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r é s u m é

Cet article présente une nouvelle méthode pour l’étude de la dépendance des 
fréquences de résonances plasmoniques des nano-particules métalliques dans un 
régime où l’approximation quasistatique n’est plus valide. Ces travaux reposent 
sur l’étude du spectre d’un opérateur integral singulier ainsi que sur l’application 
d’une méthode perturbative.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

1.1. Position of the problem

The optical properties of metallic nanoparticle have been a subject of great interest in the past decades. 
They have the ability to exhibit plasmonic resonances, which are strong enhancement of the scattering and 
absorption cross sections at certain frequencies. This capacity to interact strongly with light is a key to many 
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major innovations in nanophotonics [37,9,41], in biomedical imaging [25,31], cancer treatment therapy [10]. 
For a nice review of some of these applications we refer the reader to [19].

These resonances have been theoretically and experimentally studied by the physics community. It has 
been experimentally shown [32] (via measurements of the extinction and absorption cross sections) and 
numerically (simulations of the Maxwell equations, often via a coupled dipoles method, see [29,23]) that the 
frequency at which a metallic nanoparticle resonates depends on

(i) the shape of the particle;
(ii) the type of metal;
(iii) the surrounding medium;
(iv) the size of the particle.

Plasmonic resonances have been the subject of some theoretical work as well in the physics community. In 
the case of a spherical particle, the classical Mie theory explains points (ii) to (iv). In the case where the 
particle is not spherical, using the quasi-static approximation and solving Laplace equation, computations 
of the polarizability for some simple shapes have given a lot of insights on points (i), (ii), and (iii); see, for 
instance, [44]. Moreover, the conservation of energy fails in the quasi-static theory, due to the absence of 
radiative loss. This issue has been dealt by adding a radiative correction [1].

The size dependence has been more problematic. Some corrections of the quasi-static approximation, 
sometimes called the modified long-wavelength approximation, or computations of a dynamic polarizability
have tackled this issue [33,42,29,35]. Nevertheless, they heavily rely on strong assumptions and are valid 
only for spheroidal shapes.

In the mathematical community, plasmonic resonances are a more recent subject of interest. In the 
quasi-static approximation, plasmonic resonances were shown to be an eigenvalue problem linked to the 
Neumann Poincaré operator [22,6,26]. It was then showed that Maxwell’s equation yields a similar type of 
eigenvalue problems, and a computation of the polarizability for small plasmonic particle was given, solving 
items (i) to (iii) for a general regular shape [2]. Note that these studies were all done in the case where the 
shape of the particle is assumed to have some regularity, and the theory breaks down when the particle has 
corners. Some recent progress has been made on this topic [11,24,39].

The size dependance has been justified in [4,7] in the scalar case (transverse electric or transverse mag-
netic) and in [5] in the Maxwell setting. However, practical computations of this size dependency remains 
complicated. We aim here at presenting a new approach, based on a singular volume integral equation, to 
compute this size dependency. Our integral volume approach can be extended to the case where the shape 
of the particle has corners.

1.2. Main contribution

In this work, using a volume integral equation, we show that the resonant frequencies at which a nanopar-
ticle of characteristic size δ exhibits plasmonic resonances occurs can be written as a nonlinear eigenvalue 
problem:

Find ω such that f(ω) ∈ σ
(
T (ωδ)

)
(1.1)

for some nonlinear function f and some operator T (ωδ) (see Definition 2.2).
These types of problems are extremely difficult to handle in their generality. In this work, we add some as-

sumptions arising from experimental observations and classical electromagnetic theory to compute solutions 
of (1.1) in a regime that corresponds to practical situations.
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The perturbative analysis presented in this work is based on the following assumptions:

(i) The size δ of the particle is small compared to the wavelength of the lights at plasmonic frequencies:

δ
ω

c
� 1;

(ii) The particle is constituted of metal, whose permittivity can be described by a Drude–Lorentz type 
model [38].

In this regime, we show that (Theorem 5.1):

∂

∂ω
σ(T (ωδ)) ∼ δ

c
� 1.

And using that we give the following procedure for solving (1.1):

• Find ω0 such that f(ω0) ∈ σ(T (0));
• Compute σ(T (δω0)) by a perturbative method;
• Find ω1 such that f(ω1) ∈ σ(T (δω0)).

Since, in practical situations ∂
∂ωf(ω) � δ

c (this comes from the fact that the particle is metallic and can be 
checked numerically, see Appendix A for more details), one can see that ω1 is a good approximated solution 
of problem (1.1).

1.3. Additional contributions

In this paper, we also show that in the case where the particle has an elliptic shape, the dipole resonance 
of the nanoparticle (and its dependence on the size of the particle) can be very easily computed using the L
dyadic that can be found in the physics literature [47,48]. This dyadic L is often incorrectly derived in the 
literature. In Appendix B we give a correct derivation of L, as well as some precisions on some common 
misconceptions about singular integrals found in the classical literature on electromagnetic fields. We also 
give formulas for the computations of some observable quantities such as the extinction and absorption 
cross sections for elliptical particles (see Section 6). To the best of our knowledge, this is the first time that 
a formal proof is given for these type of computations.

2. Model and definition

2.1. Maxwell’s equations

We consider the scattering problem of a time-harmonic wave incident on a plasmonic nanoparticle. 
Denote by ε0 and μ0 the electric permittivity and the magnetic permeability of the vacuum and by c0 =
(ε0μ0)−1/2 the speed of light in the vacuum. The homogeneous medium is characterized by its relative 
electric permittivity εm and relative magnetic permeability μm, while the particle occupying a bounded and 
simply connected domain of center of mass z0 (see Fig. 1):

D = z0 + δB � R
3

with C1,α boundary is characterized by its electric permittivity εc and its magnetic permeability μc, both 
of which may depend on the frequency. We assume that �εc < 0, �εc > 0 and define
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Fig. 1. Schematic representation of the scattering problem.

km = ω

c0

√
εmμm, kc = ω

c0

√
εcμc, (2.1)

and

εD(ω) = εmχ(R3\D̄) + εc(ω)χ(D̄), μD = μmχ(R3\D̄) + μcχ(D), (2.2)

where χ denotes the characteristic function. We assume that the particle is nonmagnetic, i.e., μm = μc. 
Throughout this paper, we assume that εm is real and strictly positive and that �kc < 0 and �kc > 0.

