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Dispersion curves of elastic waveguides exhibit points where the group velocity vanishes while
the wavenumber remains finite. These are the so-called zero-group-velocity (ZGV) points.
As the elastodynamic energy at these points remains confined close to the source, they are of
practical interest for nondestructive testing and quantitative characterization of structures.
These applications rely on the correct prediction of the ZGV points. In this contribution,
we first model the ZGV resonances in anisotropic plates based on the appearance of an ad-
ditional modal solution. The resulting governing equation is interpreted as a two-parameter
eigenvalue problem. Subsequently, we present three complementary numerical procedures
capable of computing ZGV points in arbitrary nondissipative elastic waveguides in the con-
ventional sense that their axial power flux vanishes. The first method is globally convergent
and guarantees to find all ZGV points but can only be used for small problems. The second
procedure is a very fast, generally-applicable, Newton-type iteration that is locally conver-
gent and requires initial guesses. The third method combines both kinds of approaches and
yields a procedure that is applicable to large problems, does not require initial guesses and
is likely to find all ZGV points. The algorithms are implemented in GEW ZGV computation
(doi: 10.5281/zenodo.7537442).
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I. INTRODUCTION

Thin-walled mechanical structures act as elastody-
namic waveguides1,2. The angular frequency ω of a
guided wave is related to the wavenumber k via a dis-
persion relation ω(k). There exist so-called zero-group-
velocity (ZGV) points (ω∗, k∗) on the dispersion curves
where the group velocity cg = ∂ω

∂k vanishes while the
wavenumber k∗ remains finite3–5. These are of special
practical interest because the waves do not propagate,
and their energy remains close to the source, leading to
long-lasting ringing effects. This enables the accurate
contactless assessment of structural properties such as
the thickness6–9, elastic material parameters9–14, bond-
ing state15,16, properties of a surrounding fluid17 and ef-
fective mechanical behavior, e.g., of nanoporous silicon18.

The use and design of the above-mentioned appli-
cations usually rely on the theoretical prediction of the
ZGV points. It is common practice to extract this infor-
mation from the complete theoretical dispersion curves.
However, this can be a tedious task, in particular, be-
cause several digits of precision are usually required.
More importantly, inverse methods for determining the
sought properties rely on the automatic determination
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of the ZGV points9,10,14. For these reasons, it is desir-
able to develop general and efficient numerical methods
to compute these points, which is the aim of the present
contribution.

Although it is not common to explicitly compute
the ZGV points, several procedures have already been
devised for this end. The most widespread method
is based on the implicit analytical dispersion relation,
which is of the form Ω(ω, k) = 0, by additionally re-
quiring the analytically obtained group velocity ∂ω

∂k =
− ∂Ω

∂k

(
∂Ω
∂ω

)−1 to vanish9,15. Even for the simple case of
an isotropic plate, this leads to relatively cumbersome ex-
pressions that require carefully implemented numerical
methods to avoid numerical instabilities2. Convention-
ally, a gradient-based iterative solution method would be
employed to solve this nonlinear system – which requires
one initial guess for every expected ZGV point. The pro-
cedure has been extended to imperfectly bonded multi-
layered isotropic plates15. However, although feasible,
to the best of our knowledge, it has not been employed
for anisotropic plates, let alone for geometrically more
complicated structures.

Another method to obtain dispersion curves consists
in performing a numerical discretization of the boundary
value problem (BVP) that describes the guided waves
and then solving the resulting eigenvalue problem (EVP).
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Based on this strategy, Kausel19 proposed to start at cut-
off frequencies (k = 0) associated with backward waves20

– which have negative group velocity for k > 0 – and
then follow the branch until the ZGV point is reached.
To find all solutions, the method requires that the ZGV
points are induced by a backward wave starting at k = 0
and that only one ZGV point occurs on each branch.
These assumptions are not generally true. Multiple ZGV
points on one branch have been observed in homogeneous
but anisotropic plates21–23, layered structures24,25 and
fluid-filled pipes26. Moreover, the mentioned references
have also revealed that ZGV points can lie on forward
wave branches emerging at k = 0. We will explain this
behavior in Subsec. II B.

In this contribution, we present three complemen-
tary computational methods to locate ZGV points in
generally anisotropic and possibly transversely inhomo-
geneous waveguides. In principle, the techniques are ap-
plicable to waveguides of generic cross-sections, although
the first procedure is constrained by the problem size.
The current work focuses on homogeneous anisotropic
plates. The methods do not require calculating the full
dispersion curves in advance. The computations are en-
tirely based on the discretized EVP, as this is generally
more robust, very fast and comparably simple to imple-
ment27,28. The first method is a direct and globally con-
vergent method that does not require initial values at the
cost of being computationally very expensive. This is the
first computational technique capable of guaranteeing to
locate all ZGV points as long as the problem is not too
large. The second method is based on an iterative ap-
proach and is very fast but locally convergent; hence, it
requires one initial guess for every expected ZGV point.
The third method first uses a regularized direct approach
to obtain close approximations to ZGV points and then
refines the result with our second, iterative method. This
technique can be applied to rather large problems and is
likely to find all ZGV points. Moreover, it would also
be possible to use the first procedure on a coarse dis-
cretization to obtain initial values that are then refined
with the second one. In this sense, the techniques com-
plement each other.

In the following, we first discuss the modeling of ZGV
resonances and their properties in Sec. II. This includes
a short discussion of the discretization of the continuous
problem, as this will be the starting point for the up-
coming numerical procedures. The direct solution of the
discrete ZGV problem is presented in Sec. III. In con-
trast to this, Sec. IV introduces the mentioned iterative
solution procedure. The third and last method is given in
Sec. V, which combines the strength of a globally conver-
gent method with the speed of the iterative one. Finally,
a conclusion is given in Sec. VI.

II. ZGV RESONANCES IN PLATES

The waveguide is a linearly elastic infinite plate as
depicted in Fig. 1. It is characterized by its thickness h,
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Figure 1. Infinite, elastic, anisotropic plate of thickness h,
density ρ, stiffness tensor c.

mass density ρ and 4th order stiffness tensor c, which we
assume homogeneous in the following.

