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Three-dimensional ultrasound matrix
imaging

Flavien Bureau1, Justine Robin1,2, Arthur Le Ber 1, William Lambert 1,3,
Mathias Fink 1 & Alexandre Aubry 1

Matrix imaging paves theway towards a next revolution inwave physics. Based
on the response matrix recorded between a set of sensors, it enables an
optimized compensation of aberration phenomena and multiple scattering
events that usually drastically hinder the focusing process in heterogeneous
media. Although it gave rise to spectacular results in optical microscopy or
seismic imaging, the success of matrix imaging has been so far relatively lim-
ited with ultrasonic waves because wave control is generally only performed
with a linear array of transducers. In this paper, we extend ultrasound matrix
imaging to a 3D geometry. Switching from a 1D to a 2D probe enables a much
sharper estimation of the transmission matrix that links each transducer and
each medium voxel. Here, we first present an experimental proof of concept
on a tissue-mimicking phantom through ex-vivo tissues and then, show the
potential of 3D matrix imaging for transcranial applications.

The resolution of a wave imaging system can be defined as the ability
to discern small details of an object. In conventional imaging, this
resolution cannot overcome the diffraction limit of a half wavelength
and may be further limited by the maximum collection angle of the
imaging device. However, even with a perfect imaging system, the
image quality is affected by the inhomogeneities of the propagation
medium. Large-scale spatial variations of the wave velocity introduce
aberrations as thewave passes through themediumof interest. Strong
concentration of scatterers also induces multiple scattering events
that randomize the directions ofwave propagation, leading to a strong
degradation of the image resolution and contrast. Such problems are
encountered in all domains of wave physics, in particular for the
inspection of biological tissues, whether it be by ultrasound imaging1

or opticalmicroscopy2, or for the probing of natural resources or deep
structure of the Earth’s crust with seismic waves3.

Tomitigate those problems, the concept of adaptive focusing has
been adapted from astronomy where it was developed decades ago4,5.
Ultrasound imaging employs array of transducers that allow to control
and record the amplitude and phase of broadband wave fields. Wave-
front distortions can be compensated for by adjusting the time delays
added to each emitted and/or detected signal in order to focus ultra-
sonic waves at a certain position inside the medium6–9. The estimation

of those time delays implies an iterative time-consuming focusing
process that should be ideally repeated for each point in the field of
view10,11. Such a complex adaptive focusing scheme cannot be imple-
mented in real time since it is extremely sensitive to motion12 whether
induced by the operator holding the probe or by the movement of
tissues.

Fortunately, this tedious process can now be performed in post-
processing13,14 thanks to the tremendous progress made in terms of
computational power andmemory capacity during the last decade. To
optimize the focusing process and image formation, a matrix formal-
ism can be fruitful15–18. Indeed, once the reflection matrix R of the
impulse responses between each transducer is known, any physical
experiment can be achieved numerically, either in a causal or anti-
causal way, for any incident beam and asmany times as desired. More
specifically, assuming that the medium remains fixed during the
acquisition, multi-scale analysis of the wave distortions can be per-
formed to build an estimator of the transmission matrix T between
each transducer of the probe and each voxel inside the medium19.
Once the T-matrix is known, a local compensation of aberrations can
be performed for each voxel, thereby providing a confocal image of
themediumwith a close-to-ideal resolution and an optimized contrast
everywhere.
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Although it gave rise to striking results in optical microscopy20–24

or seismic imaging25,26, the experimental demonstration of matrix
imaging has been, so far, less spectacular with ultrasonic waves17,18,27,28.
Indeed, the first proof-of-concept experiments employed a linear array
of transducers. Yet, aberrations in the human body are 3D-distributed
and a 1D control of the wave field is not sufficient for a fine compen-
sation of wave distortions as already shown by previous works29–32.
Moreover, 2D imaging limits the density of independent speckle grains
which controls the spatial resolution of the T-matrix estimator28.

