
Realization-dependent model of hopping
transport in disordered media

Cite as: Appl. Phys. Lett. 123, 252102 (2023); doi: 10.1063/5.0177082
Submitted: 19 September 2023 . Accepted: 29 November 2023 .
Published Online: 18 December 2023

Abel Thayil1 and Marcel Filoche2,a)

AFFILIATIONS
1Laboratoire de Physique de la Mati!ere Condens"ee, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91120 Palaiseau,
France
2Institut Langevin, ESPCI Paris, Universit"e PSL, CNRS, 75005 Paris, France

a)Author to whom correspondence should be addressed:marcel.filoche@espci.psl.eu

ABSTRACT

At low injection or low temperatures, electron transport in disordered semiconductors is dominated by phonon-assisted hopping between
localized states. A very popular approach to this hopping transport is the Miller–Abrahams model that requires a set of empirical parameters
to define the hopping rates and the preferential paths between the states. We present here a transport model based on the localization land-
scape (LL) theory in which the location of the localized states, their energies, and the coupling between them are computed for any specific
realization, accounting for its particular geometry and structure. This model unveils the transport network followed by the charge carriers
that essentially consists in the geodesics of a metric deduced from the LL. The hopping rates and mobility are computed on a paradigmatic
example of disordered semiconductor and compared with the prediction from the actual solution of the Schr€odinger equation. We explore
the temperature-dependency for various disorder strengths and demonstrate the applicability of the LL theory in efficiently modeling hopping
transport in disordered systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0177082

The classical description of electrical conduction in a semicon-
ductor involves scattering of the electronic Bloch states on impurities
or defects of the lattice. However, in nitride alloys,1,2 perovskites,3,4 or
organic semiconductors,5–7 the random arrangements of the elements
in the alloy, the different inter-atomic spacings, or the random orienta-
tion of the molecules destroy the translation invariance of the crystal.
In some cases, the resulting random spatial fluctuations of the local
material composition are strong enough to induce localization of a
large proportion of the low-energy electronic and hole states.8

Consequently, at low temperatures and low carrier concentrations, the
charge carrier transport does not follow anymore the classical picture,
but is dominated instead by phonon-assisted hopping between these
localized states.9,10

In this situation, hopping transport can be modeled as a transport
process on a graph where each state (or node) is associated with an
average occupation probability, and each pair of states (or edge) is
associated with a transition probability or hopping rate (only close
states in the nearest-neighbor model or distant in the variable range
model7). The dynamics of the process is then governed by a master
equation that tracks down the time-evolution of the average occupa-
tion probability of each state.11 In the steady state, the solution to the

master equation provides the equilibrium occupation probabilities and
the steady state current. The input parameters to the master equation
are the hopping rates, which are computed by evaluating the electron–
phonon interaction between each pair of states. This requires knowl-
edge of the position and spatial extent of the wave functions for all
states as well as their respective energies. When the hops are due to
acoustic phonons, the atomic displacements are described as long-
wavelength acoustic waves that are related to the elastic strain of the
crystal, as described in the deformation potential theory.12

These quantities can be computed via ab initio atomistic meth-
ods,13–16 which become computationally very demanding for systems
of reasonable size. Classically, this difficulty is circumvented by assum-
ing a priori how the localized states are distributed in space and in
energy, and by providing a functional form for the hopping rates
between localized states. The Miller–Abrahams (MA) model corre-
sponds to the specific case in which electronic states are supposed to
decay exponentially with one uniform localization length: the hopping
rates are thus exponentially decreasing functions of the distance
between states with the same characteristic length.11,17 The free param-
eters of the model are fitted against experimental mobility curves.
Although the MA model has been applied to a large range of organic
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materials18–20 or amorphous materials,21–23 one of its major drawbacks
is that it relies on identical empirical parameters for all electronic states
at all energies. Vukmirovi"c and Wang24 showed via ab initio calcula-
tions that the exact hopping rates and mobilities can deviate signifi-
cantly from the MA model, in part because the MA model does not
account for the complex overlaps between the wave functions of the
associated electronic states.