For a given plane wave solution (Ei, Hi) to the Maxwell equations{
∇× Ei = iωμmHi in R

3,

∇× Hi = −iωεmEi in R
3,

let (E, H) be the solution to the following Maxwell equations:⎧⎪⎨⎪⎩
∇× E = iωμDH in R

3 \ ∂D,

∇× H = −iωεDE in R
3 \ ∂D,

[ν × E] = [ν × H] = 0 on ∂D,

(2.3)

subject to the Silver–Müller radiation condition:

lim
|x|→∞

|x|(√μm(H − Hi) × x̂−√
εm(E − Ei)) = 0,

where x̂ = x/|x|. Here, [ν × E] and [ν × H] denote the jump of ν × E and ν × H along ∂D, namely,

[ν × E] = (ν × E)
∣∣
+ − (ν × E)

∣∣
−, [ν × H] = (ν × H)

∣∣
+ − (ν × H)

∣∣
−.

Proposition 2.1. If I
[

εc
εm

]

= 0, then problem (2.3) is well posed. Moreover, if we denote by (E, H) its unique 

solution, then (E, H)
∣∣
D

∈ H(curl, D) and (E, H)
∣∣
R3\D ∈ Hloc(curl, R3 \D).

Proof. The well-posedness is addressed in [45,17,4]. �
We also denote by Gkm the scalar outgoing Green function for the homogeneous medium, i.e., the unique 

solution in the sense of distributions of(
Δ + ω2

2 εmμm

)
Gkm(·, z) = δz in R

3, (2.4)

c0
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subject to the Sommerfeld radiation condition. Gkm is given by (see [36]):

Gkm(x, z) = eikm|x−z|

4π|x− z| . (2.5)

2.2. Volume integral equation for the electric field

We start by defining a singular integral operator, sometimes known as the magnetization integral opera-
tor [20].

Definition 2.1. Introduce

T k
D :

L2(D,R2) −→ L2(D,R2)

f �−→ k2
ˆ

D

Gk(x, y)f(y)dy −∇
ˆ

D

∇Gk(·, y) · f(y)dy.

We then give the equation satisfied by the electric field:

Proposition 2.2. The electric field inside the particle satisfies the volume integral equation (or Lippmann–
Schwinger equation): (

εm
εm − εc

I − T k
D

)
E = εm

εm − εc
Ei. (2.6)

Proof. See [15, Chapter 9] or [16].

2.3. Plasmonic resonances as an eigenvalue problem

Definition 2.2. We say there is a plasmonic resonance if

εc
εm − εc

∈ σ
(
T k
D

)
.

2.4. Dipole resonance

Definition 2.3. The dipole moment of a particle is given by

P =
ˆ

D

p(x)dx =
ˆ

D

εmχ(x)E(x)dx =
ˆ

D

(εc − εm)E(x)dx.

We say that there is a dipolar plasmonic resonance if the dipole moment P satisfies

|P| �
∣∣(εc − εm)

ˆ

D

Ei(x)dx
∣∣.

Therefore, we want to compute the values of εc and εm such that
(i)

λ := εc
εm − εc

∈ σ
(
T k
D

)
;
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(ii) One of the eigenvectors ϕλ associated with λ has non zero average:

1
|D|

ˆ

D

ϕλ 
= 0.

3. The quasi-static approximation

In this section, we study the case when the particle has finite size δ 
= 0 and δkm � 1. This corresponds 
to the usual quasi-static approximation. It has already been shown in [2,4] that the solution of Maxwell’s 
or Helmholtz equation converge uniformly when δkm → 0 to the solution of the quasi-static problem in the 
case of negative index materials.

Proposition 3.1. In the quasi-static approximation, the excitation field Ei becomes constant, the electric field 
can be written as the gradient of a potential E = ∇u and the scattering problem described by (2.6) becomes:

Find u such that
{

∇ · (εD(x)∇u) = 0,

u(x) − Ei · x = O
(
|x|−1) .

Equivalently, E = ∇u is a solution of the following integral equation:(
εm

εm − εc
I − T 0

D

)
E = εm

εm − εc
Ei. (3.1)

Remark 3.1. These types of transmission/exterior problems have been extensively treated in the literature. 
For more details on the well posedness, the appropriate functional spaces, and the study of small conductivity 
inhomogeneities we refer to [36,3].

Proposition 3.2. Let y = z0 + δỹ and write ũ(ỹ) = u(y), and ũi(ỹ) = ui(y). Then ũ solves:(
εc

εm − εc
I − T 0

B

)
∇ũ = εc

εm − εc
∇ũi.

Proof. This is a direct consequence of Theorem Appendix B.3.

3.1. Spectral analysis of the static operator, link with Neumann–Poincaré operator

It has been shown in [2,4] that the plasmonic resonances are linked to the eigenvalues of the Neumann–
Poincaré operator. In this subsection, we show that the surface integral approach and the volume integral 
approach are coherent. The link between the volume integral operator and the Neumann Poincaré operator 
is summed up in Corollary 3.1. We first recall the definition of the Neumann–Poincaré operator

Definition 3.1. The operator K∗
D : L2(∂D) → L2(∂D) is defined by

K∗
D[ϕ](x) := 1

ωd

ˆ

∂D

(x− y) · ν(x)
|x− y|d ϕ(y)dσ(y) , (3.2)

with ν(x) being the outward normal at x ∈ ∂D, ωd the measure of the unit sphere in dimension d, and σ
the Lebesgue measure on ∂D. We note that K∗

D maps L2
0(∂D) onto itself (see, for instance, [3]).
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Recall the orthogonal decomposition

L2(D,R3) = ∇H1
0 (D) ⊕ H(div 0, D) ⊕ W,

where H(div 0, D) is the space of divergence free L2 vector fields and W is the space of gradients of 
harmonic H1 functions. We start with the following result from [17]:

Proposition 3.3. The operator T 0
D is a bounded self-adjoint map on L2(D, R2) with ∇H1

0 (D), H(div 0, D)
and W as invariant subspaces. On ∇H1

0 (Ω), T 0
D[ϕ] = ϕ, on H(div 0, D), T 0

D[ϕ] = 0 and on W:

ν · T 0
D[ϕ] =

(
1
2 + K∗

D

)
[ϕ · ν] on ∂D.

