(C.2)

with (·, ·)− 1
2 , 12

being the duality pairing between H−1/2(∂ D) and H1/2(∂ D),

which is equivalent to the original one;
(ii) Let (λ j , ϕ j ), j = 0, 1, 2, . . . , be the eigenvalue and normalized eigenfunction

pair of K∗
D with λ0 = 1

2 . Then, λ j ∈ (− 1
2 ,

1
2 ] and λ j → 0 as j → ∞;

(iii) H∗(∂ D) = H∗
0(∂ D) ⊕ {μϕ0, μ ∈ C}, where H∗

0(∂ D) is the zero mean
subspace of H∗(∂ D);

(iv) The following representation formula holds: for any ψ ∈ H−1/2(∂ D),

K∗
D[ψ] =

∞∑

j=0

λ j (ψ, ϕ j )H∗ ⊗ ϕ j .

Lemma C.2. Let H(∂ D) be the space H
1
2 (∂ D) equipped with the following equiv-

alent inner product
(u, v)H = (−S̃−1

D [u], v)− 1
2 , 12

. (C.3)

Then, S̃D is an isometry between H∗(∂ D) and H(∂ D).
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Remark C.1. Note that S̃−1
D [χ(∂ D)] = ϕ0 and (− 1

2 I d + K∗
D) = (− 1

2 I d +
K∗

D)PH∗
0
, where PH∗

0
is the orthogonal projection onto H∗

0(∂ D). In particular,

we have (− 1
2 I d + K∗

D)S̃−1
D [χ(∂ D)] = 0.

Let us now consider the single-layer potential for the Helmholtz equation in R
2

Sk
D[ψ](x) =

∫

∂ D
G(x, y, k)ψ(y) dσ(y), x ∈ ∂ D,

where G(x, y, k) = − i

4
H (1)
0 (k|x − y|) and H (1)

0 is the Hankel function of first

kind and order 0. We have

− i

4
H (1)
0 (k|x − y|) = 1

2π
log |x − y| + τk +

∞∑

j=1

(b j log k|x − y| + c j )(k|x − y|)2 j ,

where

τk = 1

2π
(log k + γ − log 2) − i

4
, b j = (−1) j

2π

1

22 j ( j !)2 ,

c j = −bj

⎛

⎝γ − log 2 − iπ

2
−

j∑

n=1

1

n

⎞

⎠ ,

and γ is the Euler constant. Thus, we get

Sk
D = Ŝk

D +
∞∑

j=1

(
k2 j log k

)
S(1)

D, j +
∞∑

j=1

k2 jS(2)
D, j , (C.4)

where

Ŝk
D[ψ](x) = SD[ψ](x) + τk

∫

∂ D
[ψ] dσ,

S(1)
D, j [ψ](x) =

∫

∂ D
b j |x − y|2 jψ(y) dσ(y),

S(2)
D, j [ψ](x) =

∫

∂ D
|x − y|2 j (b j log |x − y| + c j )ψ(y) dσ(y).

Lemma C.3. The norms ‖S(1)
D, j‖L(H∗(∂ D),H(∂ D)) and ‖S(2)

D, j‖L(H∗(∂ D),H(∂ D)) are
uniformly bounded with respect to j . Moreover, the series in (C.4) is convergent in
L(H∗(∂ D),H(∂ D)).

Proof. The proof is similar to that of Lemma A.1. �
Observe that

(SD − S̃D
) [ψ] = (SD − S̃D

) [PH∗
0
[ψ] + (ψ, ϕ0)H∗ϕ0]

= (ψ, ϕ0)H∗ (SD[ϕ0] − χ(∂ D)) .
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Then it follows that

Ŝk
D[ψ] = S̃D[ψ] + (ψ, ϕ0)H∗ (SD[ϕ0] − χ(∂ D)) + τk

∫

∂ D
ψ0 + (ψ, ϕ0)H∗ϕ0 dσ

= S̃D[ψ] + ϒk[ψ],
where

ϒk[ψ] = (ψ, ϕ0)H∗ (SD[ϕ0] − χ(∂ D) + τk) . (C.5)

Therefore, we arrive at

Lemma C.4. For k small enough Ŝk
D : H∗(∂ D) → H(∂ D) is invertible.

Proof. ϒk is clearly a compact operator. Since S̃D is invertible, the invertibility of
Ŝk

D is equivalent to that of Ŝk
DS̃−1

D = I d + ϒk S̃−1
D . By the Fredholm alternative

we only need to prove the injectivity of I d + ϒk S̃−1
D .