In this paper, we present a model of hopping transport in disor-
dered semiconductors based on the recently developed localization
landscape (LL) theory25 that bridges the gap between ab initio atomis-
tic calculations and empirical models such as the MA model. Our
approach takes into account the structural disorder of the system and
gives access to specific localization effects without significant computa-
tional cost.26 The main ingredient in the LL theory is the effective
potential, which not only predicts the regions of localization of the
eigenstates and their corresponding energies but also provides a fine
estimate of the exponential decay of the wave functions away from
their regions of existence. This enables us to compute hopping rates
between localized states and, consequently, the mobility of the charge
carrier as a function of the underlying disordered potential. We then
compare these computed mobilities with mobilities based on exact
eigenstate computations for a 2D disordered potential and analyze the
dependency of the mobility against disorder strength.

To model the hopping transport, we associate to each electronic
state i an average occupation probability fi. The rate of change of this
occupation probability is the net sum of all the outward hops from
state i to any other state j (with hopping rate wij), and inward hops
from any state j to the state i (with hopping rate wji). One must also
account for the fact that a carrier can only hop from an occupied to an
unoccupied state. The master equation therefore reads

dfi
dt

¼
X

j

"wij fið1" fjÞ þ wji fjð1" fiÞ
! "

: (1)

The hopping rates between any two states maintain detailed balance in
steady state and satisfy

wij

wji
¼ exp

Ei " Ej
kBT

# $
; (2)

where Ei and Ej are the energies of states i and j, respectively, kB is the
Boltzmann constant, and T is the temperature of the system. The pres-
ence of an electrostatic field F shifts the energy of each state,
E0
i ¼ Ei " e F & ri, where e is the charge of the carrier. This results in a

greater number of hops in the direction of the field, and the emergence
of a net current of charge carriers. The steady state current J in
response to the applied field F (assumed here to be along the x direc-
tion) through the surface S (depicted in Fig. 1) is

J ¼ e
L

X

xi<xs
i

X

xj>xs
j

"wij
$f ið1" $f jÞ þ wji

$f jð1" $f iÞ
h i

; (3)

where $f i is the steady state occupation probability for state i, and xs is
the x coordinate of the surface s, n is the carrier density, and L is the
length of the sample. The system considered here is periodic along the
x direction, the periodicity being accounted for by adding or subtract-
ing an energy term equal to eFL for hops crossing the left or right sides
(these sides being then identical). The mobility l is then given by
l ¼ J=neF.

The wave functions w of the electronic states involved in the hop-
ping process satisfy the Schr€odinger equation,

"div
$h2

2m
rw

# $
þ Vw ¼ Ew; (4)

where mðrÞ is the effective mass of the charge carrier (possibly, posi-
tion-dependent), and VðrÞ is the potential (in semiconductors, the
conduction or valence band edge). The hopping rates between any two
states wi and wj are obtained by applying the Fermi golden rule to the
electron–phonon interaction,

wij ¼
2p
$h

X

q

jhwjjĤ epjwiij
2 dðEj " Ei6EqÞ nBðEq;TÞ þ

1
2
6
1
2

% &
;

(5)

where Ĥ ep refers to the Hamiltonian of the electron–phonon interac-
tion, Eq is the energy of a phonon with wave vector modulus q, and
nBðEq;TÞ is the average occupation number of a phonon with energy
Eq at temperature T (given by the Bose–Einstein statistics). For acous-
tic phonons treated in deformation potential theory, the hopping rate
takes the value

wij ¼
D2q30

8p2qm$hc2s
Mq0

ij nB þ
1
2
6
1
2

% &
; (6)

where D is the deformation potential constant, qm is the mass density
of the material, cs is the speed of sound in the material,
q0 ¼ jEj " Eij=$hcs, andMq0

ij is given by the following overlap integral:

Mq0
ij ¼

ð

q¼q0
dXq

((((
ð
dr e"iq&r w'

i ðrÞwjðrÞ
((((
2

: (7)

We see that this integral depends on the spatial extent of the
wave functions, and that its value is determined by the regions where
the product jwiðrÞwjðrÞj is significant. Evaluating Eq. (6), therefore,
requires knowledge of the energies, of the locations and of the spatial
extents of the localized states. Solving the Schr€odinger equation in