Proof. The proof can be found in [20,17]. �
From this, it immediately follows that the following corollary holds.

Corollary 3.1. Let λ 
= 1. Let ϕD 
≡ 0 be such that

λϕD − T 0
D[ϕD] = 0 in D.

Then,

ϕD ∈ W,

∇ ·ϕD = 0 in D,

λϕD = ∇SD[ϕD · ν] in D,

λϕD · ν =
(

1
2 + K∗

D

)
[ϕD · ν] on ∂D.

Letting uD = SD[ϕD · ν], we have:

{
ΔuD = 0 in R

3 \ ∂D,

[∂nuD] = ϕD · ν on ∂D.
(3.3)

Proposition 3.4. If the boundary of D is C1,α, then T 0
D

∣∣
W: W −→ W is a compact operator.

Proof. The operator T 0
D is a bounded map from W to H1(D, R3) [20,34]. The C1,α regularity of ∂D and 

the usual Sobolev embedding theorems ensure its compactness (see [13, Chapter 9]).

Proposition 3.5. The set of eigenvalues (λn)n∈N of T 0
D

∣∣
W is discrete, and the associated eigenfunctions (ϕn)

form a basis of W. We have:

T 0
D

∣∣
W =

∑
n

λn〈ϕn, ·〉ϕn.
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3.2. Link between σ(LB) and σ(T 0
B), and the dipole resonances for an ellipse

As explained in Section 2.4, to understand the dipole resonances of the particle, we need to compute the 
eigenvectors of T 0

B that have a non zero average, i.e., that are not orthogonal in the L2(B) sense to every ei, 
i ∈ {1, 2, 3}, where (e1, e2, e3) is an orthonormal basis of R3.

In general, constant vector fields over B are not eigenvectors of TB. Nevertheless in the case where B is 
an ellipse, then constant vector fields can be eigenvectors for TB. This is essentially a corollary of Newton’s 
shell theorem.

Theorem 3.1. If B is an ellipse centered at the origin, then the following holds: Let ϕ ∈ L2(B, R3) and let 
λ ∈ R \ {0, 1} be such that ⎧⎪⎪⎨⎪⎪⎩

λϕ− T 0
B [ϕ] = 0,ˆ

B

ϕ 
= 0.

Then,

(λI − LB)
ˆ

B

ϕ0 = 0.

Remark 3.2. The operator we are considering is essentially the double derivative of a classical Newtonian 
potential. When the domain is an ellipse, the Newtonian potential of a constant is a second order polynomial. 
Therefore, its second derivative is a constant. Hence, the possibility to have constant eigenvectors for TB
occurs. This property characterizes ellipses. In fact, it is the weak Eshelby conjecture; see [27] for more 
details.

Proof. For the proof we need the following lemma from [18]:

Lemma 3.1. If B is an ellipse, then, for any ϕ0 ∈ R
3,

TB [ϕ0] = LBϕ0.

Combining this with Proposition 3.5, and using the orthogonality between the eigenvectors of T 0
B, one 

gets the result. �
Corollary 3.2. Let E ∈ R

3 \ {0} be such that λE = LBE. Then,

T 0[E] = λE.

Proof. This is a direct consequence of Lemma 3.1.

3.3. Static polarizability of an ellipse

In this subsection, we assume that B is an ellipse.

Definition 3.2. The polarizability M is the matrix linking the average incident electrical field to the induced 
dipolar moment. It is defined by
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p = M

⎛⎝ 1
|D|

ˆ

D

Ei

⎞⎠ .

Theorem 3.2. The static polarizability M of the particle B is given by

M = δ3ε0 (εc − 1)
(

εm
εm − εc

+ LB

)−1

. (3.4)

Remark 3.3. The polarizability is used to compute different observables such as the scattering and extinction 
cross sections of the particle (see Section 6).

Proof. We recall equation (3.1) for the electric field inside the particle(
εm

εm − εc
I − T 0

D

)
∇u = εm

εm − εc
∇ui.

We now remark that the operator

P : L2(D,R3) −→L2(D,R3)

f �−→
ˆ

D

f

is the projector onto the subspace of L2-spanned by constant functions. Compose the previous equation 
with P we get:

P ◦
(

εc
εm − εc

I − T 0
D

)
[∇u] = P[∇ui].

We now use Proposition 3.5 to diagonalise T 0:

P
(∑

i

(
εc

εm − εc
+ λi

)
〈ϕn,∇u〉ϕn

)
= P[∇ui].

Since the particle is an ellipse, we know by Corollary 3.2 that Ei ∈ R
3, the eigenvectors of LB associated 

with the eigenvalues λL,i, are also eigenvectors for T 0 for some eigenvalues λi1 , λi2 and λi3 . Moreover, 
λi1 = λL,1, λi2 = λL,2 and λi3 = λL,3 We can also note that (E1, E2, E3) span the image of the projector P. 
By orthogonality of the eigenvectors of T 0, we obtain that

P
(∑

i

(
εc

εm − εc
+ λi

)
〈ϕn,∇u〉ϕn

)
=
∑
i

(
εm

εm − εc
+ λL,i

)
〈Ei,∇u〉Ei

Noticing that 〈Ei, ∇u〉 = 〈Ei, P(∇u)〉 = Ei · P(∇u), we obtain that the right-hand side of the previous 
equation is exactly the expression of (

εc
εm − εc

+ LB

)
P(∇u)

in the basis (E1, E2). Therefore, we have shown that

P ◦
(

εc
εm − εc

I − T 0
D

)
[∇u] =

(
εc

εm − εc
+ LB

)
P(∇u).
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Thus
ˆ

D

∇u =
(

εc
εm − εc

+ LB

)−1 ˆ

D

∇ui.

