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Abstract. This paper is concerned with the scattering resonances of open cavities. It is a follow-up of Ammari et al.
(ZAMP 71:102, 2020), where the transverse magnetic polarization was assumed. In that case, using the method of matched
asymptotic expansions, the leading-order term in the shifts of scattering resonances due to the presence of small particles
of arbitrary shapes was derived and the effect of radiation on the perturbations of open cavity modes was characterized.
The derivations were formal. In this paper, we consider the transverse electric polarization and prove a small-volume
formula for the shifts in the scattering resonances of a radiating dielectric cavity perturbed by small particles. We show a
strong enhancement in the frequency shift in the case of subwavelength particles with dipole resonances. We also consider
exceptional scattering resonances and perform small-volume asymptotic analysis near them. A significant observation is the
large-amplitude splitting of exceptional scattering resonances induced by small particles. Our method in this paper relies
on pole-pencil decompositions of volume integral operators.
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1. Introduction

In this paper, which is a follow-up of [1], we consider dielectric radiating cavities [13,15,25] and rigorously
obtain asymptotic formulas for the shifts in the scattering resonances that are due to a small particle of
arbitrary shape. Our formula shows that the perturbations of the scattering resonances are proportional
to the polarization tensor of the small particle. Therefore, the shift of the scattering frequencies induced by
the small particle is of the order of the particle’s volume. When the particle is excited near its resonant
frequencies, its polarization tensor blows up and consequently, as shown in this paper, an anomalous
shift of the scattering resonances can be observed when the resonant particle is coupled to the cavity
modes. We also consider the case where the scattering resonances are exceptional. Exceptional scattering
resonances can be defined as the poles of the Green’s function associated with the radiating cavity which
are not simple [2,3,12,20]. They owe their existence to the non-Hermitian character of the scattering
resonance problem [12,20]. Optical cavities that operate at exceptional scattering frequencies can be
exploited for enhanced nanoparticle sensing [16,21]. In this paper, we prove that a small particle inside
a cavity perturbs the system from its exceptional points, leading to frequency splitting. Moreover, the
splitting induced by the particle is of a much larger amplitude than suggested by the particle’s volume. In
fact, we consider exceptional points of order two and derive a formula for the splitting of such resonances
induced by a small particle. We prove that the strength of the splitting of the exceptional scattering
frequencies is proportional to the square root of the volume of the particle.
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Our method for proving various formulas that describe the shifts in the scattering resonances due
to small particles is based on pole-pencil decompositions (see, for instance, [5,7]) of the volume integral
operator associated with the radiating dielectric cavity problem.

The new technique introduced in this paper cannot be easily extended to the transverse magnetic case
considered in [1] due to the hyper-singular character of the associated volume-integral operator.

The paper is organized as follows. In Sect. 2, we characterize the scattering resonances of dielectric
cavities in terms of the spectrum of a volume integral operator. In Sect. 3, using the method of pole-pencil
decompositions, we derive the leading-order term in the shifts of scattering resonances of an open dielectric
cavity due to the presence of internal particles. In Sect. 4, using a Lippmann–Schwinger representation
formula for the Green’s function associated with the open cavity, we generalize the formula obtained in
Sect. 3 to the case of external particles. In Sect. 5, we consider the perturbation of an open dielectric
cavity by subwavelength resonant particles. The formula obtained for the shifting of the frequencies shows
a strong enhancement in the frequency shift in the case of subwavelength resonant particles. In Sect. 6,
we perform an asymptotic analysis for the shift of exceptional scattering resonances. The paper ends with
some concluding remarks.

2. Scattering resonances of a dielectric cavity

2.1. Model

We consider the scattering of linearly polarized light by a dielectric cavity in a time-harmonic regime.
Let Ω be a bounded domain in R

d for d = 2, 3, with smooth boundary ∂Ω. Assume ε ≡ τεc + εm inside
Ω and ε = εm outside Ω, and μ = μm everywhere. Here, εc, εm, and τ are positive constants. Since we
are interested in scattering resonances, we look for solutions u of the homogeneous Helmholtz equation
at complex frequency ω: {

Δu + ω2ε(x)μmu = 0 in R
d,

u satisfies the outgoing radiation condition.
(1)

It is known that the above scattering problem attains a unique solution for ω with �ω ≥ 0. Using
analytic continuation, the solution also exists and is unique for all complex ω except for a countable
number of points, which are the scattering resonances (see, for instance, [19]).