In this work, we extend the ultrasound matrix imaging (UMI)
framework to 3D using a fully populated matrix array of
transducers33–35. The overall method is first validated by means of a
well-controlled experiment combining ex-vivo pork tissues as aber-
rating layer on top of a tissue-mimicking phantom. 3D UMI is then
applied to a head phantom whose skull induces a strong attenuation,
aberration, and multiple scattering of the ultrasonic wave field, phe-
nomena thatUMI canquantify independently of eachother1,19. Inspired
by the CLASS method developed in optical microscopy20,22, aberra-
tions are here compensated by a novel iterative phase reversal algo-
rithm more efficient for 3D UMI than a singular value

decomposition16–18. In contrast with previous works, the convergence
of this algorithm is ensured by investigating the spatial reciprocity
between theT-matrices in transmission and reception. Throughout the
paper, we will compare the gain in terms of resolution and contrast
provided by 3D UMI with respect to its 2D counterpart. In particular,
wewill demonstrate how 3DUMI can be a powerful tool for optimizing
the focusing process inside the brain through the skull.

Results
Beamforming the reflection matrix on a focused basis
3D UMI starts with the acquisition of the reflection matrix (see Meth-
ods) by means of a 2D array of transducers [32 × 32 elements, see
Fig. 1a, b]. It was performed first on a tissue-mimicking phantom with
nylon rods through a layer of pork tissue of fat and muscle (obtained
from a chop rib piece), acting as an aberrating layer [Fig. 2a], and then
on a head phantom including brain and skull-mimicking tissue, to
reproduce transcranial imaging (see below). In the first experiment,
the reflection matrixRuu(t) is recorded in the transducer basis [Fig. 1a,
c], i.e. by acquiring the impulse responses, R(uin,uout, t), between each
transducer (u) of the probe. In the head phantom experiment, skull

Fig. 1 | 3D UltrasoundMatrix Imaging (UMI). a–c TheR-matrix can be acquired in
the (a) transducer or (b) plane-wave basis in transmit and (c) recording the back-
scatteredwave field on each transducer in receive.dConfocal imaging consists in a
simultaneous focusing of waves at input and output. e In UMI, the input (rin) and
output (rout) focusing points are decoupled. f x−cross-section of the focused R
−matrix. g Four-dimensional structure of the focused R-matrix. h UMI enables a
quantification of aberrations by extracting a local RPSF (displayed here in ampli-
tude) from each antidiagonal of Rρρ(z). i UMI then consists in a projection of the
focused R-matrix in a correction (here transducer) basis at output. The resulting

dual R-matrix connects each focusing point to its reflected wave-front. j UMI then
consists in realigning those wave-fronts to isolate their distorted component from
their geometrical counterpart, thereby forming the D-matrix. k An iterative phase
reversal algorithm provides an estimator of the T-matrix between the correction
basis and themid-point of input focusing points considered in panel (i). lThephase
conjugate of the T-matrix provides a focusing law that improves the focusing
process at output.mRPSF amplitude after the output UMI process. The ultrasound
data shown in this figure corresponds to the pork tissue experiment at
depth z = 40 mm.
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attenuation imposes a plane wave insonification sequence [Fig. 1b] to
improve the signal-to-noise ratio. The reflection matrix Rθu then con-
tains the reflected wave field R(θin,uout, t) recorded by the transducers
uout [Fig. 1c] for each incident plane wave of angle θin.

Whatever the illumination sequence, the reflectivity of a medium
at a given point r can be estimated in post-processing by a coherent
compound of incident waves delayed to virtually focus on this point,
and coherently summing the echoes recorded by the probe coming
from that same point [Fig. 1d]. UMI basically consists in decoupling the
input (rin) and output (rout) focusing points [Fig. 1e]. By applying

appropriate time delays to the transmission (uin/θin) and reception
(uout) channels (see Methods), Ruu(t) and Rθu(t) can be projected at
each depth z in a focused basis, thereby forming a broadband focused
reflection matrix, Rρρ(z) ≡ [R(ρin, ρout, z)].

Since the focal plane is bi-dimensional, each matrix Rρρ(z) has a
four-dimension structure: R(ρin, ρout, z) = R({xin, yin}, {xout, yout}, z).
Rρρ(z) is thus concatenated in 2D as a set of block matrices to be
represented graphically [Fig. 1g]. In such a representation, every
sub-matrix of R corresponds to the reflection matrix between lines
of virtual transducers located at yin and yout, whereas every element
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in the given sub-matrix corresponds to a specific couple (xin, xout)
[Fig. 1f]. Each coefficient R(xin, yin, xout, yout, z) corresponds to the
complex amplitude of the echoes coming from the point
rout = (xout, yout, z) in the focal plane when focusing at point
rin = (xin, yin, z) (or conversely, sinceRρρ(z) is a symmetricmatrix due
to spatial reciprocity).