Displacements ū in the plate in the absence of exter-
nal loads are governed by29,30

∇ · c : ∇ū − ρ∂2
t ū = 0 , and (1a)

ey · c : ∇ū = 0 at y = ±h/2 , (1b)

which represent the equations of motion and the traction-
free boundary conditions (BC), respectively. Note that
the stress tensor T = c : ∇ū has already been elimi-
nated therein. ∇ = ex∂x + ey∂y + ez∂z is the Nabla
operator, ei, i ∈ {x, y, z}, are the unit-directional vectors
and the ∂i denote partial differentiation with respect to
the indicated variable. Each “·”-symbol denotes a con-
traction (scalar product) between adjacent tensor dimen-
sions. Accordingly, the “:”-symbol implies two consecu-
tive contractions. Note also that ey is the unit-directional
vector normal to the plate’s surface that yields the rele-
vant traction ey · T for the BC. For details on symbolic
tensor notation, refer, e.g., to Ref. 29.

A. Guided waves

We are interested in time-harmonic, plane, guided
waves which cause displacements of the form

ū(x, y, t) = u(y, k, ω) eikx−iωt , (2)

where k denotes the wavenumber along the axial coordi-
nate x, ω stands for the angular frequency in time t, and
i =

√
−1. While the dependence on t and x has been

resolved analytically by the ansatz (2), the dependence
on the y-coordinate remains to be determined. This is
achieved by requiring (2) to satisfy (1a) and (1b), i.e.,[

(ik)2cxx + ik(cxy + cyx)∂y + cyy∂2
y + ω2ρI

]︸ ︷︷ ︸
W

·u = 0 ,

(3a)
[ikcyx + cyy∂y]︸ ︷︷ ︸

B

·u = 0

(3b)

which uses the 2nd-order tensors cij = ei·c·ej . For exam-
ple, the components of cxy are cxkly with k, l ∈ {x, y, z}.
For the sake of completeness, the explicit derivation of
the equations is given in Appendix A. The above bound-
ary value problem in the coordinate y will be referred
to as the waveguide problem and is considered to depend
on the two parameters ω and k. For future reference,
we have identified therein the wave operator W and the

2



boundary operator B. One possible computer implemen-
tation of (3) based on the spectral collocation method is
given in Ref. 31.

Solutions of the form (2) are denoted as guided waves
and are well studied in the literature1,2,30. Depending on
c, the displacement components ux and uy might decou-
ple from uz. Waves polarized purely in the former plane
are denoted as Lamb waves, while those in the latter po-
larization are termed shear-horizontal (SH) waves. Note
that the waveguide problem formulated in (3) is equally
valid for all of these polarizations when considering the
corresponding 3-, 2- or 1-component tensors, respectively.
For example, Lamb waves – being polarized in x-y – are
obtained by removing the z-component of all tensors. In
any case, the solutions (ω, k) form curves ω(k) denoted
as dispersion curves. An example for Lamb waves in an
isotropic steel plate (Lamé parameters1 λ = 115.6 GPa,
µ = 79 GPa, mass density ρ = 7900 kg/m3) is shown
in Fig. 2a. Another important physical property of the
waves is their group velocity cg

def= ∂ω
∂k , which is depicted

in Fig. 2b for the same plate. Physically, cg(ω) describes
the propagation speed of a pulse whose spectrum is cen-
tered at ω.

B. Properties of ZGV resonances

We are interested in the ZGV points (ω∗, k∗) where
the group velocity cg vanishes but k∗ remains finite. Two
such points appear in Fig. 2 and are marked correspond-
ingly. In addition, the group velocity usually also van-
ishes at the cutoff frequencies, i.e., the thickness reso-
nances where k = 0, except when multiple cut-off fre-
quencies coincide19. This means that the points at k = 0
are usually local extrema of a dispersion curve, and so
are the ZGV points. Note that the latter can also be
interpreted as local resonances4,5. Both the thickness
resonances and the ZGV resonances lead to long-lasting
local vibrations that manifest as peaks in the spectrum
of the particle velocity measured at the excitation point.

The parity of the number of ZGV points encoun-
tered on a single branch is directly related to whether
this branch emerges at k = 0 as a forward or a backward
wave. When an even (odd) number of ZGV points lie
on one branch, they will be located on a forward (back-
ward) wave branch emerging at k = 0 (inspect Fig. 3
as an example). This is due to the fact that for large
wavenumbers (k → ∞), the group velocity is positive,
i.e., cg = ∂ω

∂k > 0. Indeed, for sufficiently small wave-
lengths 2π

k , the system resembles an infinite domain with-
out dispersion. In other words, above a certain value of
k, the curves ω(k) increase monotonically. Accordingly,
the last ZGV point on a branch (counted in increasing

1 The isotropic 4th-order stiffness tensor is c = λII + µ(II1342 +
II1324). The super-indices describe a permutation applied to
the tensor II, i.e., the original dimensions 1234 are re-ordered as
described.

k) always corresponds to a minimum in ω(k). All other
ZGV points are alternately a maximum and a minimum.

At points where the group velocity vanishes, the
plate admits an additional solution. This has been
discussed by Mindlin32 for the case of thickness reso-
nances. His observation was extended to ZGV points in
isotropic and homogeneous plates by Tassoulas and Aky-
las3, who denoted the additional solution as exceptional
mode. Later, Kausel19 showed the existence of these ad-
ditional solutions in layered isotropic plates with vari-
ous boundary conditions. The appearance of the excep-
tional mode implies that these points are double eigen-
value points, i.e., two solutions with the same frequency
and wavenumber exist. This is in agreement with the
fact that the ZGV points are branching points where two
connected real-valued branches for ω > ω∗ transition into
two complex-valued branches for ω < ω∗ (not shown in
Fig. 2)1.

A further property of ZGV points is that these waves
do not propagate energy. For lossless waveguides, the
group velocity is equivalent to the energy velocity, de-
fined as the ratio of the wave’s power flux vector and
its total stored energy1,29. Hence, their power flux van-
ishes. In anisotropic plates, the group velocity vector
cg = ∂ω/∂k ex + cgzez does not need to be collinear to
the wave vector k = kex, i.e., the component cgz might
be non-zero1,20,29. However, if the material is invariant
to reflection along ez, then cgz needs to vanish, and cg
will be aligned with k, i.e., it is sufficient to consider
the x-component of cg. Note that this is the case when
Lamb and SH polarized waves decouple (see details in
Appendix B), as will be the case for all examples pre-
sented in this contribution. Hence, we find “true ZGV
points” in the sense that the power flux vanishes in all
directions. Note that all our methods still work when the
polarizations do not decouple. That is to say, points with
vanishing power flux in direction ex are correctly found.