Since ∀ v ∈ H1/2, ϒk S̃−1
D [v] ∈ C, for

(
I d + ϒk S̃−1

D

)
[v] = 0, we need

v = S̃D[αϕ0] = α ∈ C.
We have

(
I d + ϒk S̃−1

D

) [S̃D[αϕ0]
] = α(SD[ϕ0] + τk) = 0 iff SD[ϕ0] = −τk or α = 0.

Since we can always find a small enough k such that SD[ϕ0] �= −τk , we need
α = 0. This yields the stated result. �
Lemma C.5. For k small enough, the operator Sk

D : H∗(∂ D) → H(∂ D) is invert-
ible.

Proof. The operator Sk
D − Ŝk

D is a compact operator. Because Ŝk
D is invertible for

k small enough, by the Fredholm alternative only the injectivity of Sk
D is necessary.

From the uniqueness of a solution to the Helmholtz equation we get the result. �
We can write (C.4) as

Sk
D = Ŝk

D + Gk,

where Gk = k2 log kS(1)
D,1 + k2S(2)

D,1 + O(k4 log k). From the two lemmas above we
get the identity

(Sk
D)−1 =

(
I d + (Ŝk

D)−1Gk

)−1
(Ŝk

D)−1.

It is clear that ‖(Ŝk
D)−1‖L(H(∂ D),H∗(∂ D)) is bounded in k. Thus, for k small enough,

we can formally write

(Sk
D)−1 = (Ŝk

D)−1 − (Ŝk
D)−1Gk(Ŝk

D)−1 + O(k4 log2 k).

We have the identity

(Ŝk
D)−1 =

(
S̃−1

D Ŝk
D

)−1

︸ ︷︷ ︸

�−1
k

S̃−1
D .
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Here,

�k = I d − (·, ϕ0)H∗(SD[ϕ0] + χ(∂ D) + τk)ϕ0.

Then,

�−1
k = I d − (·, ϕ0)H∗

SD[ϕ0] + χ(∂ D) + τk

SD[ϕ0] + τk
ϕ0,

and therefore,

(Ŝk
D)−1 = S̃−1

D − (S̃−1
D [·], ϕ0)H∗ϕ0 + (S̃−1

D [·], ϕ0)H∗

SD[ϕ0] + τk
ϕ0.

Finally, we get

(Sk
D)−1 = LD + Uk − k2 log kLDS(1)

D,1LD

−k2
(
LDS(2)

D,1LD − log k(UkS(1)
D,1LD + LDS(1)

D,1Uk)
)

+O(k2 log−1 k)

withLD = PH∗
0
S̃−1

D andUk = − (S̃−1
D [·], ϕ0)H∗

SD[ϕ0] + τk
ϕ0.Wenote thatUk = O(log−1 k).

We now consider the expansion for the boundary integral operator (Kk
D)∗. We

have

(Kk
D)∗ = K∗

D +
∞∑

j=1

(
k2 j log k

)
K(1)

D, j +
∞∑

j=1

k2 jK(2)
D, j , (C.6)

where

K(1)
D, j [ψ](x) =

∫

∂ D
b j

∂|x − y|2 j

∂ν(x)
ψ(y) dσ(y),

K(2)
D, j [ψ](x) =

∫

∂ D

∂
(|x − y|2 j (b j log |x − y| + c j )

)

ν(x)
ψ(y) dσ(y).

Lemma C.6. The norms ‖K(1)
D, j‖L(H∗(∂ D),H∗(∂ D)) and ‖K(2)

D, j‖L(H∗(∂ D),H∗(∂ D))

are uniformly bounded for j � 1. Moreover, the series in (C.6) is convergent
in L(H∗(∂ D),H∗(∂ D)).

Proof. The proof is similar to that of Lemma A.1. �
Recalling (2.5) and (2.6), we can show that the following result holds:

Lemma C.7. Regarding AD(ω) as an operator from H∗(∂ D) to H∗(∂ D), we have

AD(ω) = AD,0 + ω2(logω)AD,1 + O(ω2),

where

AD,0 =
(

1

2μm
+ 1

2μc

)

I d +
(

1

μm
− 1

μc

)

K∗
D,
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AD,1 = K(1)
D,1

(
εm I d − εcPH∗

0

)
+ 1

μc

(
1

2
I d − K∗

D

)

S̃−1
D S(1)

D,1

(
μmεm I d − μcεcPH∗

0

)
.