Let Γm be the outgoing fundamental solution of Δ + εmμmω2 in free space. We define the following
integral operator:

Definition 2.1. Let

L2(Ω) −→L2(Ω)

u �−→Kω
Ω[u] := −

∫
Ω

u(y)Γm( · − y;ω)dy.

The following Lippmann–Schwinger representation formula holds:

Proposition 2.2. u is a solution of (1) if and only if the restriction of u on Ω is a solution of(
I − ω2τεcμmKω

Ω

)
[u] = 0, (2)

where I is the identity operator.

According to [12], the following spectral decomposition of the operator Kω
Ω holds:
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Lemma 2.3. For ω ∈ C, the operator Kω
Ω is bounded from L2(Ω) into H2(Ω). Moreover, it is a Hilbert–

Schmidt operator. Therefore, its spectrum is

σ(Kω
Ω) = {0, λ1(ω), λ2(ω), . . . , λj(ω), . . .} ,

where |λj(ω)| → 0 as j → +∞ and {0} = σ(Kω
Ω) \ σp(Kω

Ω) with σp(Kω
Ω) being the point spectrum.

Let Hj be the generalized eigenspace associated with λj(ω). Then, again from [12], it follows that
L2(Ω) is the closure of

⋃
j Hj .

Lemma 2.4. We have

L2(Ω) =
⋃
j

Hj .

Moreover, if we assume that for any j, dim Hj = 1, and denote by ej a unitary basis vector for Hj, then
the functions

fj,k(x, y) = ej(x)ek(y),

form a normal basis for L2(Ω × Ω) and the following completeness relation holds:

δ(x − y) =
∑

j

ej(x)ej(y).

Remark 2.5. Note that �λj(ω) 	= 0 for all j and ω ∈ R because of the Rellich lemma.

Since Kω
Ω is a holomorphic family of compact operators for ω ∈ C and

(
I − ω2τεcμmKω

Ω

)−1 exists for
ω ∈ R, then by the Fredholm analytic theory,

(
I − ω2τεcμmKω

Ω

)−1 is a meromorphic family of operators
for ω ∈ C.

Definition 2.6. In view of Lemmas 2.3 and 2.4, we say that ω0 is a scattering resonance for the open
cavity problem if there exists a j0 such that

1 − ω2
0τεcμmλj0(ω0) = 0. (3)

We say that the scattering resonance ω0 is a non-exceptional scattering resonance if the following as-
sumptions hold:

(i) We have

1 − ω2τεcμmλj0(ω) = R(ω)(ω − ω0),

where R(ω0) 	= 0 and ω �→ R(ω) is holomorphic;
(ii) The generalized eigenspace Hj0(ω) is of dimension 1.

Remark 2.7. Note that the assumption ε > εm in Ω is to insure that the imaginary parts of the scattering
resonances converge to zero as τ goes to infinity (see, for instance, [23]) and therefore, shifts due to the
presence of small particles are measurable.

2.2. Pole pencil decomposition of the Green’s function

We denote by G(x, y;ω) the Green’s function associated with problem (1), that is, the solution in the
sense of distributions of (

Δx + ω2ε(x)μm

)
G(x, y, ω) = δy,

satisfying the outgoing radiation condition.
We can give the following expansion for G when ω is close to a non-exceptional scattering resonance.