Although non-essential to our developments, in the
following, we also discuss the normalizability of ZGV res-
onances for the sake of completeness. As guided waves
are usually normalized to unit power flux, this implies
that ZGV waves are not normalizable in the usual sense.
While a renormalization has successfully been performed
for cut-off frequencies33, this has not been achieved for
the ZGV points. On the one hand, this property leads to
computational difficulties, e.g., it is not possible to per-
form a perturbation-based sensitivity analysis1,30,34. On
the other hand, it is precisely this property that makes
the waves interesting for practical measurements because
the wave’s energy remains close to the source.

C. Modeling ZGV resonances

While the dispersion curves can be obtained by
prescribing values either for the frequencies or for the
wavenumbers and then computing the other one, this
is not possible for the ZGV points. The reason is that
they are isolated points on the dispersion curves. This
means that we need to determine both their angular fre-
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Figure 2. Lamb wave dispersion curves of an isotropic steel plate showing the frequency-dependent (a) wavenumbers k and (b)
group velocities cg. Excerpts from the dashed regions are also displayed for clarification. Only the real spectrum is shown, for
which cg is well defined. The ZGV points are marked.

quency ω∗ and their wavenumber k∗ simultaneously. To
this end, an additional equation is required that comple-
ments (3).

As such a condition, we demand the appearance of an
exceptional mode, as discussed in the previous subsection.
Adapting slightly from Ref. 3, this solution has the form

ū(x, y, t) = [u′(y, k, ω) + x u(y, k, ω)] eikx−iωt , (4)

where u(y, k, ω) must satisfy the waveguide problem and
the dash (′) denotes the derivative with respect to ik.
Although the imaginary unit in the derivative is not re-
quired, it does lead to simpler expressions.

The equations governing exceptional modes are
known for isotropic plates3. We derive the equations for
the anisotropic case by inserting (4) into (1). While the
details can be found in Appendix C, the procedure is
outlined in the following. Rearranging yields

xW · u + W · u′ + W′ · u = 0 , (5)

where W(k, ω) is the waveguide operator given in (3a)
and

W′(k) = 2ikcxx + (cxy + cyx)∂y . (6)
As u was required to be a waveguide solution, it satisfies
W · u = 0, and we may restate the problem as

PDE:
[

W 0
W′ W

]
·

[
u
u′

]
=
[

0
0

]
, (7a)

BC:
[

B 0
B′ B

]
·

[
u
u′

]
=
[

0
0

]
, (7b)

where the boundary condition (7b) has been obtained
in a similar fashion. Therein, B(k) is given in (3b) and
B′ = cyx.

It is important to note that the second equation in
the systems (7a) and (7b) could have been obtained by

differentiating the waveguide problem (3) with respect
to ik and setting cg = ∂ω/∂k = 0. This demonstrates
that a wave field of the form (4) emerges precisely at the
points where the group velocity vanishes.

We seek eigensolutions where (3) and (7) are simul-
taneously satisfied. The combination of these two equa-
tions may be denoted as the ZGV problem. We inter-
pret it as a differential two-parameter eigenvalue problem
(two-parameter EVP)35–38 that describes the sought iso-
lated points on the dispersion curves. Note that although
(3) is included in (7), we still require a system of both
equations as (3) guarantees that u ̸= 0. In the following,
we introduce a discrete approximation, and subsequently,
we present a numerical method to solve the resulting al-
gebraic two-parameter EVP.

D. Discretization

In order to actually solve for the ZGV points, we
perform a numerical discretization of the previously dis-
cussed boundary-value problems. This converts the
waveguide problem (3) into an algebraic EVP in terms
of the vector2 of unknowns u that might be written as

W (k, ω)u = 0 , (8)

where the parameterized n×n-matrix W defines the dis-
crete waveguide operator and is given by

W (k, ω) = (ik)2L2 + ikL1 + L0 + ω2M , (9)

with real matrices Li, M . Therein, the boundary con-
ditions are already accounted for by the matrices. Simi-

2 Note that we switch from describing physical tensor fields to a
more abstract finite-dimensional vector space. Correspondingly,
we also switch from tensor notation (bold) to matrix/vector no-
tation (uppercase/lowercase, respectively).
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larly, the discretization of (6) leads to

W ′(k) = 2ikL2 + L1 . (10)

The matrices W and W ′ also define the discrete analogue
of the exceptional mode equation (7), namely,[

W 0
W ′ W

][
u

u′

]
=
[

0
0

]
, (11)

in terms of the unknown eigenvector [u⊤, u′⊤]⊤. The
boundary conditions are, again, already accounted for
by the matrices.

Various numerical discretization methods can be
used to obtain the above linear systems. Two popular
methods are finite elements27,28,39,40 and spectral collo-
cation23,30,31,41. The spectral element method, i.e., high-
order finite elements39,42,43, is used in this contribution
as it produces matrices of small size n × n and leads to
L2 and M being nonsingular. These properties are highly
advantageous – in some cases even necessary – in order
to successfully use the computational methods presented
in the following. The small matrix size is required for the
direct solution method because it blows up the matrices’
dimensions to 4n2×4n2. A further advantage of the spec-
tral element method is that it preserves the symmetry of
the continuous operators, resulting in Hermitian matri-
ces W and iW ′ when k is real-valued, i.e., the matrices
Li are alternately symmetric/anti-symmetric and M is
symmetric positive definite. As a consequence, solving
for the eigenpair (ω2, u) of a guided wave at a given real-
valued k is a Hermitian problem and the complex conju-
gate and transpose uH is known to be the left eigenvector
corresponding to u, i.e., uHW = 0. This avoids the ex-
plicit computation of the left eigenvectors, which will be
exploited when computing group velocities and also to
design an extremely fast locally convergent method in
Sec. IV.

For future reference, we also discuss how to compute
the group velocity cg. It is well known that it can directly
be computed from the discrete system (8)28,40. To this
end, we differentiate the equation with respect to ik and
obtain

[2ikL2 + L1 + 2ωω′M ]u + Wu′ = 0 . (12)

Exploiting that uH is the left eigenvector as discussed
above, the unknown u′ can be eliminated by multiplying
the expression from the left by uH. After re-arranging,
this yields the group velocity (x-component) as

cg = iω′ = −uHi(2ikL2 + L1)u
2ω uHMu

. (13)

Accordingly, at ZGV points, the condition

uHiW ′u = uHi(2ikL2 + L1)u = 0 (14)

holds.

III. DIRECT SOLUTION OF THE TWO-PARAMETER
EIGENVALUE PROBLEM

As discussed in Sec. II C, ZGV resonances are mod-
eled by two coupled EVPs parametrized in ω and k that
need to be satisfied simultaneously, namely the guided
wave problem and the exceptional mode problem. The
discrete form of this so-called two-parameter EVP was
given in Sec. II D. Here, we present a direct numerical
solution procedure.