As already shown with 2D UMI, the diagonal of Rρρ(z) directly
provides the transverse cross-section of the confocal ultrasound
image:

I ðρ,zÞ= jRðρin =ρout,zÞj2 ð1Þ

where ρ = ρin = ρout is the transverse coordinate of the confocal point.
The corresponding 3D image is displayed in Fig. 2e for the pork tissue
experiment. Longitudinal and transverse cross-sections illustrate the
effect of the aberrations induced by the pork layer by highlighting the
distortion exhibited by the image of the deepest nylon rod.

Probing the focusing quality
We now show how to quantify aberrations in ultrasound speckle
(without any guide star) by investigating the antidiagonals ofRρρ(z). In
the single scattering regime, the focused R-matrix coefficients can be
expressed as follows1:

Rðρout,ρin,zÞ=
Z

dρHoutðρ� ρout,ρout,zÞγðρ,zÞHinðρ� ρin,ρin,zÞ ð2Þ

with Hin/out, the input/output point spread function (PSF); and γ the
medium reflectivity. This last equation shows that each pixel of the
ultrasound image (diagonal elements of Rρρ(z)) results from a con-
volution between the sample reflectivity and an imaging PSF, which is
itself a productof the input andoutput PSFs. The off-diagonal points in
Rρρ(z) can be exploited for a quantification of the focusing quality at
any pixel of the ultrasound image by extracting each antidiagonal.
Such an operation ismathematically equivalent to a change of variable
to express the focused R-matrix in a common midpoint basis1 (see
Supplementary Section 2):

RMðΔρ,rmÞ=R ρm � Δρ
2

,ρm +
Δρ
2

,z
� �

, ð3Þ

where the subscript M stands for the common midpoint basis.
rm = ρm,z

� �
= ðρin +ρoutÞ=2,z
� �

is the common midpoint between the
input and output focal spots, with the two separated by a distance
Δρ = ρout − ρin.

In the speckle regime (random reflectivity), this quantity probes
the local focusing quality as its ensemble average intensity, which we
refer to as the reflection point spread function (RPSF), scales as an
incoherent convolution between the input and output PSFs1:

RPSFðΔρ,rmÞ= RMðΔρ,rmÞ
�� ��2D E

/ jHinj2 ⊛
Δρ

jHoutj2ðΔρ,rmÞ, ð4Þ

where 〈⋯ 〉 denotes an ensemble average, which, in practice, is per-
formed by a local spatial average (see Methods).

Figure 1h displays the mean RPSF associated with the focused R-
matrix displayed in Fig. 1g (pork tissue experiment). It clearly shows a
distorted RPSF which spreads well beyond the diffraction limit [black
dashed line in Fig. 1h]:

δρ0ðzÞ∼
λc

2 sin arctan Δu=ð2zÞ� �� � ð5Þ

with Δu the lateral extension of the probe. The RSPF also exhibits a
strong anisotropy that could not have been grasped by 2D UMI. As we

will see in the next section, this kind of aberrations can only be com-
pensated through a 3D control of the wave field.

Adaptive focusing by iterative phase reversal
Aberration compensation in the UMI framework is performed using
the distortion matrix concept. Introduced for 2D UMI17,28, the distor-
tion matrix can be obtained by: (i) projecting the focused R-matrix
either at input or output in a correction basis [here the transducer
basis, see Fig. 1i]; (ii) extracting wave distortions exhibited by R when
compared to a reference matrix that would have been obtained in an
ideal homogeneous medium of wave velocity c0 [Fig. 1j]. The resulting
distortion matrix D = [D(u, r)] contains the aberrations induced when
focusing on any point r, expressed in the correction basis.