We refer to “Appendix A” for its proof.
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Proposition 2.8. Assume that ω0 is a non-exceptional scattering resonance. There exists a complex neigh-
borhood V (ω0) of ω0 such that for ω in V (ω0) \ {ω0},

G(x, y;ω) = Γm(x − y;ω) + cj0(ω0)
ej0(x;ω)ej0(y;ω)

ω − ω0
+ R̃(x, y;ω), (4)

where vect(ej0) = Hj0 . Moreover, ω �→ R̃(x, y;ω), ω �→ ej0( ·, ω), and ω �→ cj0(ω) are all holomorphic in
V (ω0), and (x, y) �→ R̃(x, y;ω) is smooth.

3. Shift of the scattering resonances by internal small particles

Now let D � Ω be a small particle of the form D = z + δB, where δ is the characteristic size of D, z is its
location, and B is a smooth bounded domain containing the origin. We suppose that D has a material
parameter μc that is different from μm, and consider the operator

∇ · 1
μ

∇ + εω2,

where μ = μc in D and μ = μm outside D.
As δ → 0, we seek an ωδ in a neighborhood of ω0 such that there exists a non-trivial solution to

(∇ · 1
μ

∇ + εω2
δ )u = 0, (5)

subject to the outgoing radiation condition.
The following asymptotic expansion of ωδ holds.

Proposition 3.1. Assume that ω0 is a non-exceptional scattering resonance. Then, as δ → 0, we have

ωδ − ω0 � δdcj0(ω0)M(μm/μc, B)∇ej0(z;ω0) · ∇ej0(z;ω0), (6)

where M is the polarization tensor given by

M(μm/μc, B) = (
μm

μc
− 1)

∫
∂B

∂v(1)

∂ν

∣∣
−(ξ)ξ dσ(ξ), (7)

with v(1) being such that ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δξv
(1) = 0 in R

d \ B̄,

Δξv
(1) = 0 in B,

v(1)|+ = v(1)|− on ∂B,

∂v(1)

∂ν
|+ = (μm/μc)

∂v(1)

∂ν
|− on ∂B,

v(1)(ξ) ∼ ξ as |ξ| → +∞.

(8)

Before proving the above result, we state the following useful lemma. We refer to “Appendix B” for
its proof.

Lemma 3.2. Let

Tω
D : v �→ ∇x

∫
D

v(y) · ∇G(x − y;ω)dy.

Then, Tω
D is a well-defined operator from L2(D) into itself.
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Proof (of Proposition 3.1). The outgoing solution to problem (5) admits the following Lippmann–Schwin-
ger representation formula:

u(x) = (
μm

μc
− 1)

∫
D

∇u(y) · ∇G(x, y;ωδ)dy for all x ∈ R
d. (9)

�

From, for instance [9, Appendix B], the operator Tω
D is well defined. Therefore, we seek ωδ such that

there is a non-trivial v ∈ L2(D)d satisfying

v(x) − (1/μc − 1/μm)Tωδ

D [v](x) = 0 for all x ∈ D,

or equivalently, (
I − (

μm

μc
− 1)Tωδ

D

)
[v] = 0 (10)

Hence, as the characteristic size δ of D goes to zero, we seek ωδ in a neighborhood of ω0 such that
1/((μm/μc) − 1) is an eigenvalue of Tωδ

D .
From the pole-pencil decomposition (4) of G, we have

∇
∫
D

v · ∇G = ∇
∫
D

v · ∇Γm +
cj0(ω)
ω − ω0

( ∫
D

v · ∇ej0 dy
)∇ej0(x;ω) + R[v],

where R : L2(D)d → L2(D)d is an operator with smooth kernel that is holomorphic in ω ∈ V (ω0). Let

Nω
D : v ∈ L2(D)d �→ ∇x

∫
D

v(y) · ∇Γm(x − y;ω)dy ∈ L2(D)d.