Explicitly writing out the exceptional mode equation
(11) in terms of the matrices Li, M and grouping accord-
ing to the dependence on ik and ω2 yields[

(ik)2L̃2 + ikL̃1 + L̃0 + ω2M̃
]

ũ = 0 , (15)

with 2n × 2n matrices and vectors

L̃2 =
[

L2 0
0 L2

]
, L̃1 =

[
L1 0
2L2 L1

]
, L̃0 =

[
L0 0
L1 L0

]
,

M̃ =
[

M 0
0 M

]
, ũ =

[
u

u′

]
.

At first sight, demanding the appearance of an excep-
tional mode by requiring (15) to be satisfied seems more
complicated than the ZGV condition (14). However,
while (14) is nonlinear in u, (15) is linear in the new
unknown ũ. This advantage is exploited in the follow-
ing to design a direct, globally convergent computational
method to locate the ZGV points.

Overall, equations (8) and (15) form the two-
parameter EVP describing ZGV resonances, and we note
that it is quadratic in ik. Following Ref. 44 we introduce
λ = ik, µ = ω2, η = (ik)2 and write (8) and (15) as a
linear three-parameter EVP (see also Appendix D)

(ηL2 + λL1 + L0 + µM)u = 0 (16a)
(ηL̃2 + λL̃1 + L̃0 + µM̃)v = 0 (16b)
(ηC2 + λC1 + C0 )w = 0, (16c)

where

C2 =
[

1 0
0 0

]
, C1 =

[
0 −1

−1 0

]
, C0 =

[
0 0
0 1

]
.

Note that equation (16c) incorporates the relation be-
tween λ and η since det(ηC2 + λC1 + C0) = η − λ2. We
remark that it would also have been possible to linearize
via companion linearization45, which would have doubled
the problem size. In contrast to this, the above approach
only increases the problem size by two at the expense of
introducing an additional parameter.

The three-parameter EVP is related to a system
of conventional generalized eigenvalue problems (GEPs)
that decouple in the eigenvalues but remain coupled
through their common eigenvector36. These GEPs are

∆1z = λ∆0z, ∆M z = µ∆0z, ∆2z = η∆0z, (17)
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where the new eigenvector z is given by the Kronecker
product z = u ⊗ v ⊗ w and the 4n2 × 4n2 matrices

∆0 =

∣∣∣∣∣∣∣
L2 L1 M

L̃2 L̃1 M̃

C2 C1 0

∣∣∣∣∣∣∣
⊗

, ∆1 = (−1)

∣∣∣∣∣∣∣
L2 L0 M

L̃2 L̃0 M̃

C2 C0 0

∣∣∣∣∣∣∣
⊗

(18)

are the so-called operator determinants computed using
the Kronecker product. 3 ∆2, ∆M are defined in a simi-
lar way but are not needed in the following. The three-
parameter EVP (16) is singular which means that all
GEPs in (17) are singular, i.e., det(∆1 − λ∆0) ≡ 0, but
the problem has a finite number of eigenvalues.

In Theorem E.1, we show that if (ω∗, k∗) is a ZGV
point, then λ∗ = ik∗ is an eigenvalue of the first GEP
in (17). We can thus compute the wavenumbers k∗ at
the ZGV points by solving the GEP ∆1z = λ∆0z for
k = −iλ. These values are subsequently substituted into
(8) to retrieve a set of corresponding angular frequencies
ω, which, in addition, require to satisfy Eq. (14) for the
solution to represent a ZGV point. To find the finite
eigenvalues of the singular GEP, we apply the rank pro-
jection algorithm described in Ref. 46 and implemented
in MultiParEig47. In addition to ZGV points, the three-
parameter EVP has additional eigenvalues. To extract
ZGV points, we select solutions where λ = ik is strictly
imaginary, µ = ω2 is real, and (14) holds. The algorithm
is the following.

Algorithm 1: direct method for ZGV points
Input: n × n matrices L2, L1, L0, M

Output: ZGV points (ω∗, k∗)

1: build matrices ∆0 and ∆1 in (18)
2: solve the singular GEP ∆1z = λ∆0z

3: for each imaginary ikj = λj , j = 1, . . . , r

4: solve
[
(ikj)2L2 + (ikj)L1 + L0 + ω2M

]
u = 0

5: for each ωℓ, ℓ = 1, . . . , n

6: return (ωℓ, kj) if (14) holds

To demonstrate the reliability of the developed method,
we compute the ZGV points of antisymmetric Lamb
waves in an austenitic steel plate. The orthotropic stiff-
ness tensor is given in Appendix F. Figure 3 shows the re-
sulting wavenumber and group velocity dispersion curves.
All 18 ZGV points were obtained and are marked therein.
The used matrices Li, M were of size 39 × 39 (as will be
for all other computations involving this example), lead-
ing to matrices ∆i of size 6084×6084. The computational

3 The Kronecker product A ⊗ B of the m × n-matrix A = [Aij ]
with the p × q-matrix B yields the block matrix [AijB] of size
mp × nq. For three matrices, A ⊗ B ⊗ C = (A ⊗ B) ⊗ C =
A ⊗ (B ⊗ C). Vectors are treated like matrices with one col-
umn. The operator determinants are computed analogously to
determinants of matrices applying the Kronecker product in-
stead of multiplication of scalar matrix entries. For example,
∆0 = L1 ⊗M̃ ⊗C2 +M ⊗ L̃2 ⊗C1 −M ⊗ L̃1 ⊗C2 −L2 ⊗M̃ ⊗C1.

time was 381 s (Intel Core i9, 16 GB RAM, as for all up-
coming numerical experiments). Note that the method is
able to reliably locate all ZGV points, including double
and triple ZGV points on a single branch. It is remark-
able that no initial values are required in doing so. This is
a strong advantage over other computational techniques.

Nonetheless, its high computational cost is an im-
portant drawback of the presented direct method. While
the original waveguide problem is of size n × n, the ZGV
calculation requires to additionally solve a singular GEP
of size 4n2×4n2. This becomes unfeasible very quickly as
all current numerical solvers for singular GEPs are direct
methods in the sense that they compute all eigenvalues
of a GEP at once. As a result, in practice, we can only
apply the above method to single-layered plates. For this
reason, we present in the following a rapidly converging
iterative method formulated in a very general way and
applicable to large problems.