Using Definition 2.3 of the induced dipole moment, we get the result. �
3.4. Static polarizability of an arbitrary particle

In the case where the particle occupies an arbitrary C1,α domain, the volume integral approach does not 
yield a simple expression for the polarizability. Nevertheless, the layer potential approach gives the well 
known polarization tensor. The validity of the polarization tensor formula for negative index material has 
been shown in [4,2].

We recall here the formula for completeness:

Theorem 3.3. ([4,2]) The static polarizability is given by

α = δ3ε0(ε− 1)
ˆ

∂B

y

(
ε + 1

2(ε− 1)I −K∗
B

)−1

[ν](y)dσ(y),

where ε = εc
εm

.

4. Perturbative approach: spectral analysis of the dynamic operator

In this section, we aim at finding λ̃ such that there exists some f 
≡ 0 ∈ L2(B, R3) such that(
λ̃I − T δk

B

)
[f ] = 0.

Let λn0 be an eigenvalue of T 0. Let V ⊂ C be a neighborhood of λn0 such that λI − T 0 is invertible for 
every λ ∈ V . Let ϕn0

∈ L2(B, R3) be a unitary eigenvector associated with λn0 .

Lemma 4.1. For any λ ∈ V , the following decomposition holds:

(
λI − T 0)−1 =

〈ϕn0
, ·〉

λ− λn0

ϕn0
+ R(λ),

where

C −→
(
L2(B,R3) → L2(B,R3)

)
λ �−→R(λ)

is holomorphic in λ.

Proof. Denote by P1 : L2(B, R3) → L2(B, R3) and P2 : L2(B, R2) → L2(B, R3) the orthogonal projections 
on ∇H1

0 (B) and H(div 0, B), respectively. Using Propositions 3.3 and 3.5, we can write:

λI − T 0 =
∑

(λ− λn)〈ϕn, ·〉ϕn + (λ− 1)P1 + λP2.

The result immediately follows. �
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Lemma 4.2. Let λn0 be an eigenvalue for T 0. Then, if |k| is small enough, there exists a neighborhood V ⊂ C

of λn0 such that T δk
B has exactly one eigenvalue in V .

Proof. We start by writing:

λI − T δk = λI − T 0 +
(
T 0 − T δk

)
.

Recall that there exists V ⊂ C such that λI − T 0 is invertible for every λ ∈ V \ {λn0}. Therefore, for 
λ ∈ V \ {λn0},

λI − T δk =
(
λI − T 0) (I +

(
λI − T 0)−1 (T 0 − T δk

))
.

Using Lemma 4.1, we get

(
λI − T δk

)
[f ] = f +

〈ϕn0
,
(
T 0 − T δk

)
[f ]〉

λ− λn0

ϕn0
+ R(λ)

(
T 0 − T δk

)
[f ].

We can show that ∥∥T 0 − T δk
∥∥ −→ 0 (δk → 0).

Since λ �→ R(λ) is holomorphic, the compact operator

λ �−→ R(λ)
(
T 0 − T δk

)
converges uniformly to 0 with respect to λ when k goes to 0. Since the operator

Kk :
L2(B,R3) −→ L2(B,R3)

f �−→
〈ϕn0

,
(
T 0 − T δk

)
[f ]〉

λ− λn0

ϕn0

is a rank one linear operator, the operator I + Kδk
B is invertible.

Therefore, there exists K > 0 such that λI − T k = I + Kδk + R(λ) 
(
T 0 − T δk

)
is invertible for every 

λ ∈ V \ {λn0} and every |δk| < K. �
We can now give an asymptotic formula for the perturbed eigenvalues λ̃ of T δk:

Proposition 4.1. The following asymptotic formula for the perturbed eigenvalues holds:

λ̃ ∼ λn0 −
〈(
T 0 − T δk

)
ϕn0

,ϕn0

〉
L2(B,R3) . (4.1)

Proof. We use the same notations as in the previous lemmas. We have:

λ̃ ∈ σ
(
T δk

)
∪ V \ {λn0} ⇔ ∃f 
≡ 0 such that

(
λ̃I − T δk

)
[f ] = 0

⇔ ∃f 
≡ 0 such that
(
I +

(
T 0 − T δk

) (
λ̃I − T 0)−1) [f ] = 0.

Using the decomposition stated in Lemma 4.1 for 
(
λ̃I − T 0)−1, we get the following equation for f and λ̃:

f +
〈ϕn0

, f〉
λ̃− λn0

(
T 0 − T δk

)
[ϕn0

] +
(
T 0 − T δk

)
R(λ̃)[f ] = 0. (4.2)



H. Ammari, P. Millien / J. Math. Pures Appl. 129 (2019) 242–265 253
We start by proving that 〈ϕn0
, f〉 
= 0. Indeed, if one has 〈ϕn0

, f〉 = 0, then (4.2) becomes(
I +

(
T 0 − T δk

)
R(λ̃)

)
[f ] = 0.