Then, it follows that

1
μm

μc
− 1

(
I − (

μm

μc
− 1)Tω

D

)
[v] =

(
I

μm

μc
− 1

− Nω
D

)
[v]

− cj0(ω)
ω − ω0

(v,∇ej0)∇ej0−R[v],

where ( ·, · ) denotes the L2 real scalar product on D.
Let

L = 1/((μm/μc) − 1)I − N0
D, (11)

where N0
D := Nω=0

D . Then, (10) can be rewritten as:

L[v] − cj0(ω)
ω − ω0

(v,∇ej0)∇ej0 + R̃[v] = 0,

where R̃ : L2(D)d → L2(D)d is an operator with smooth kernel that is holomorphic in ω ∈ V (ω0).
Now, we make use of the orthogonal decomposition of L2(D) and the spectral analysis of N0

D on L2(D)
that can be found in [17,18]. More precisely, recall that

L2 (D) = ∇H1
0 (D) ⊕ H(div 0,D) ⊕ W,

where H1
0 (D) is the set of H1-functions in D with trace zero on ∂D, H(div 0,D) is the space of divergence

free L2-vector fields and W is the space of gradients of harmonic H1 functions. Here, H1 is the set of
functions in L2 having their weak derivatives in L2. We will use the following lemma proved in [9]:
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Lemma 3.3. The operator N0
D is a bounded self-adjoint map on L2(D) with ∇H1

0 (D), H(div 0,D) and
W as invariant subspaces. On ∇H1

0 (Ω), N0
D[φ] = φ, on H(div 0,D), N0

D[φ] = 0 and on W :

ν · N0
D[φ] =

(
1
2

+ K∗
D

)
[φ · ν] on ∂D,

where ν is the outward normal on ∂D and K∗
D : L2(∂D) → L2(∂D) is the Neumann–Poincaré operator

associated with ∂D. Recall that K∗
D is given for ϕ ∈ L2(∂D) by

K∗
D[ϕ] =

∫
∂D

∂Γ(0)(x, y)
∂ν(x)

ϕ(y) dσ(y),

where Γ(0) is the fundamental solution of the Laplacian in R
d.

Moreover, (1/2)I − N0
D|W : W −→ W is a compact operator and hence, its spectrum is discrete and

the associated eigenfunctions form a basis of W .

We refer the reader to [5] for the properties of the Neumann–Poincaré operator K∗
D.

Therefore, using Lemma 3.3, we have

v − cj0(ω)
ω − ω0

(v,∇ej0)L
−1[∇ej0 ] + L−1R̃[v] = 0.

So, since

||L−1R̃||L(L2(D)d,L2(D)d) = o(1) as δ → 0,

see [7] and [9, Lemma 4.2], the term L−1R̃[v] can be neglected, and the following asymptotic expansion
holds:

ωδ − ω0 � cj0(ω0)(L−1[∇ej0 ],∇ej0).

Moreover, from [9, Proposition 3.1] (see also “Appendix C”), it follows that

(L−1[∇ej0 ],∇ej0) � δdM(μm/μc, B)∇ej0(z;ω0) · ∇ej0(z;ω0), (12)

where M is the polarization tensor given by (7); see [6]. The proof is then complete. �
To conclude this section, it is worth mentioning that in the case where the parameter ε inside the

small particle is different from the background one, an asymptotic formula for the shift of the scattering
resonance can be derived. Say, for instance, that the parameter inside the particle, which we denote by
εD, is different from the background parameter. Then, by extending the representation formula (9) to
this case, we can show that ωδ − ω0 can be approximated by

ωδ − ω0 � δdcj0(ω0)M(μm/μc, B)∇ej0(z;ω0) · ∇ej0(z;ω0) + cj0(ω0)|D|ω2
0(εD − ε)(ej0(z;ω0))2.

4. Shift of the scattering resonances by external small particles

Now consider the case where the particle is outside Ω. The main difference in this case is that the modes
of Kω

Ω are not defined on D, and therefore, we must first write the expansion for G outside of Ω. We start
by recalling the Lippmann–Schwinger equation for v = G − Γm:(

I − ω2τεcμmKω
Ω

)
[v(·, x0)](x) = ω2τεcμmKω

Ω [Γm(·, x0)] (x) for x, x0 ∈ Ω. (13)