IV. FAST LOCALLY CONVERGENT NEWTON-TYPE
ITERATION

A different approach is taken in the following. In
terms of the n + 2 unknowns

p =

 u

k

ω2

 ,

we can define a (n + 2) × (n + 2) nonlinear system of the
form F (p) = 0 that describes the ZGV points. We write
out F (p) using (8) and (14), which yields

Wu =
[
k2(−L2) + k(iL1) + L0 + ω2M

]
u = 0 , (19a)

uHiW ′u = uH [k(−2L2) + iL1] u = 0 , (19b)
uHu − 1 = 0 . (19c)

This represents a so-called two-dimensional EVP48. Con-
trary to (16), it consists only of one EVP with an addi-
tional scalar nonlinear constraint. The goal is to find a
root p∗ of (19) given an initial guess p0. To solve for
p∗, we cannot apply the Newton method directly since
u is, in general, a complex vector and (19b) and (19c)
are not complex differentiable in u due to the presence of
conjugate values.

To overcome the problem of complex differentiability,
we employ a Newton-type iteration from Ref. 48 derived
for a very similar problem. The idea is to use

J(p) =

 W iW ′u Mu

2uHiW ′ −uH2L2u 0
2uH 0 0

 (20)

as a natural complex extension of the Jacobian with re-
spect to p of (19). This exploits the fact that both W and
iW ′ are Hermitian. As proposed in Ref. 48, we obtain
the update ∆pj for pj+1 = pj + ∆pj as

∆pj = − J(pj)−1F (pj)︸ ︷︷ ︸
qj

+iβj J(pj)−1en+1︸ ︷︷ ︸
sj

, (21)
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Figure 3. Antisymmetric Lamb waves in an austenitic steel plate: (a) wavenumbers k, (b) group velocities cg.

where en+1 is the canonical unit vector, i.e., en+1 is an
(n + 2)-dimensional vector whose (n + 1)th component
equals 1, and all other components are equal to 0. Fur-
thermore, we take βj = Im(qj,n+1)/ Re(sj,n+1). The cor-
rection βj ensures that kj+1 remains real (we assume that
kj and ω2

j are real).
If we do not have an initial approximation for u, usu-

ally a good choice is to take the right singular vector cor-
responding to the smallest singular value of W (k0, ω0).
We observe that in practice, this choice of u0 leads to
almost zero βj . While in this case, the β-correction is
not necessary, it is important for the convergence of the
algorithm with other choices of u0.

One way to find all ZGV points of Fig. 3 using the
Newton-type method is to explicitly compute the group-
velocity dispersion curves cg(ω), locate the changes in
sign of cg(ω) and use the corresponding values of ω and
k as initial guesses for our algorithm. This requires com-
puting the dispersion curves with a sufficiently fine res-
olution in the prescribed k-values, such that at least
one sample (k-value) is on each of the backward-wave
branches. Otherwise, ZGV points will be missed. Using
400 wavenumber points and applying this approach to
the austenitic steel plate leads to Fig. 3 in 0.62 s. The
time to compute the required dispersion curves and group
velocity is included therein.

Only if the initial guess is close enough to the de-
sired ZGV point will the algorithm converge correctly.
The regions of convergence for the anti-symmetric Lamb
waves in the austenitic steel plate are displayed in Fig. 4.
Therein, each pixel defines an initial guess (ω0, k0), while
u0 is always taken as the right singular vector as de-
scribed above. If the algorithm converged to any of the
predefined ZGV points marked in the figure, the pixel
is classified according to which ZGV point it converged
to. This gives the colored regions of convergence in the
figure, where gray indicates convergence to a cut-off fre-
quency. White pixels correspond to starting values that
did not converge to any of the ZGV points or cut-off
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Figure 4. Regions of convergence: initial guesses ω0 = 2πf0

and k0 that are close enough to a ZGV point converge cor-
rectly. Each colored pixel indicates convergence of that initial
guess towards a corresponding ZGV point (gray pixels to cut-
off frequencies).

frequencies. We observe large regions of convergence, al-
lowing us to reliably use the algorithm even with rather
poor initial guesses for ω and k. Critical are the situa-
tions where multiple ZGV points are very close or when
they are close to the cutoff.

Our choice of the generalized Jacobian given in (20)
together with the β-correction leads to a significantly
faster algorithm. Instead, in order to avoid the problem
of complex-differentiability, u and uH would usually be
treated as two different unknowns, leading to a consider-
ably larger parameter vector p and associated Jacobian.
To obtain Fig. 4 that shows the result of 150 × 150 ini-
tial guesses, our method performs 190 101 iteration steps
in 35.1 s. The corresponding result of the common New-
ton method looks almost identical but requires 190 289
iteration steps in 120 s.
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Figure 5. Decrease of the relative error in frequency with
each iteration step of the Newton-type method for the ZGV
point at (ω∗ = 2π · 11 MHz, k∗ = 7.1 rad/mm). The 100 ini-
tial guesses are randomly picked from the uniform distribu-
tion with ±5 % variation around the ZGV point, which corre-
sponds to the convergence radius. Other ZGV points behave
similarly.

An analysis of the convergence behavior with the it-
eration steps is depicted in Fig. 5. The mean, as well as
the minimum and maximum relative error in frequency
for the 100 tested initial guesses, is shown. Numerical
accuracy is achieved after only 5 iteration steps, under-
lining the efficiency of the method.

V. METHOD OF FIXED RELATIVE DISTANCE

There are currently no efficient methods for large
singular GEPs, and Algorithm 1 cannot be applied to
problems with large n. We can apply the Newton-type
iteration from Sec. IV, but this method requires appro-
priate initial approximations. In this section, we present
a method suitable for large problems that can compute
a small number of ZGV points (ω∗, k∗) such that k∗ is
close to a given target k0.