If k is close enough to 0, then ‖ 
(
T 0 − T δk

)
R(λ̃)‖ < 1 and then I +

(
T 0 − T δk

)
R(λ̃) is invertible and we 

have f = 0, which is a contradiction.
We then note that f and 

〈ϕn0 ,f〉
λ̃−λn0

(
T 0 − T δk

)
[ϕn0

] are terms of order O(|f |) whereas the regular part, the 

term 
(
T 0 − T δk

)
R(λ̃)[f ] is of order O(δk|f |). We drop the regular part, and take the scalar product against 

ϕn0
to obtain that

〈ϕn0
, f〉 +

〈ϕn0
, f〉

λ̃− λn0

〈(
T 0 − T δk

)
[ϕn0

],ϕn0

〉
= 0. (4.3)

Finally, dividing equation (4.3) by 〈ϕn0
, f〉 
= 0 yields

λ̃ = λn0 −
〈(
T 0 − T δk

)
[ϕn0

],ϕn0

〉
. �

We also prove the following lemma, giving an approximation of the resolvent of T k
D along the direction 

of the eigenfunction ϕn0
:

Proposition 4.2. Let g ∈ L2(B, R3). If f ∈ L2(B, R3) is a solution of(
λI − T δk

B

)
f = g,

then, for λ ∼ λn0 , the following holds:

〈f ,ϕn0
〉L2(B,R3) ∼

〈g,ϕn0
〉L2(B,R3)

λ− λn0 +
〈
(T 0 − T δk) [ϕn0

],ϕn0

〉
L2(B,R3)

.

Proof. The result follows directly from Lemma 4.1 and identity (4.2) with g in the right-hand side. �
5. Dipolar resonance of a finite sized particle

5.1. Computation of the perturbation via change of variables

By the change of variables: y = z0 + δỹ, Ẽ(ỹ) = E(y), Ẽi(ỹ) = Ei(y), and (2.6) becomes:(
εc

εm − εc
I − T δk

B

)
Ẽ = εc

εm − εc
Ei.

We are now exactly in the right frame to apply the results of Section 4. We know that there is a 
neighborhood Vi ⊂ C of λ(0)

i , i ∈ {1, 2, 3} such that T δkm

B has exactly one eigenvalue in Vi (Lemma 4.2) and 
that the perturbed eigenvalue is given by

Theorem 5.1. We have

λ̃ ∼ λ
(0)
i −

〈(
T 0
B − T δkm

B

)
ϕi,ϕi

〉
L2(B,R3)

, (5.1)

where ϕi is a unitary eigenvector of T 0
B associated with λ(0)

i .
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5.2. The case of an ellipse

5.2.1. The perturbative matrix
In the case where B is an ellipse, since the eigenmodes associated with a dipole resonance are constant 

ϕi ≡ Ei ∈ R
3 (see Section 3.2) and therefore formula (5.1) simplifies to:

Proposition 5.1. We have

〈(
T 0
B − T δkm

B

)
[ϕi],ϕi

〉
= Ei · Mδkm

B Ei

with

Mδkm

B :=
¨

∂B×∂B

(
G0(x̃, z̃) −Gδkm(x̃, z̃)

)
ν(x̃)ν(z̃)�dσ(x̃)dσ(z̃).

Proof. From

〈(
T 0
B − T δkm

B

)
[ϕi],ϕi

〉
= Ei ·

ˆ

B

∇
ˆ

B

∇
[
G0(x, y) −Gδkm(x, y)

]
dydxEi,

an integration by parts yields the result. �
5.2.2. The algorithmic procedure

We now give a practical way to compute this perturbation in the case of an elliptical particle:

(i) Compute the resonant value associated with the static problem:
• Compute the matrix LB ∈ M3(R);
• Compute its spectrum λ1, λ2, λ3 and corresponding unitary eigenvectors E1, E2 and E3;

(ii) Compute the perturbative matrix Mδkm

B and the perturbed eigenvalues

λ̃i = λi − Ei · Mδkm

B Ei.

6. Computation of observables for an elliptical nanoparticle

6.1. Dipole moment beyond the quasi-static approximation

Denote by λj , j = 1, 2, 3, the three eigenvalues of LB . Denote by Ej the three eigenvectors (∈ R
3) 

associated with λj such that (E1, E2, E3) forms an orthonormal basis of R3. Denote by Q = (E1,E2,E3) ∈
O(3) the matrix associated with this basis.

Since Ej are eigenmodes for T 0, we can use Lemma 4.2 to find that

〈E,Ej〉 ∼
〈Ei,Ej〉

λ− λj + 〈(T 0 − T δk) [Ej ],Ej〉
.

We can then write:
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P ∼ δ3ε0(ε− 1)Q

⎛⎜⎜⎝
1

λ−λ1+〈(T 0−T δk)[E1],E1〉 0 0

0 1
λ−λ2+〈(T 0−T δk)[E2],E2〉 0

0 0 1
λ−λ3+〈(T 0−T δk)[E3],E3〉 0

⎞⎟⎟⎠
× Qt

⎛⎝ 1
|D|

ˆ

D

Ei

⎞⎠ . (6.1)

Remark 6.1. This expression is valid near the resonant frequencies when the corresponding mode is excited, 
i.e., when λ ∼ λi and Ei(z0) · Ei ∼ |Ei(z0)|.

Remark 6.2. The expression

Mdyn := δ3ε0(ε− 1)Q

⎛⎜⎜⎝
1

λ−λ1+〈(T 0−T δk)[E1],E1〉 0 0

0 1
λ−λ2+〈(T 0−T δk)[E2],E2〉 0

0 0 1
λ−λ3+〈(T 0−T δk)[E3],E3〉 0

⎞⎟⎟⎠Qt

is a dynamic version of the usual quasi-static polarization tensor.

6.2. Far-field expansion

Assume that the incident fields are plane waves given by

Ei(x) = Ei
0e

ikmd·x, Hi(x) = d × Ei
0e

ikmd·x,

with d ∈ S
2 and Ei

0 ∈ R
3, such that Ei

0 · d = 0.
Since we have an approximation of the dipole moment of the particle we can find an approximation of 

the electric field radiated far away from the particle. The far-field expansion written in [5] is still valid 
(Theorem (4.1) in the aforementioned paper), one just has to replace the dipole moment M(λ, D)Ei where 
M is the usual polarization tensor defined with the Neumann Poincaré operator by the new corrected 
expression obtained in (6.1).

The scattered far field has the form

E(x) − Ei(x) ∼ k2
m

4π
eikm|x|

|x| Mdyn
1
|D|

ˆ

D

Ei(y)dy (|x| → ∞), (6.2)

and the scattering amplitude is given by

k2
m

4πMdyn
1
|D|

ˆ

D

Ei(y)dy = k2
m

4π P.