Proof. We have

(Skc
D )−1 = LD + Ukc − ω2(logω)εcμcLDS(1)

D,1LD + O(ω2)

Skm
D = S̃D + ϒkm + ω2(logω)εmμmS(1)

D,1 + O(ω2).

Also, LDϒkm = PH∗
0
(S̃D)−1ϒkm = 0, where ϒkm is defined by (C.5). Hence,

(Skc
D )−1Skm

D

= PH∗
0
+ Ukc S̃D + Ukcϒkm + ω2(logω)

(
εmμmLDS(1)

D,1 − εcμcLDS(1)
D,1LDS̃D

)

+O(ω2)

= PH∗
0
+ Ukc S̃D + Ukcϒkm + ω2 logωLDS(1)

D,1

(
εmμm I d − εcμcPH∗

0

)

+O(ω2).

From Remark C.1, it follows that

(
1

2
I d − K∗

D

)

Ukc = 0.

Since 1
2 I d − (Kk

D)∗ = ( 1
2 I d − K∗

D

) − k2 log kK(1)
D,1 + O(k2), we get the desired

result. �
Under Conditions 2 and 3, the perturbed eigenvalues and eigenfunctions of

AD(ω) have the form

τ j (ω) = τ j + ω2(logω)τ j,1 + O(ω2), (C.7)

ϕ j (ω) = ϕ j + ω2(logω)ϕ j,1 + O(ω2), (C.8)

where

τ j,1 = R j j , (C.9)

ϕ j,1 =
∑

l �= j

R jl
( 1

μm
− 1

μc

)
(λ j − λl)

ϕl , (C.10)

and

R jl = (AD,1[ϕ j ], ϕl)H∗ .

It is clear that Lemma 2.5 holds in the two-dimensional case. We also have the
following asymptotic expansion for f in terms of ω:
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Lemma C.8. In the space H∗(∂ D), as ω goes to zero, we have

f = ω f1 + O(ω2),

where

f1 = −ieikm d·z√εmμm

(
1

μm
[d · ν(x)] + 1

μc

(
1

2
I d − K∗

D

)

S̃−1
D [d · (x − z)]

)

and z is the center of the domain D.

Finally, the following result holds:

Theorem C.1. Under Conditions1,2, and3, the scattered field by a single plasmon-
ic particle, us = u − ui , has in the quasi-static limit the following representation:

us = Skm
D [ψ],

where

ψ =
∑

j∈J

ikmeikm d·z(d · ν(x), ϕ j
)

H∗ϕ j + O(ω3 logω)

λ − λ j + O(ω2 logω)
+ O(ω)

with λ being defined by (2.19).

Proof. We have

ψ =
∑

j∈J

(
f, ϕ̃ j (ω)

)

H∗ϕ j (ω)

τ j (ω)
+ AD(ω)−1(PJ c(ω) f )

=
∑

j∈J

ω
(

f1, ϕ j
)

H∗ϕ j + O(ω3(logω))

1
2μm

+ 1
2μc

− ( 1
μc

− 1
μm

)
λ j + O(ω2 logω)

+ O(ω).

Since d · (x − z) is a harmonic function, changing SD by S̃D in Theorem 2.1 yields

(
(
1

2
I d − K∗

D)S−1
D [d · (x − z)], ϕ j

)

H∗ = −(d · ν(x), ϕ j )H∗ .

Then the proof is complete. �
Corollary C.1. Assume the same conditions as in Theorem 2.1. Then, under the
additional condition

min
j∈J

|τ j (ω)| � ω2,

we have

ψ =
∑

j∈J

ikmeikm d·z(d · ν(x), ϕ j
)

H∗ϕ j + O(ω3 logω)

λ − λ j + ω2 logω
( 1

μc
− 1

μm

)−1
τ j,1

+ O(ω).
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Appendix D: Sum Rules for the Polarization Tensor

Let f be a holomorphic function defined in an open set U ⊂ C containing the

spectrum of K∗
∂ D . Then, we can write f (z) =

∞∑

j=0

a j z
j for every z ∈ U .

Definition 4. Let

f (K∗
D) :=

∞∑

j=0

a j (K∗
D) j ,

where (K∗
D) j := K∗

D ◦ K∗
D ◦ .. ◦ K∗

D︸ ︷︷ ︸
j times

.

Lemma D.1. We have

f (K∗
D) =

∞∑

j=1

f (λ j )(·, ϕ j )H∗ϕ j .