FIG. 1. Schematic of hopping transport: under an applied electrostatic field F, elec-
trons move by hopping (red arrows) between the localized electronic states (orange
disks). The net current (green arrow) passing through the surface S (green dotted
line) is calculated by subtracting the net flow of charge to the left from the net flow
of charge to the right.
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Eq. (4) to access these quantities is prohibitively expensive for large
systems. In the MA model, this issue is bypassed by assuming that the
localized functions exponentially decay in all directions with the same
characteristic localization length a, leading to the following expression
for the hopping rate:

wij ¼ w0 exp "
2jrj " rij

a
"

Ej " Ei½ )þ
kBT

# $
; (8)

where w0 is a typical escape frequency, and ½x)þ ¼ maxðx; 0Þ. This
expression corresponds to the variable-range hopping model intro-
duced in Refs. 9 and 10. The electronic density of states (the distribu-
tion of Ei) is typically assumed to be the tail of a Gaussian or of an
exponential function.27 In addition, the parameters w0 and a need to
be empirically fitted to experimental data. This drastic oversimplifica-
tion of the shapes, locations, and energies of the wave functions can
lead to erroneous estimates of the hopping rates, and finally of the cur-
rent flowing through the system.24

The LL theory allows us to reliably build the hopping network
and assess all input parameters of the master equation without solving
the Schr€odinger equation. The LL is defined as the solution to the
related Dirichlet problem,

"div
$h2

2m
ru

# $
þ Vu ¼ 1: (9)

We present here the properties of the LL used in our study, a more
extensive account of its mathematical basis being provided in the sup-
plementary material. It was shown in Refs. 25, 26, 28, and 29 that the
LL u enables us to define an effective potential VuðrÞ :¼ 1=uðrÞ,
which

• predicts the regions of the localization: they correspond to the
basins of Vu.

25 (We will see later how to precisely define these
basins.)

• provides an approximation of the fundamental eigenstate in each
of these basins Bi,

28

wiðrÞ * uðrÞjBi ; (10)

up to a multiplicative constant.
• provides an approximation E'

i of the energy Ei of the local funda-
mental eigenstate wi,

29

Ei + E'
i ¼ 1þ d

4

# $
,min

Bi
ðVuÞ; (11)

where d is the embedding dimension of the system.
• defines a so-called Agmon metric gEðrÞ and an Agmon distance
qEðr1; r2Þ as

gEðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
$h2

VuðrÞ " E½ )þ

r
; (12)

qEðr1; r2Þ ¼ min
cðr1;r2Þ

ð

c
gEðrÞ ds; (13)

where the minimum is taken over all paths c connecting r1 to r2.
This distance allows us to derive an upper bound on the expo-
nential decay of the localized wave function via Agmon’s
inequality,30

wiðrÞ! e"qEi ðr;BiÞ: (14)

This expression can be considered as capturing very generally the
quantum tunneling effect in the effective potential Vu: the eigenstate wi

decays exponentially wherever the effective potential is larger than Ei
(in other words, in the barriers of Vu).

To illustrate our approach, we study the example of a 2D disor-
dered potential VðrÞ depicted in Fig. 2(a). It can be considered as the
conduction band edge of a random alloy of the form AxB1"x , where A
and B are atoms placed at random on a square lattice of parameter
a ¼ 0:5 nm, over a domain of size 50, 50 nm2. The potential has a
maximum strength of 500meV, a value found in highly disordered
semiconductors,13 and is generated by smoothing out the local compo-
sition of the alloy to define a local material, similarly as in Ref. 31. The
minimum value of the potential is set to 0, which is the most practical
and efficient choice for computing the LL for this type of bounded
potential (see Ref. 28, Sec. IID). A different value would not change
significantly the results, as long as it stays in the same energy range
than the typical energies involved.

To assess the accuracy of the model, we solve numerically and
independently the Schr€odinger equation with a finite element eigen-
value solver32,33 to retrieve the exact eigenstates. Figure 2(b) displays
the low-energy localized eigenstates. These localized eigenstates are the
nodes of the hopping transport network. The connectivity of this net-
work can be visualized by examining the product jwiðrÞwjðrÞj, as plot-
ted in Fig. 2(c). In parallel, the landscape equation in Eq. (9) is solved
using a finite element method: Fig. 2(d) displays the 2D color-plot of
the corresponding effective potential Vu ¼ 1=u. One can see that the

FIG. 2. (a) Disordered potential with max amplitude of 500 meV. (b) The local funda-
mental eigenstates of the disordered potential shown in (a). (c) Normalized pairwise
overlaps jwiðrÞwjðrÞj between the fundamental eigenstates. (d) The effective
potential Vu superimposed with the geodesics of the Agmon distance between the
local minima of Vu corresponding to the fundamental eigenstates (purple lines).
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basins of this effective potential (in dark blue) correspond to the loca-
tions of the eigenstates.