6.3. Scattering and absorption cross sections

Having an approximation of the dipole moment, we can compute the extinction and scattering cross 
sections of the particle.

Proposition 6.1. ([12, Chapter 13]) The power radiated by an oscillating dipole P can be written

Pr = μmω4

12πc0
|P|2,



256 H. Ammari, P. Millien / J. Math. Pures Appl. 129 (2019) 242–265
and the power removed from the incident plane wave (absorption and scattering) can be written

Pe = 4π
km

I
[
Ei

0 ·
k2
m

4π P
|Ei

0|2

]
.

In the same spirit as in [4,5] we can then give upper bounds for the cross sections as follows.

Proposition 6.2. Near plasmonic resonant frequencies, the leading-order term of the average over the orien-
tation of the extinction (respectively absorption) cross section of a randomly oriented nanoparticle is bounded 
by

Qext
m ∼kmI [TrMdyn] ,

Qa
m ∼k4

m

6π |TrMdyn|2 ,

where Tr denotes the trace.

Proof. We start from equation (6.1) and get that

P = MdynEi
0 [1 + f(D, km,d)]

with

f(D, km, d) = 1
|D|

ˆ

D

(
1 − eikmd·x) dx.

Here, f represents the correction of the average illuminating field over the particle due to the finite ratio 
between the size of the particle and the wavelength. Its magnitude is of the order of δk. If we take the 
average over all directions for Ei

0 and d, then we obtain that

Qext
m = 1

(4π)2

¨

S2

4π
km

k2
m

4π I [e0 · Mdyne0(1 + f(D, km,d)] dσ(e0)dσ(d).

The term f(D, km, d) is a small correction of the order of kmδ that is due to the fact that what determines 
the dipole moment is not the incident field at the center of the particle, but the average of the field over 
the particle. Therefore, it reduces the dipole response of the particle. Ignoring it and considering only the 
leading order term gives:

Qext
m ∼km

4π

ˆ

S1

I [e0 ·Mdyne0] dσ(e0)

∼kmI [TrMdyn] .

A similar computation gives the leading term of the absorption cross section.

Appendix A. Justification of the asymptotic regime

To quickly justify the model and the regime we are working in, we give some values for the physical 
parameters used in the model corresponding to practical situations.
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Fig. A.2. Numerical values of the real part of f(ω) = λ(ω) = εc(ω)
εm−εc(ω) for a gold nanoparticle in water.

Fig. A.3. Numerical values of the real part of df
dω (ω) for a gold nanoparticle in water.

In practice: ω ∈ [2, 5] · 1015 Hz; δ ∈ [5, 100] · 10−9 m; εm ∼ 1.8ε0 ∼ 1.5 · 10−11 F · m−1 for water; 
μ0 ∼ 12 · 10−7 H · m−1; c0 ∼ 3 · 108 m · s−1; km ∼ 107 m−1.

Therefore, one can see that we have δk ≤ 10−2 for very small particles, and δk ∼ 1 for bigger particles 
(of size 100 nm).

For the permittivity of the metal, one can use a Lorentz–Drude type model:

εc(ω) = ε0

(
1 −

ω2
p

ω(ω + iτ−1)

)

with

• τ = 10−14 s;
• ωp = 2 · 1015 s−1.



258 H. Ammari, P. Millien / J. Math. Pures Appl. 129 (2019) 242–265
This model is enough to understand the behavior of ε but for numerical computations, it is better to use 
the tabulated parameters that can be found in [40]. We plot f(ω) on Fig. A.2 and df

dω on Fig. A.3. One can 
see that df

dω is of order 10−15 while δc ∼ 10−16 for size particle under 100 nm. So the procedure described in 
Section 1.2 is justified.

Appendix B. Singular integrals, Calderón Zygmund type operators

There is an abundant literature on singular integral operators, yet these types of principal value integrals 
are misunderstood and misused in some of the physics literature. We include here some properties that are 
well known for people who are familiar with these types of operators, but seem to be often misunderstood.

There have been numerous contributions in the twentieth century. Some notable ones are: Tricomi 
(1928) [46]; Kellogg (1929) [28]; Calderón–Zygmund (1952) [14]; Seeley (1959) [43]; Gel’fand–Shilov 
(1964) [21], and Mikhlin (1965) [34].

In the following, we do not state the results in their most general settings and assumptions. We use some 
notations and hypotheses that are adapted to our problem (Green’s function method).

B.1. Principal value integral

Let D ⊂ R
d be a bounded domain. We are concerned with the existence and the manipulation of integrals 

of the type

ˆ

D

f

(
x− y

|x− y|

)
1

|x− y|du(y)dy, x ∈ D, (B.1)

where u is a function defined on D and f a function defined on Sd−1. We denote by B(x, ε) the ball centered 
at x of radius ε.

Definition Appendix B.1. The principal value of the integral (B.1) is defined by

lim
ε→0

ˆ

D\B(x,ε)

f

(
x− y

|x− y|

)
1

|x− y|du(y)dy.

We now give sufficient conditions for the existence of the principal value.

Theorem Appendix B.1. If u ∈ C0,α(D), α > 0 and 
´
Sd−1 f(θ)dθ = 0, then the principal value of (B.1) does 

exist.

Remark Appendix B.1. These conditions are not necessary, and singular integrals can be defined for a much 
larger class of functions. f can be replaced by f(x, θ) and u does not need to be chosen as Hölder continuous. 
One can choose u in some Lebesgue space u ∈ Lp(D).

Example 1. Consider the Green function for the free space Laplace equation in two and three dimensions:

G(x, y) =

⎧⎪⎪⎨⎪⎪⎩
1
2π log |x− y| if d = 2,

1
4π

1
|x− y| if d = 3,
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then ∂xi,xj
G(x, y) = f

(
x−y
|x−y|

)
1

|x−y|d with

f

(
x− y

|x− y|

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2π

(
δij − 2(xi − yi)(xj − yj)

|x− y|2
)

if d = 2,

− 1
4π

(
δij − 3(xi − yi)(xj − yj)

|x− y|2
)

if d = 3.