Now, using Proposition 2.8 for z and z′ inside Ω, we have

v(z, z′;ω) = cj0(ω)
ej0(z;ω)ej0(z

′;ω)
ω − ω0

+ R̃(z, z′;ω),
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and we can write an expansion for v(x, x0) for x ∈ R
d \ Ω:

v(x, x0) − ω2τεcμmcj0(ω)
ω − ω0

∫
Ω

ej0(z, ω)Γm(z, x)ej0(x0, ω)dz − ω2τεcμmKω
Ω[R̃(·, x0;ω)](x)

= ω2τεcμmKω
Ω [Γm(·, x0)] (x)

for x ∈ R
d, x0 ∈ Ω. The latter equality can be written as:

v(x, x0) =
ω2τεcμmcj0(ω)

ω − ω0

⎛
⎝∫

Ω

ej0(z, ω)Γm(z, x)dz

⎞
⎠ ej0(x0, ω) + R1(x, x0, ω)

for x ∈ R
d, x0 ∈ Ω, where R1 is regular in space and holomorphic in ω. Let

gj0(x;ω) := ω2τεcμm

∫
Ω

ej0(z
′;ω)Γm(z′, x;ω)dz′, x ∈ R

d. (14)

We have

v(x, x0) =
cj0(ω)
ω − ω0

gj0(x;ω)ej0(x0, ω) + R1(x, x0, ω), x ∈ R
d, x0 ∈ Ω. (15)

Now, let x, x0 ∈ R
d. By using the Lippmann–Schwinger equation (13), it follows that

v(x, x0) = ω2τεcμm

∫
Ω

Γm(x, z)v(x0, z) dz

+ω2τεcμm

∫
Ω

Γm(x, z)Γm(x0, z) dz.

We can now use expansion (15) to obtain that

v(x, x0) − ω2τεcμmcj0(ω)
ω − ω0

gj0(x0;ω)

⎛
⎝∫

Ω

ej0(z, ω)Γm(x, z)dz

⎞
⎠ − ω2τεcμmKω

Ω[R1(·, x, ω)](x0)

= ω2τεcμmKω
Ω [Γm(·, x)] (x0), x ∈ R

d, x0 ∈ R
d.

Therefore, we have an expansion for v outside of Ω:

v(x, x0) =
cj0(ω)
ω − ω0

gj0(x;ω)gj0(x0;ω) + R2(x, x0, ω), x ∈ R
d, x0 ∈ R

d.

Analogous to the calculations in the previous section, we have

v − cj0(ω)
ω − ω0

(v,∇gj0)L
−1[∇gj0 ] + L−1R[v] = 0,

for some operator R with smooth kernel that is holomorphic in ω in a neighborhood V (ω0) of ω0.
Therefore, by exactly the same method as in the previous section, the following asymptotic expansion
can be obtained.

Proposition 4.1. Assume that ω0 is a non-exceptional scattering resonance. Then, as δ → 0, we have

ωδ − ω0 � δdcj0(ω0)M(μm/μc, B)∇gj0(z;ω0) · ∇gj0(z;ω0), (16)

where gj0 is defined by (14) and M(μm/μc, B) is given by (7).
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5. Shift of the scattering resonances due to resonant particles

Let D � Ω. Suppose that D is such that μc depends on ω, and, for a discrete set of frequencies ω,

problem (8) (or equivalently the operator
( μm + μc(ω)
2(μm − μc(ω))

I − K∗
D

)
) is singular, see [4,10,11]. We call

such frequencies subwavelength resonances. In that case, we have the following scattering resonance
problem: Find ω such that there is a non-trivial solution v to

L(ω)[v] − cj0(ω)
ω − ω0

(v,∇ej0)∇ej0 + R[v] = 0, (17)

where L(ω) is defined by (11). Using, for instance, the Drude model for μc, we have μc(ω) = μm(1−ω2
p/ω2),

where ωp is a given real constant.
It is easy to see that the singular character of (8) is linked to the non-invertibility of L(ω) on W .
Denote by P1 : L2(D) −→ L2(D) the orthogonal projector on ∇H1