The input parameters of the model are the energies of the states
and the hopping rates between pairs of states. The former are esti-
mated inside each basin using Eq. (11). The latter require first to com-
pute the Agmon distance qEiðr;BiÞ between each point of the domain
and each basin Bi, see Eqs. (12) and (13). This can be efficiently done
using a fast marching algorithm.34,35 We then compute between each
pair of basin minima of Vu (indexed by i and j) the geodesics of
qEiðr;BiÞ þ qEj ðr;BjÞ. Superimposing these geodesics (in purple) over
the effective potential in Fig. 2(d), we clearly see that the network of
geodesics replicates the network of pair-wise products already observed
in Fig. 2(c). Very generally, this approach allows us to reveal the perco-
lation network of charge carrier trajectories giving birth to a macro-
scopic current and to measure its statistical geometrical properties.36

This Agmon distance provides a straightforward way to recon-
struct estimates wðuÞ

i of the eigenstates wi,

wðuÞ
i ðrÞ ¼ ci

E'
i uðrÞ insideBi;

exp ð"q$Ei
ðr;BiÞÞ outsideBi;

%
(15)

where ci is a normalization constant, the basin Bi is defined as the con-
nected domain around the local minimum of 1=u whose boundary is
the level set uðrÞ ¼ 1=E'

i [E'
i being defined in Eq. (11)], and $Ei is

another approximation of the state energy that we discuss in the next
paragraph. Through this definition, the reconstructed wave function
wðuÞ
i ðrÞ is everywhere continuous.

We need here to distinguish between the estimated energy E'
i of

the localized state given by Eq. (11) and the energy $Ei entering the
Agmon metric in Eqs (12) and (15). Although Eq. (14) holds when
using the energy of the state to compute the distance qE, a tighter
bound can be obtained in practice by using a smaller value of the
energy. Indeed, the Agmon distance corresponds to the path that mini-
mizes the integral of Eq. (13), while the exact value of wi at point r
would be obtained by a weighted sum of all possible paths through a
path integral formulation, this approach being, however, much more
computationally expensive. Since all other paths have larger distances,
using the Agmon distance leads to a slight overestimation of the wave
function amplitude outside its basin, hence an overestimation of the

hopping rates. This effect can be compensated very simply by reducing
the value of the energy entering the Agmon metric. For all potential
strengths studied in our work, we have found that a value $Ei

¼ 1:3,minBiðVuÞ [instead of 1.5 in Eq. (11)] works satisfactorily.
This trend needs to be investigated in future studies.

The last step consists in computing the hopping rates wij defined
by Eq. (6). In Fig. 3, we compare the hopping rates wij computed (i)
from the exact eigenstates, (ii) from the localization landscape (LL)
theory, and (iii) from the MA model. To that end, we use material
parameters similar to those of disordered alloys of InGaN:
D ¼ 8:3 eV; cs ¼ 8, 103ms"1, and qm ¼ 6150kgm"3. The parame-
ters of the MA model are obtained by a least squares fit of the loga-
rithms of the matrix elements calculated from the exact eigenvalues.
We see in Fig. 3(a) that the hopping rates, both for the exact eigenstates
and for the LL computations, are much more scattered than the simple
straight line corresponding to the MA model. Figure 3(b) shows a
direct comparison between exact and LL-based rates. The upper-right
part of the scatterplot shows that for the larger values of Mq0

ij (above
1010, the ones relevant for transport), both computations tend to be
very similar.

We plug these computed hopping rates into Eq. (1) and solve the
master equation by a Newton–Raphson method to obtain the steady
state occupation probabilities, with an initial guess for the occupation
probabilities given by Fermi–Dirac statistics. For our results, we have
placed the Fermi level 20meV below the ground state, which is a typi-
cal value due to donor states in nitride-based semiconductors. Another
possibility would be to change the Fermi level with temperature in
order to keep a constant electron concentration. Our simulations
showed that this does not affect the graph of the computed mobilities
(the current density being divided by the electron concentration in
order to obtain the mobility).