One can check that 
´
Sd−1 f(θ)dθ = 0. Therefore, for u ∈ C0,α(D) one can write:

ˆ

D

∂xi,xj
G(x, y)u(y)dy = lim

ε→0

ˆ

D\B(x,ε)

∂xi,xj
G(x, y)u(y)dy.

B.2. Non spherical volume of exclusion

One common misconception found in the physics literature is that the limit of the integral over the 
domain minus a small volume around the singularity does not depend on the shape of the volume when the 
maximum cord of the volume of exclusion goes to zero. The limit does depend on the shape of the volume. 
This issue has been dealt with by Mikhlin [34, p. 40]. We include here the formula for the limit, using the 
notations used in physics literature. Assume that V (x, ε) ⊂ D is a small volume of exclusion such that its 
boundary is given, in polar coordinates by:

∂V (x, ε) =
{
y ∈ D, |x− y| = εβ

(
x− y

|x− y|

)}
.

Theorem Appendix B.2. Under the assumptions of Theorem Appendix B.1,

lim
ε→0

ˆ

D\V (x,ε)

f

(
x− y

|x− y|

)
1

|x− y|du(y)dy =
ˆ

D

f

(
x− y

|x− y|

)
1

|x− y|du(y)dy

− u(x)
ˆ

Sd−1

f(θ) log β(θ)dθ.

Example 2. Let d = 2 and let

f

(
x− y

|x− y|

)
= 1

2π

(
1 − 2(x1 − y1)2

|x− y|2
)

be corresponding to the angular term of ∂1,1G(x, y). If V (x, ε) is an ellipse of semi-axis ε and eccentricity e

where x is at one of the focal point

∂V (x, ε) =
{
y ∈ D, |y − x| = ε

(1 − e2)
1 − ex1−y1

|x−y|

}
,

then the correction term is

u(x)
2π

ˆ

θ∈S1

(
1 − 2θ2

1
)
log

(
1 − e2

1 − eθ1

)
dθ = u(x)

2π

2πˆ

0

(1 − 2 cos2(t)) log
(

1 − e2

1 − e cos(t)

)
dt.
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Remark Appendix B.2. Note that the correction term does not only depend on the shape of the volume of 
exclusion, but also on the position of x inside it. In the previous example, if x is at the center of the ellipse 
instead of being one of the focal point, the polar equation, hence the correction term, is modified.

B.3. Change of variables

This issue has also been dealt with by Seeley [43] and Mikhlin [34, p. 41]. The classical formula for a 
change of variables in an integral cannot be applied in a straightforward way, and some precautions have to 
be taken into account. Consider a region D̃ and an homeomorphism ψ : D −→ D̃. Consider f̃ = f ◦ ψ−1, 
ũ = u ◦ ψ−1, and denote by J(x̃) the non vanishing Jacobian of ψ−1. The corrective term to the usual 
change of variables formula is given by the reciprocal image of the unit sphere by ψ. One can establish 
formulae of the form:

|x− y|2 = |ψ(x) −ψ(y)|2F
(
ψ(x), ψ(x) −ψ(y)

|ψ(x) −ψ(y)|

)
+ O

(
|ψ(x) −ψ(y)|3

)
,

and then the change of variables can be written as follows:

Theorem Appendix B.3. We have

ˆ

D

f

(
x− y

|x− y|

)
1

|x− y|du(y)dy =
ˆ

D̃

f̃

(
x̃− ỹ

|x̃− ỹ|

)
1

|x̃− ỹ|d ũ(ỹ)J(ỹ)dỹ

+ ũ(x̃)J(x̃)
ˆ

Sd−1

f̃(θ̃) logF (x̃, θ̃)dθ̃.

Remark Appendix B.3. For a dilation: x̃ = x−z0
δ , the image of the unit sphere is still a sphere and therefore, 

F = 1 and the usual change of variables formula is valid.

B.4. Differentiation of weakly singular integrals, integration by parts

We want to differentiate integrals of the type

ˆ

D

g

(
x− y

|x− y|

)
1

|x− y|d−1u(y)dy, x ∈ D.

The following results can be found in [43,34]:

Theorem Appendix B.4. If u is Hölder continuous and if g and its first derivative are bounded, then:

(i) Differentiation formula under the integral sign:

∂

∂xi

ˆ

D

g

(
x− y

|x− y|

)
1

|x− y|d−1 u(y)dy =
ˆ

D

∂

∂xi

[
g

(
x− y

|x− y|

)
1

|x− y|d−1

]
u(y)dy

+ u(x)
ˆ

Sd−1

g(θ)θidθ;
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(ii) Integration by parts formula:

ˆ

D

g

(
x− y

|x− y|

)
1

|x− y|d−1
∂

∂xi
[f(y)] dy = −

ˆ

D

∂

∂xi

[
g

(
x− y

|x− y|

)
1

|x− y|d−1

]
f(y)dy

+
ˆ

∂D

g

(
x− y

|x− y|

)
f(y)

|x− y|d−1ν(y) · eidσ(y) + f(x)
ˆ

Sd−1

g(θ)θidθ.

Remark Appendix B.4. Once again we only give sufficient conditions for the validity of these formulas, 
corresponding to our framework. These formulas are valid for u ∈ Lp and for more general kernels.

Example 3. Let d = 3 and consider the second derivative of a Newtonian potential:

∂xi,xj

ˆ

D

1
4π |x− y|−1u(y)dy = −∂xi

ˆ

D

1
4π

xj − yj
|x− y|3u(y)dy.

We can apply Theorem Appendix B.4 with g(θ) = θj and get:

∂xi,xj

ˆ

D

1
4π |x− y|−1u(y)dy =

ˆ

D

1
4π∂xi,xj

[
|x− y|−1]u(y)dy + u(x)δij3 .

B.5. The L dyadic

Lemma Appendix B.1. Let x ∈ D. Denote by LD(x) the matrix

ˆ

∂D

∇G(x, y)ν�(y)dσ(y).