As discussed previously, at a ZGV frequency ω∗, the
waveguide problem in the variables λ = ik and µ∗ = ω2

∗,
i.e.,

[λ2L2 + λL1 + L0 + µ∗M ]u = 0 , (22)
has a multiple (usually double) eigenvalue λ∗ = ik∗. Note
that this follows from (8) and (15) both holding at the
ZGV point. Therefore, for certain µ̃ ̸= µ∗ but close to
µ∗,

[λ2L2 + λL1 + L0 + µ̃M ]u = 0 (23)
has two different eigenvalues that are both close to λ∗.
The method of fixed relative distance (MFRD) can be
employed to find such points49. Adapted to our problem,
it introduces the three-parameter EVP

(ηL2 + λL1 + L0 + µM)u = 0 (24a)
(η(1 + δ)2L2 + λ(1 + δ)L1 + L0 + µM)v = 0 (24b)

(ηC2 + λC1 + C0 )w = 0 (24c)

in µ = ω2, λ = ik and η = (ik)2. Therein, δ > 0
specifies the relative distance between the sought λ and
serves as a regularization parameter. Moreover, the ma-
trices C0, C1, C2 are as in (16c). We conclude that for
small δ, the three-parameter EVP (24) has an eigenvalue
(λ̃, µ̃, λ̃2) close to the ZGV point (λ∗, µ∗, λ2

∗) such that λ̃

and λ̃(1 + δ) are eigenvalues of the initial problem (23).
Solutions are obtained similarly to Sec. III by per-

forming a transformation into a system of conventional
GEPs. However, in contrast to (16), the three-parameter
EVP (24) is regular since the corresponding 2n2 × 2n2

matrix

∆̃0 =

∣∣∣∣∣∣∣
L2 L1 M

(1 + δ)2L2 (1 + δ)L1 M

C2 C1 0

∣∣∣∣∣∣∣
⊗

(25)

is nonsingular for δ > 0. Hence, the first GEP given by

∆̃1z = λ∆̃0z, (26)
where

∆̃1 = (−1)

∣∣∣∣∣∣∣
L2 L0 M

(1 + δ)2L2 L0 M

C2 C0 0

∣∣∣∣∣∣∣
⊗

, (27)

is also regular and we can apply standard subspace meth-
ods, for instance eigs in Matlab, to compute some so-
lutions λ close to a chosen target λ0 = ik0. Then, the
obtained eigenvector z is used in the GEP associated with
µ, namely,

∆̃M z = µ∆̃0z, (28)
with ∆̃0 as before and

∆̃M = (−1)

∣∣∣∣∣∣∣
L2 L1 L0

(1 + δ)2L2 (1 + δ)L1 L0

C2 C1 C0

∣∣∣∣∣∣∣
⊗

,

to obtain µ via

µ = zH∆̃M z

zH∆̃0z
. (29)

Since each solution (λ, µ) is close to a ZGV point, it can
be used as an initial approximation for the Newton-type
method from Sec. IV. The algorithm is the following.

Algorithm 2: MFRD method for ZGV points
Input: n × n matrices L2, L1, L0, M , target k0
Output: ZGV points (ω∗, k∗) close to k0

1: build matrices ∆̃0 and ∆̃1 in (25) and (27)
2: find eigenvalues of ∆̃1z = λ∆̃0z close to λ0 = ik0

3: for each λ and eigenvector z

4: compute µ = zH∆̃M z/zH∆̃0z

5: if | Re(λ)| and | Im(µ)| are both small then
6: apply Newton-type method from Sec. IV to

compute (k∗, ω∗, u∗) with initial guess Im(λ), Re(µ)
7: return (ω∗, k∗) if (14) holds

8



Table I. Comparison of the algorithms and their properties. The indicated computational time is for the antisymmetric Lamb
waves in the austenitic steel plate of Fig. 3.

algorithm problem size initial guesses finds all solutions speed

direct method small no yes very slow (381 s)
Newton-type large yes likely (using cg(ω)) very fast (0.62 s)
MFRD+Newton-type medium target k0 very likely fast (18 s)

We can apply Algorithm 2 several times using different
targets k0 and thus scan a wavenumber interval [ka, kb]
for ZGV points (ω∗, k∗). It is worth remarking that from
one search to the next, the target k0 can be chosen such
that it becomes highly unlikely to miss any ZGV point.
To this end, k0 is chosen close to the largest k∗ found in
the previous search (at a smaller k0). Alternatively, if n
is small enough, we can compute all eigenvalues in step
2, refine the solutions with the Newton-type method and
thus obtain all ZGV points. An advantage of Algorithm 2
over Algorithm 1 is that the GEP (26) is of size 2n2 ×2n2

instead of 4n2 × 4n2. But most importantly, the prob-
lem is regular if the employed numerical discretization
method provides regular matrices.

The regularization parameter δ has to be selected
carefully. If δ is too small, then the GEP (26) is close
to being singular and the method of choice might fail to
find eigenvalues in step 2. On the other hand, if δ is too
large, then initial approximations might be too poor, and
the Newton-type method does not converge.

Applying Algorithm 2 to the same problem as before
using δ = 1 · 10−6 yields all ZGV points as already de-
picted in Fig. 3. For this end, the computation is done
at 12 different targets k0. The total computing time is
18 s.

The relation between the two-parameter EVPs given
in (24) and (16) should be discussed. As ZGV points are
double eigenvalues λ∗ = ik∗ for µ∗ = ω2

∗, it might seem
appropriate at first sight to set δ = 0 in (24) to find these
solutions. The resulting singular EVP could be solved as
in Sec. III. However, this approach is able to find only
double eigenvalues of geometric multiplicity two50, i.e.,
crossing points in the dispersion curves. The geometric
multiplicity of an eigenvalue is the number of linearly
independent eigenvectors associated with it. ZGV points
are double eigenvalues of geometric multiplicity one. For
this reason, the extended two-parameter EVP as given
in (16) is required in order to compute ZGV points with
a direct approach.

VI. CONCLUSIONS AND OUTLOOK

ZGV points are double eigenvalue points on the dis-
persion curves that are characterized by the appearance
of an exceptional mode (in contrast to crossing points
of dispersion curves). We have derived the associated
equations for anisotropic plates. The system of equa-
tions governing ZGV resonances consists of the guided

wave problem and the exceptional mode equation. This
represents a singular two-parameter eigenvalue problem
that is difficult to solve.

We have presented three very different but comple-
mentary computational methods to locate ZGV points in
the frequency-wavenumber plane. Their properties are
summarized in Table I. While the direct method is glob-
ally convergent but slow and applicable only to small
problems, the Newton-type iterative one is very fast but
locally convergent. Our third method, which employs
the MFRD, combines the direct solution of a regular-
ized problem with the Newton-type procedure. As a re-
sult, this method can be applied to rather large prob-
lems, does not need initial guesses and is likely to find
all ZGV points. We provide the implementation of the
three algorithms together with an example in GEW ZGV
computation51.

While we have applied the concepts to homoge-
neous but anisotropic plates only, the methods are quite
generally applicable. Equations of the same structure
are obtained when modeling transversely inhomogeneous
waveguides of arbitrary cross-section. Hence, the meth-
ods presented here can be used in the same way to find
ZGV points of such waveguides.