Proof. We have

f (K∗
D) =

∞∑

i=0

ai (K∗
D)i =

∞∑

i=0

ai

∞∑

j=1

λi
j (·, ϕ j )H∗ϕ j

=
∞∑

j=1

( ∞∑

i=0

aiλ
i
j

)

(·, ϕ j )H∗ϕ j

=
∞∑

j=1

f (λ j )(·, ϕ j )H∗ϕ j .

�
From Lemma D.1, we can deduce that

∫

∂ D
xl f (K∗

D)[νm](x) dσ(x) =
∞∑

j=1

f (λ j )α
( j)
l,m . (D.1)

Equation (D.1) yields the summation rules for the entries of the polarization tensor.

In order to prove that
∞∑

j=1

α
( j)
l,m = δl,m |D|, we take f (λ) = 1 in (D.1) to get

∞∑

j=1

α
( j)
l,m =

∫

∂ D
xlνm(x) dσ(x) = δl,m |D|.

Next, we prove that

∞∑

j=1

λ j

d∑

l=1

α
( j)
l,l = (d − 2)

2
|D|.
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Taking f (λ) = λ in (D.1), we obtain

∞∑

j=1

λ j

d∑

l=1

α
( j)
l,l =

d∑

l=1

∫

∂ D
xlK∗

D[νl ](x) dσ(x),

∫

∂ D
xlK∗

D[νl ](x) dσ(x) =
∫

∂ D
xl

(
1

2
νl(x) + ∂SD[νl ]

∂ν

∣
∣
∣−(x)

)

dσ(x),

=|D|
2

+
∫

∂ D
xl

∂SD[νl ]
∂ν

∣
∣
∣−(x) dσ(x). (D.2)

Integrating by parts we arrive at
∫

∂ D
xl

∂SD[νl ]
∂ν

∣
∣
∣−(x) dσ(x) =

∫

D
el(x) · ∇SD[νl ](x) dx +

∫

D
xl�SD[νl ](x) dx .

Since the single-layer potential is harmonic on D,

∫

∂ D
xl

∂SD[νl ]
∂ν

∣
∣
∣−(x) dσ(x) =

∫

D
el(x) ·

(∫

∂ D
∇x�(x, x ′)νl(x ′) dσ(x ′)

)

dx .

Summing on i and using ∇x�(x, x ′) = −∇x ′�(x, x ′), we get

d∑

l=1

∫

∂ D
xl

∂SD[νl ]
∂ν

∣
∣
∣−(x) dσ(x) = −

∫

D

(∫

∂ D
ν(x ′) · ∇x ′�(x, x ′) dσ(x ′)

)

dx,

= −
∫

D
DD[1](x) dx,

= − |D|, (D.3)

where DD is the double-layer potential. Hence, summing equation (D.2) for i =
1, . . . , d, we get the result.

Finally, we show that

∞∑

j=1

λ2j

d∑

l=1

α
( j)
l,l = d − 4

4
|D| +

d∑

l=1

∫

D
|∇SD[νl ]|2 dx .

Taking f (λ) = λ2 in (D.1) yields

∞∑

j=1

λ2j

d∑

l=1

α
( j)
l,l =

d∑

l=1

∫

∂ D
xl(K∗

D)2[νl ](x) dσ(x)

=
d∑

l=1

∫

∂ D
KD[yl ](x)K∗

D[νl ](x) dσ(x)

=
d∑

l=1

∫

∂ D
KD[yl ]νl

2
dσ +

d∑

l=1

∫

∂ D
KD[yl ]∂SD[νl ]

∂ν
|− dσ
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= (d − 2)

4
|D| −

d∑

l=1

∫

∂ D

yl

2

∂SD[νl ]
∂ν

∣
∣
∣− dσ

︸ ︷︷ ︸
I1

+
d∑

l=1

∫

∂ D
DD[yl ]

∣
∣
∣−

∂SD[νl ]
∂ν

∣
∣
∣− dσ

︸ ︷︷ ︸
I2

.

From (D.3) it follows that

I1 = −|D|
2

.

Since xl is harmonic, we have xl = DD[yl ](x)|− − SD[νl ](x) on ∂ D, and thus,

I2 =
d∑

l=1

∫

∂ D
(xl + SD[νl ](x))

∂SD[νl ]
∂ν

∣
∣
∣−(x) dσ(x),

= −|D| +
d∑

l=1

∫

∂ D
SD[νl ]∂SD[νl ]

∂ν

∣
∣
∣− dσ,

= −|D| +
d∑

l=1

∫

D
|∇SD[νl ]|2 dx .

Replacing I1 and I2 by their expressions gives the desired result.
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