Assume that D can be written in polar coordinates as

D =
{
y ∈ R

d, |x− y| ≤ ρ

(
x− y

|x− y|

)}
.

Then,

(LD(x))i,j =
ˆ

∂D

∂xj
G(x, y)ν(y) · eidσ(y) = −1

d
+

ˆ

θ∈Sd−1

fi,j(θ) log ρ(θ)dθ

with fi,j being defined in Example 1.

Proof. We start by using the integration by part formula from Theorem Appendix B.4, with g(θ) = 1
2π θj if 

d = 2 and g(θ) = 1
4π θj if d = 3, and f = 1. We obtain

ˆ

D

∂xi,xj
G(x, y)dy =

ˆ

∂D

∂xj
G(x, y)ν(y) · eidσ(y) + 1

d
.

In order to compute 
´
D
∂xi,xj

G(x, y)dy, we use the change of variables [43,34]: y = x + tθ, θ ∈ S
d−1 and 

t ∈ [0, ρ(θ)] to arrive at
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ˆ

D

∂xi,xj
G(x, y)dy =

ˆ

θ∈Sd−1

ˆ

t∈[0,ρ(θ)]

fi,j(θ)t−dtd−1dtdθ

=
ˆ

θ∈Sd−1

fi,j(θ) log ρ(θ)dθ. �

B.6. Second derivative of a Newtonian potential

In this section we give a correct simple derivation of the formula found in [47, p. 73] and [48,30,8].

Proposition Appendix B.1. Let V ∗ ⊂ R
d be such that

(i) 0 ∈ V ∗;
(ii) ∂V ∗ is a piecewise smooth;
(iii) V ∗ is radially convex with respect to the origin.

Let V (x, ε) = x + εV ∗. Then,

∂xi,xj

ˆ

D

G(x, y)u(y)dy = lim
ε→0

ˆ

D\V (x,ε)

∂xi,xj
G(x, y)u(y)dy − (LV ∗)ij u(x).

Proof. Let x ∈ D and let V (x, ε) ⊂ D. Assume that V (x, ε) can be described by some polar equation:

V (x, ε) =
{
y ∈ D, |x− y| ≤ ερ

(
x− y

|x− y|

)}
. (B.2)

Before the computation we also recall that ∂xi,xj
G(x, y) can be written as

∂xi,xj
G(x, y) = fij

(
x− y

|x− y|

)
|x− y|−d,

as it was seen in Example 1. Then we have

∂xi,xj

ˆ

D

G(x, y)u(y)dy =∂xi

ˆ

D

∂xj
G(x, y)u(y)dy (B.3)

=1
d
u(x) +

ˆ

D

∂xi,xj
G(x, y)u(y)dy. (B.4)

Using Theorem Appendix B.2 we obtain:
ˆ

D

∂xi,xj
G(x, y)u(y)dy = lim

ε→0

ˆ

D\V (x,ε)

∂xi,xj
G(x, y)u(y)dy − u(x)

ˆ

Sd−1

fij(θ) log ρ(θ)dθ,

and therefore,

∂xi

ˆ

D

∂xj
G(x, y)u(y)dy = lim

ε→0

ˆ

D\V (x,ε)

∂xi,xj
G(x, y)u(y)dy − u(x)

⎛⎝−1
d

+
ˆ

θ∈Sd−1

fi,j(θ) log ρ(θ)dθ

⎞⎠ .
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Finally, using Lemma Appendix B.1 we arrive at

∂xi

ˆ

D

∂xj
G(x, y)u(y)dy = lim

ε→0

ˆ

D\V (x,ε)

∂xi,xj
G(x, y)u(y)dy − (LV ∗)ij u(x). �

Remark Appendix B.5. There are several issues and misconceptions in the literature with this formula:

(i) The shape V ∗ cannot be completely arbitrary as often mentioned. It has to satisfy some regularity 
condition, since the construction of LV ∗ uses some integration on the boundary of V ∗ involving the 
normal vector.

(ii) The exclusion volume V (x, ε) needs to be taken small in the numerical evaluation of the integral. Only 
if the test function u is constant then ε does not need to be small.

(iii) The derivation of this formula often contains mistakes. One common derivation of this formula is 
through a splitting of the integral of the form

∂xi

ˆ

D

∂xj
G(x, y)u(y)dy =

ˆ

D\V (x,ε)

∂xi,xj
G(x, y)u(y)dy

+
ˆ

V (x,ε)

∂xi,xj
G(x, y) [u(y) − u(x)] dy + u(x)∂xi

⎛⎜⎝ ˆ

V (x,ε)

∂xj
G(x, y)dy

⎞⎟⎠ ,

which is a wrong application of the differentiation under the 
´

sign theorem. The reason why it is 
wrong is that, if the limit when ε → 0 is to be taken, then one has to take into account the dependency 
of the volume of integration on D \ V (x, ε) on the variable x and use Reynold’s transport theorem to 
compute the derivative and add some boundary integral terms. The correct splitting would be:

∂xi

ˆ

D

∂xj
G(x, y)u(y)dy =

ˆ

D\V (x,ε)

∂xi,xj
G(x, y)u(y)dy −

ˆ

∂V (x,ε)

∂xj
G(x, y)u(y)ν(y) · eidσ(y)

+
ˆ

V (x,ε)

∂xi,xj
G(x, y) [u(y) − u(x)] dy +

ˆ

∂V (x,ε)

∂xj
G(x, y) [u(y) − u(x)]ν(y) · eidσ(y)

+ ∂xi
u(x)

ˆ

V (x,ε)

∂xj
G(x, y)dy + u(x)

⎛⎜⎝ ˆ

∂V (x,ε)

∂xj
G(x, y)ν(y) · eidσ(y) + 1

d
+

ˆ

V (x,ε)

∂xi,xj
G(x, y)dy

⎞⎟⎠ .

In the limit ε → 0, the extra terms compensate each other and the first (wrong) splitting gives the 
same (correct) result as the second one.
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