0 (D) and P2 : L2(D) −→ L2(D)
the orthogonal projector on H(div 0,D). Using Lemma 3.3, we can write the resolvent operator L−1(ω)
as follows:

L(ω)−1 =
1

1 − λ(ω)
P1 +

1
λ(ω)

P2 +
∑

j

(·, ϕj)ϕj

λ(ω) − λj
,

where (λj , ϕj)j are the pairs of eigenvalues and associated orthonormal eigenfunctions of N0
D. We can

then rewrite equation (17) as follows:

v − cj0(ω)
ω − ω0

(v,∇ej0)(∇ej0 , ϕj)ϕj

λ(ω) − λj
+ L−1R[v] = 0.

Now, taking the scalar product on L2(D) with ∇ej0 and multiplying by (ω − ω0)(λ(ω) − λj), we obtain
that

(ω − ω0)(λ(ω) − λj)(v,∇ej0) − cj0(ω0)(v,∇ej0)(∇ej0 , ϕj)2 + (ω − ω0)(λ(ω) − λj)L−1R[v] = 0.

Since R is holomorphic in ω, the remainder (ω − ω0)(λ(ω) − λj)L−1R[v] is negligible in a neighborhood
of ω0. Hence, we arrive at the following proposition:

Proposition 5.1. As δ → 0, we have

(ωδ − ω0)(λ(ωδ) − λj) � cj0(ω0)(∇ej0 , ϕj)2.

Note that if λ(ω) − λj � O(ω − ω0) for ω close to ω0, then we obtain

(ωδ − ω0)2 � cj0(ω0)(∇ej0(·;ω0), ϕj)2.

Hence, we have a significant shift in the scattering resonances if the particle D is resonant near or at
the frequency ω0. In fact, the shift in the scattering resonance is proportional to the square root of the
particle’s volume. This anomalous effect has been observed in [24].

6. Asymptotic analysis near exceptional scattering resonances

In this section, we consider the asymptotic behavior of an exceptional scattering resonance for a particular
form of the Green’s function. These exceptional resonances are due to the non-Hermitian character of the
operator Tω

D, see [12,22]. For simplicity and in view of the Jordan-type decomposition of the operator Tω
D

established in [12], we assume that, for ω near ω0, G(x, y;ω) behaves like

G(x, y;ω) = Γm(x, y;ω) + c1(ω)
h(1)(x;ω)h(1)(y;ω)

ω − ω0
+ c2(ω)

h(2)(x;ω)h(2)(y;ω)
(ω − ω0)2

+ R(x, y;ω), (18)
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for two functions h(1) and h(2) in L2(D). Here, the functions ω �→ cj(ω), j = 1, 2 and ω �→ R(x, y;ω) are
all holomorphic in a neighborhood of ω0, and (x, y) �→ R(x, y;ω) is smooth.

In this simple case, where the exceptional scattering resonance is of second order, we characterize the
splitting of the scattering resonance ω0 due to the small particle D, which is assumed for simplicity to
be non-resonant.

Following the same arguments as those in the previous sections, we neglect R in (18) and seek a
non-trivial v such that

L[v] − c1(ω)
(v,∇h(1))
ω − ω0

∇h(1) − c2(ω)
(v,∇h(2))
(ω − ω0)2

∇h(2) = 0,

or equivalently,

v − c1(ω)
(v,∇h(1))
ω − ω0

L−1[∇h(1)] − c2(ω)
(v,∇h(2))
(ω − ω0)2

L−1[∇h(2)] = 0.

By multiplying the above equations by ∇h(1) and ∇h(2), respectively, and integrating by parts over D,
we obtain the following system of equations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
(v,∇h(1))

(
1 − c1(ω)

(L−1[∇h(1)],∇h(1))
ω − ω0

)
= c2(ω)(v,∇h(2))

(L−1[∇h(2)],∇h(1))
(ω − ω0)2

,

(v,∇h(2))

(
1 − c2(ω)

(L−1[∇h(2)],∇h(2))
(ω − ω0)2

)
= c1(ω)(v,∇h(1))

(L−1[∇h(1)],∇h(2))
ω − ω0

.