Figure 4 compares mobility vs temperature curves obtained by
solving the master equation using parameters derived from the exact
solution of the Schr€odinger equation (solid lines), and the ones result-
ing from the LL-based solution of the master equation (dashed lines).
The lines represent the log-average over 50 realizations, while the
shaded area corresponds to one standard deviation of lnðlÞ around its
average. This lognormal dispersion of the values of mobility around

FIG. 3. (a) Scatter plots of Mq0
ij , the spatial component of the hopping rates [see Eq. (7)] computed with the exact eigenstates (blue dots) and with the LL-based states (orange

dots), as a function of the distance between the states. In red, we display the exponential fit used in the Miller–Abrahams model, Mq0
ij ¼ exp ð"rij=aÞ. (b) Comparison between

the hopping rates based on the exact eigenstates wij (vertical axis) and the LL-based states wu
ij (horizontal axis) for 50 realizations of the disordered potential and three different

ranges of hopping distances between localized states: (5–6 nm) (blue), (15–16 nm) (orange), and (25–26 nm) (green). The line y¼ x is represented by a black dashed line.
One can see that the largest hopping rates, which are the main contributors to the mobility, are very well approximated by the LL approach.
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the average is reminiscent of the geometric average appearing in the
conductivity of a random two-phase system.37 The LL-based computa-
tions are shown to be in very good agreement with the exact
eigenstate-based computations on a wide range of temperatures, while
being about four times faster for a 2D system of size 800, 800. Note
that most of the computation time is spent computing the Agmon dis-
tance for which we used a very standard method. One can hope to
improve this computational gain in the future, for larger simulations,
especially when self-consistently solving Schr€odinger and Poisson-
transport equations.31

One may wonder how these mobility curves compare with Mott’s
analytical expression of the conduction in variable range hopping.9

Mott’s formula is valid under a certain number of assumptions:38 (i)
The hops are supposed to be performed from a state at the Fermi level
to a higher state; (ii) although the hops can be performed at any dis-
tance (variable-range hopping), the attenuation length a for the
hydrogen-like localized wave functions is supposed to be uniform; (iii)
The density of states is supposed to be constant (within a band of
bandwidth B). Such is not the case in our study because the states are
obtained from a random potential. The bottom and localized states
therefore belong to a Lifshitz tail of the density of states (of exponential
shape), voiding the hypotheses required by Mott’s law. Pollak39 and
Hamilton40 obtained independently a conductivity law
exp ð"T"ðpþ1Þ=ðpþ4ÞÞ in 3D for a power-law density of states with
exponent p. In 1975, Efros and Shklovskii obtained a different expo-
nent by introducing Coulomb interaction and a perturbation to the
density of states near the Fermi level.41 No analytical law exists in the
case corresponding to our computations. However, comparing our
results with computations based on solving the Schr€odinger equation

remains valid: both are in very good agreement, which is the core mes-
sage of this paper.

One has to note that, at higher temperatures, the value of the
mobility depends on the number of electronic states included in the
computation. Involving more excited states increases the mobility at
higher temperature (inset in Fig. 4), but we chose to focus in this study
on the conduction induced by the lower energy states.

In summary, the LL-based approach to hopping transport allows
us to assess efficiently the carrier mobility in a highly disordered or
random medium, taking into account the specific characteristics of the
disorder at the nanoscale without having to solve the Schr€odinger
equation for a large number of states. This model not only encom-
passes naturally variable range hopping but also provides a realization-
dependent visualization of the transportation network through
electron–phonon coupling between states, revealing the nature of the
percolation paths followed by the charge carriers. It is, therefore, a very
handy theoretical and practical tool for understanding the features of
electronic transport at low temperatures, and for testing extreme devia-
tions of the conductivity through rare events.

See the supplementary material that presents a summary of the
mathematical derivations of the main properties of the LL. The locali-
zation landscape is a mathematical theory aimed at describing, assess-
ing, and computing the role of disorder and geometry in the shaping
of standing waves, i.e., the eigenfunctions of wave operators.
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