By fixing δ = 0, the system (24) from the method
of fixed relative distance (MFRD) could alternatively be
employed to find the crossing points in the dispersion
curves in a general waveguide setting. The computational
effort to solve the obtained singular three-parameter
eigenvalue problem is slightly lower than our direct
method to compute ZGV points. Note that such cross-
ing points are known to exist only if the parametrized
eigenvalue problem is uniformly decomposable52.
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Appendix A: DERIVATION OF THE WAVEGUIDE
PROBLEM

Recall the ansatz (2) for plane harmonic guided waves:

ū(x, y, t) = u(y, k, ω) eikx−iωt . (A1)

Note that for the above displacements ∂zū = 0 and
∂xū = ikū. Acknowledging this, we write the Nabla
operator as

∇ = exik + ey∂y . (A2)

Firstly, the proposed motions (A1) need to satisfy the
equation of motion (1a). Inserting the above definitions
and dropping the complex exponentials yields

(exik + ey∂y) · c : (exik + ey∂y)u + ρω2u = 0 . (A3)

Note that, per definition, the double contraction consists
of two sequential scalar products of the adjacent tensor
dimensions, i.e., c : exu = (c · ex) · u. Therewith, it is
possible to factor out u in the above equation. Expanding
the products and rearranging terms leads to

[(ik)2ex · c · ex + ik(ex · c · ey + ey · c · ex)∂y+
ey · c · ey∂2

y + ω2ρI] · u = 0 ,

(A4)

where I is the second order unit tensor. With the defini-
tion cij := ei · c · ej , the above is identical to (3a).

Secondly, the motions (A1) also need to satisfy the
traction-free boundary condition (1b). Inserting and
dropping the complex exponential yields

ey · c : (exik + ey∂y)u = 0 at y = ±h/2 . (A5)

By factoring out u and multiplying the terms, we imme-
diately obtain the desired result (3b).

Appendix B: COLLINEARITY OF POWER FLUX AND
WAVE VECTOR

The relation between the uncoupling of Lamb- and SH-
waves and the collinearity of the power flux and the
wave vector are to be discussed. Note first that the SH-
polarized displacement component uz decouples from the
Lamb-polarized motions (ux, uy) when the stiffness ten-
sor components satisfy

czαβγ = 0 with α, β, γ ∈ {x, y} , (B1)

for details see Ref. 30. Note that the Greek dummy in-
dices run only over {x, y}.

The power flux p of the guided waves is obtained
from the particle velocity v = −iωu and the stress T =
c : ∇u. Using again ∇ = exik + ey∂y, we obtain

p = −v · T = iωu · [ikc : exu + c : ey∂yu] . (B2)

The y-component of p is always zero due to the flux-
free BCs of the guided waves. Hence, the power flux

vector p and the wave vector kex are collinear if the z-
component of p vanishes. Due to the symmetry in T (or
equivalently in c), this component is pz = ez · (−v · T) =
−v · (ez · T), i.e.,

pz = iωiku · czx · u + iωu · czy · ∂yu , (B3)

where czx = ez · c · ex has components czijx with
i, j ∈ {x, y, z} and similarly for czy. From the above,
we conclude that if pz = 0 for arbitrary u, this implies
the decoupling of Lamb- and SH-polarizations, i.e., (B1)
is satisfied.

On the other hand, let’s now assume Lamb wave
motions, i.e., (B1) holds and uz = 0. In this case, the
transversal power flux can explicitly be written in terms
of the displacement components as

pLamb
z = iωikczαβxuαuβ + iωczαβyuα∂yuβ , (B4)

where summation is implied over the repeated dummy
indices α, β ∈ {x, y}. From the decoupling condition
(B1) we conclude that pLamb

z = 0. Overall, we can state
that the power flux and the wave vector of Lamb waves
are collinear if and only if Lamb- and SH-polarizations
decouple.

Appendix C: DERIVATION OF THE EXCEPTIONAL
MODE EQUATION

The PDE of the exceptional mode equation is obtained
by inserting the ansatz

ū(x, y, t) = [u′(y, k, ω) + xu(y, k, ω)] eikx−iωt (C1)

into the equation of motion

(ex∂x + ey∂y) · c : (ex∂x + ey∂y)ū(x, y, t)
+ ω2ρI · ū(x, y, t) = 0 , (C2)

where we have rewritten the Nabla operator as

∇ = ex∂x + ey∂y . (C3)

Using the exceptional mode ansatz (C1) and drop-
ping the explicit notation of the dependence on (y, k, ω),
one finds

∂xū(x, y, t) = [u + iku′ + ikxu] eikx−iωt , (C4)
∂yū(x, y, t) = [∂yu′ + x∂yu] eikx−iωt . (C5)

Accordingly, the stress tensor c : ∇ū(x, y, t) is given by

c : [ex∂xū(x, y, t) + ey∂yū(x, y, t)] =
(c · ex) · [u + iku′ + ikxu] eikx−iωt

+(c · ey) · [∂yu′ + x∂yu] eikx−iωt . (C6)

Lastly, after forming the divergence of the above stress
field, i.e., contracting from the left with (ex∂x + ey∂y),
we balance with the inertial term. For conciseness, we
introduce the notation cij = ei · c · ej . Performing the
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multiplications and regrouping the terms, one finally ob-
tains the equation of motion in the form

x
[
(ik)2cxx + ik(cxy + cyx)∂y + cyy∂2

y + ω2ρI
]︸ ︷︷ ︸

W

·u

+
[
(ik)2cxx + ik(cxy + cyx)∂y + cyy∂2

y + ω2ρI
]︸ ︷︷ ︸

W

·u′

+ [2ikcxx + (cxy + cyx)∂y]︸ ︷︷ ︸
W′

·u = 0 . (C7)

As u is a guided wave solution, W · u = 0. Therewith,
the above equation is precisely the system (7a).

Secondly, the corresponding BC is also needed. The
normal vector on the plate’s surface is ±ey. The traction
free condition is, hence, ey · c : ∇u(x, y, t) = 0. From
(C6) we obtain

x [ikcyx + cyy∂y]︸ ︷︷ ︸
B

·u + [ikcyx + cyy∂y]︸ ︷︷ ︸
B

·u′ + cyx︸︷︷︸
B′

·u = 0 ,

(C8)
where we have again performed the multiplications and
resorted the terms. Noting that B · u = 0, the above is
exactly the statement (7b).