Therefore, the following result holds.

Proposition 6.1. Assume that the decomposition (18) holds for ω near ω0. Then, the perturbed scattering
resonance problem (due to the particle D) can be approximately reformulated as a search for ω near ω0

such that the matrix

A(ω) :=

⎛
⎜⎜⎝

1 − c1(ω)
(L−1[∇h(1)],∇h(1))

ω − ω0
−c2(ω)

(L−1[∇h(2)],∇h(1))
(ω − ω0)2

c1(ω)
(L−1[∇h(1)],∇h(2))

ω − ω0
1 − c2(ω)

(L−1[∇h(2)],∇h(2))
(ω − ω0)2

⎞
⎟⎟⎠

is singular.

In view of Proposition 6.1, the second-order exceptional scattering frequency is split into two scattering
frequencies which can be computed approximately by finding the values of ω for which the determinant
of the matrix A(ω) is zero. When D is a disk or a sphere, the functions h(j) and the functions cj(ω) for
j = 1, 2, defined in (18), can be computed explicitly for ω near a resonance ω0 (see, for instance, [8]) and
hence, an expression for A(ω) can be obtained. In the general case, it seems difficult to obtain accurate
approximations of the functions h(j) and the functions cj(ω) for j = 1, 2.

Assume that (L−1[∇h(1)],∇h(2)) = 0. Then, the values of ω near ω0 such that the determinant of
A(ω) is zero are determined by

(ω − ω0)2 = cj(ω)(L−1[∇h(j)],∇h(j)),

for j = 1 or 2. Since cj(ω)(L−1[∇h(j)],∇h(j)) = O(|D|) for j = 1, 2, and ω near ω0, it can be easily seen
that the splitting corresponding to j = 2 of ω0 is of order the square root of the volume of the particle.
This is in contrast with (6), where the perturbation induced by the small particle is proportional to its
volume.

It is worth emphasizing that the derivations presented in this section can be generalized to the case
of exceptional points of arbitrary order N . In this case, it is expected that the strength of the splitting
induced by a small particle on an exceptional scattering frequency of order N is proportional to the
volume of the particle to the power 1/N .



80 Page 10 of 13 H. Ammari et al. ZAMP

7. Concluding remarks

In this paper, the leading-order term in the shifts of scattering resonances of a radiating dielectric cavity
due to the presence of small particles is derived. The formula describes the dependency of the frequency
shifts on the position and the polarization tensor of the particle. It is also proved that the shift is
significantly enhanced if the particle is a subwavelength resonant particle which resonates near or at a
scattering resonance of the cavity. A characterization of the splitting of the scattering resonances due to
small particles near an exceptional scattering resonance is performed. It would be challenging to develop
a general theory near such frequencies. This would be the subject of a forthcoming paper.
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A Proof of Proposition 2.8

Proof. Under the assumption that for any j, dim Hj = 1, the proof follows an idea from [12]. Denote by
v the difference

v(x, y) = G(x, y, ω) − Γm(x, y, ω).

One can check that v(·, x0) is a solution of the following integral equation:(
I − ω2τεcμmKω

Ω

)
[v] = ω2τεcμmKω

Ω [Γm(·, x0)] .

Therefore,

v =
(

1
ω2τεcμm

I − Kω
Ω

)−1

Kω
Ω [Γm(·, x0)] .

Under the assumption that ω0 is a non-exceptional scattering resonance (see Definition 2.6) we can
perform a pole pencil decomposition of the resolvent of Kω

Ω. We start from the spectral decomposition
of the compact operator Kω

Ω on L2(Ω). By assumption, the eigenspace associated with the eigenvalue
1

ω2
0τεcμm

is of dimension one. We denote by ej0 its basis. One can then write(
1

ω2τεcμm
− Kω

Ω

)−1

=
1

(ω2τεcμm)−1 − λj0(ω0)
(ej0 , ·)ej0 + R̂(·, ω),

where ( , ) denotes the L2 real scalar product on Ω, and ω �→ R̂(·, ω) ∈ L2(Ω) is holomorphic in a complex
neighborhood V of ω0. Using

1 − ω2τεcμmλj0(ω) = R(ω)(ω − ω0)

and composing with Kω
Ω, we obtain that

v(x, x0) = c̃j0(ω)
1

ω − ω0
(ej0 ,K

ω
Ω [Γm(·, x0)])ej0(x) + R̃(x, x0;ω).

http://creativecommons.org/licenses/by/4.0/
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Now we note that

Γm(x, y) = −Kω
Ω [δ(· − y)] (x) for all x, y ∈ R

d, x 	= y.

Using the completeness relation given in Lemma 2.4 yields

Γm(x, y) = −
∑

j

λj(ω)ej(y)ej(x).

Now, we can write

(ej0 ,K
ω
Ω [Γm(·, x0)]) = −λ2

j0(ω)ej0(x0),

to arrive at

v(x, x0) = cj0(ω)
1

ω − ω0
ej0(x0)ej0(x) + R̃(x, x0;ω).

�

B Proof of Lemma 3.2

Proof. The operator TD is a singular integral operator of the Calderón–Zygmund type, see [14]. This
type of singular operator often arises in electrostatic and magnetostatic theories (see the appendix of
[9] for a simple review of the properties of these operators within the formalism of Green’s functions).
The fact that Tω

D is well defined can be deduced directly from Proposition 2.8. Since G can be written as
G(x, y) = Γm(x, y)+K(x, y) where K is a smooth kernel, we can see that the singularity of the derivatives
of G is the same as that of the derivatives of Γm, that is, ∂xi,xj

G(x, y) = ∂xi,xj
Γm(x, y) + Ki,j(x, y).

Therefore, it is easy to see that the singular part of ∂xi,xj
G(x, y) satisfies the same cancellation property

as ∂xi,xj
Γm(x, y), that is, ∫

x+Sd−1

∂xi,xj
Γm(x, y)dy = 0.

Hence, the fact that TD is defined on L2(D) follows directly from classical Calderón–Zygmund theory
and the cancellation property above. �

C Proof of estimate (12)

Here, we give some more details on how to obtain (12) from the results of [9].

Lemma C.1. As δ → 0, we have

(L−1[∇ej0 ],∇ej0) � δdM(μm/μc, B)∇ej0(z;ω0) · ∇ej0(z;ω0).

Proof. From [9, Proposition 3.1], one can see that if ϕ satisfies⎧⎪⎨
⎪⎩

∇ ·
(

1
μ

∇ϕ

)
= 0 in R

d,

∇ϕ(x) − ∇ej0 = O
(|x|−d+1

)
as |x| → +∞,

then ∇ϕ solves the integral equation(
1

μm
I −

(
1
μc

− 1
μm

)
N0

D

)
[∇ϕ] =

1
μm

∇ej0 ,
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which is exactly

L[ϕ] =
μc

μm − μc
∇ej0 .

Now, replacing ∇ej0 by its average and controlling the reminder via the Cauchy–Schwarz inequality, we
have:

(L−1[∇ej0 ],∇ej0) =(L−1[∇ej0 ],
1

|D|
∫
D

∇ej0) + (L−1[∇ej0 ],∇ej0 − 1
|D|

∫
D

∇ej0)

=
1

|D|
∫
D

L−1[∇ej0 ] ·
∫
D

∇ej0 + O
(
δ2

)
.

But the average of ∇ϕ is exactly the dipole moment, which is given by the polarization tensor applied
to the average of the exciting field:∫

D

L−1[∇ej0 ] = M(μm/μc,D)
∫
D

∇ej0 = δdM(μm/μc, B).

Since 1
|D|

∫
D

∇ej0(x)dx−∇ej0(z) = O(δ) (recall that ej is a mode of the cavity, and is therefore independent

of δ), we can replace the average of ∇ej0 by its value at the center of D to get the result. �
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