Appendix D: MULTIPARAMETER EIGENVALUE
PROBLEM

A k-parameter eigenvalue problem has the form

V10x1 = λ1V11x1 + · · · + λkV1kx1

... (D1)
Vk0xk = λ1Vk1xk + · · · + λkVkkxk,

where Vij is an ni ×ni matrix and xi ̸= 0 for i = 1, . . . , k.
If (D1) is satisfied then a k-tuple (λ1, . . . , λk) is an eigen-
value and x1 ⊗ · · · ⊗ xk is the corresponding eigenvector.
The problem (D1) is related to a system of GEPs

∆1z = λ1∆0z, . . . , ∆kz = λk∆0z, (D2)

where z = x1 ⊗ · · · ⊗ xk and matrices

∆0 =

∣∣∣∣∣∣∣∣
V11 · · · V1k

...
...

Vk1 · · · Vkk

∣∣∣∣∣∣∣∣
⊗

and

∆i =

∣∣∣∣∣∣∣∣
V11 · · · V1,i−1 V10 V1,i+1 · · · V1k

...
...

...
...

...
Vk1 · · · Vk,i−1 Vk0 Vk,i+1 · · · Vkk

∣∣∣∣∣∣∣∣
⊗

for i = 1, . . . , k are called operator determinants, for de-
tails see, e.g., Ref. 53. If ∆0 is nonsingular then (D1)
is regular and matrices ∆−1

0 ∆1, . . . , ∆−1
0 ∆k commute. A

regular k-parameter EVP (D1) has n1 · · · nk eigenvalues.

Appendix E: EIGENVALUES OF A SINGULAR GEP

Matrices ∆1 and ∆0 from (18) form a singular GEP, i.e.,
det(∆1 − λ∆0) ≡ 0. Then λ0 ∈ C is a finite eigenvalue if
rank(∆1 − λ0∆0) < nrank(∆1, ∆0), where

nrank(∆1, ∆0) = max
ξ∈C

rank(∆1 − ξ∆0)

is the normal rank of the GEP.

Theorem E.1. If (ik, ω) is a solution of (8) and (15),
then λ = ik is an eigenvalue of ∆1 − λ∆0.

Proof. We introduce Q(λ) = M−1(L0 + λL1 + λ2L2).
Using a block partitioned version of the Kronecker
product54 we can show that

rank(∆1 − λ∆0) = rank
([

A(λ)
B

])
,

where A(λ) =[
I ⊗ Q(λ) − Q(λ) ⊗ I

I ⊗ Q′(λ) I ⊗ Q(λ) − Q(λ) ⊗ I

]
and

B =
[

1 0
0 1

]
⊗ (M−1L2 ⊗ I − I ⊗ M−1L2).

Clearly, rank(∆1 − λ∆0) = rank(A(λ)) + rank(B) and
λ0 is an eigenvalue of ∆1 − λ∆0 when rank(A(λ0)) <
nrank(A(λ)).

Let us assume that Q(λ) is not a uniformly decom-
posable matrix flow, i.e., there does not exist a uni-
tary matrix U such that UHQ(λ)U has the same block
diagonal structure with at least two blocks for all λ.
Then, see, e.g., Ref. 52, for a generic ξ all eigenvalues
of Q(ξ) are distinct. Let Q(ξ)xi = σixi, where xi is
nonzero, for i = 1, . . . , n and σ1, . . . , σn are distinct. Vec-
tors x1, . . . , xn form a basis for Cn and vectors xi ⊗ xj ,
i, j = 1, . . . , n, form a basis for Cn2 . It is easy to see that

(I ⊗ Q(ξ) − Q(ξ) ⊗ I)(xi ⊗ xj) = (σj − σi)(xi ⊗ xj)

for i, j = 1, . . . , n. Thus rank(I⊗Q(ξ)−Q(ξ)⊗I) = n2−n
and the null space of I ⊗ Q(ξ) − Q(ξ) ⊗ I is spanned by
vectors xi ⊗ xi, i = 1, . . . , n.

We get

A(ξ)
[

0
xi ⊗ xj

]
=
[

0
(σj − σi)xi ⊗ xj

]
(E1)

and

A(ξ)
[

xi ⊗ xj

0

]
=
[

(σj − σi)xi ⊗ xj

xi ⊗ Q′(ξ)xj

]
(E2)

for i, j = 1, . . . , n. For i ̸= j this gives 2n2 − 2n linearly
independent vectors from the image of A(ξ), while vec-

tors
[

0
xi ⊗ xi

]
, i = 1, . . . , n, are clearly in the null space
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of A(ξ). What remains are vectors

A(ξ)
[

xi ⊗ xi

0

]
=
[

0
xi ⊗ Q′(ξ)xi

]
(E3)

for i = 1, . . . , n. Each vector Q′(ξ)xi can be written as a
linear combination of x1, . . . , xn, i.e.,

Q′(ξ)xi =
n∑

ℓ=1
αiℓxℓ

for i = 1, . . . , n. For a generic ξ, αii ̸= 0 for i = 1, . . . , n,
so vectors from (E3) give additional n linearly indepen-
dent vectors from the image of A(ξ) and rank(A(ξ)) =
2n2 − n.

Let (ik, ω) be a solution of (8) and (15) with the
corresponding vectors u and u′. If we take λ0 = ik then

(Q(λ0) + ω2I)u = 0,

Q′(λ0)u + (Q(λ0) + ω2I)u′ = 0.

It is easy to check that

A(λ0)
[

u ⊗ u

u ⊗ u′

]
= 0

and we have a vector in the null space that is clearly
linearly independent from vectors that we get from (E1).
It follows that rank(A(λ0)) < nrank(A(λ)) and λ0 is an
eigenvalue of ∆1 − λ∆0.

If Q(λ) is a uniformly decomposable flow, the theo-
rem is still valid, the only difference is that in the proof
we have to consider individual blocks in the block diago-
nal form of Q(λ).

Appendix F: MATERIAL PARAMETERS

The elastic parameters used in the calculation were
those of orthotropic austenitic steel provided by
Lanceleur et al.55:

• Voigt-notated stiffness in 1011 Pa:

C =



2.50 1.80 1.38 0 0 0
1.80 2.50 1.12 0 0 0
1.38 1.12 2.50 0 0 0

0 0 0 0.70 0 0
0 0 0 0 1.17 0
0 0 0 0 0 0.91


• Mass density:

ρ = 7840 kg/m3

The stiffness tensor indicated here has been rotated by
90◦ around ex and then around ey (extrinsic, passive
rotation), such that the material coordinate system aligns
with the one in Fig. 1.
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