This matrix exhibits long-range correlations that can be under-
stood in light of isoplanicity. If in a first approximation, the pork tissue
layer canbe considered as a phase screen aberrator, then the input and
output PSFs can be considered as spatially invariant: Hin/out(ρ − ρin/
out, rin/out) =H(ρ − ρin/out). UMI consists in exploiting those correlations
todetermine the transfer functionT(u) of thephase screen. In practice,
this is done by considering the correlation matrix C =D ×D†. The cor-
relation between distorted wave fields enables a virtual reflector syn-
thesized from the set of output focal spots17 [Fig. 1k].While, in previous
works17,19, an iterative time-reversal process (or equivalently a singular
value decomposition of D) was performed to converge towards the
incident wavefront that focuses perfectly through the medium het-
erogeneities onto this virtual scatterer, here an iterative phase reversal
algorithm is employed to build an estimator T̂ðuÞ of the transfer
function (see Methods). Supplementary Figure 3 demonstrates the
superiority of this algorithm compared to SVD for 3D UMI.

Iterative phase reversal provides an estimation of aberration
transmittance [Fig. 1k] whose phase conjugate is used to compensate
for wave distortions (see Methods). The resulting mean RPSF is dis-
played in Fig. 1m. Although it shows a clear improvement compared
with the initial RPSF, high-order aberrations still subsist. Because of its
3D feature, the pork tissue layer cannot be fully reduced to an aber-
rating phase screen in the transducer basis.

Spatial reciprocity as a guide star
The3Ddistributionof the speed-of-soundbreaks the spatial invariance
of input and output PSFs. Figure 2b illustrates this fact by showing a
mapof local RPSFs (seeMethods). The RPSF ismore strongly distorted
below the fat layer of the pork tissue (cf ≈ 1480 ± 10 m/s36) than below
the muscle area (cm ≈ 1560 ± 50 m/s). A full-field compensation of
aberrations similar to adaptive focusing does not allow a fine com-
pensation of aberrations [left panel of Fig. 2d]. Access to the trans-
mission matrix T = [T(u, r)] linking each transducer and each medium
voxel is required rather than just a simple aberration transmit-
tance T(u).

To that aim, a local correlation matrixC(rp) should be considered
around each point rp over a sliding box Wðr� rpÞ (see Methods),
commonly called patches, whose choice of spatial extent w is subject
to the following dilemma: On the one hand, the spatial window should
be as small as possible to grasp the rapid variations of the PSFs across
thefield of view; on the other hand, these areas should be large enough
to encompass a sufficient number of independent realizations of
disorder16,19. The biasmadeonourT-matrix estimator actually scales as
(see Supplementary Section 6):

jδTðu,rpÞj2 ∼
1

C2NW
: ð6Þ

C is the so-called coherence factor that is a direct indicator of the
focusing quality8 but that also depends on the multiple scattering rate
and noise background28. NW is the number of diffraction-limited
resolution cells in each spatial window.
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The validity of the T-matrix estimator in a region W1 [Fig. 3c] is
investigated by examining the corrected RPSF in a neighbor regionW2

(yellow box). W1 and W2 are sufficiently close to assume, in a first
approximation, that they belong to the same isoplanatic patch. If the
box is too small [left panels of Fig. 3d], our estimator has not con-
verged yet and the correction is not valid, as shown by the degraded
quality of the RPSF inW2 [left panels of Fig. 3h] compared to its initial
value [Fig. 3g]. With sufficient spatial averaging [third panel of Fig. 3d],
a valid aberration law can be extracted, as shown by a corrected RPSF
now close to be only diffraction-limited [third panel of Fig. 3h].

The question that now arises is how we can, in practice, know if
the convergence of T̂ is fulfilled without any a priori knowledge on T.
An answer can be found by comparing the estimated input and output
aberration phase laws, T̂ inðu,rpÞ and T̂outðu,rpÞ, at a given point rp as
shown in Fig. 3e, f. Spatial reciprocity implies that T̂ in and T̂out shall be
equal when the convergence of the estimator is reached [third panel
of Fig. 3e, f]. Their normalized scalar product, Pin=out =N

�1
u ∣T̂inT̂

y
out∣, can

thus be used to probe the errormadeon the aberration phase law ∣δT∣2.
Both quantities are actually related as follows (see Supplementary

Section 7):

jδT j2 ’ 1� Pin=out: ð7Þ

The normalized scalar product Pin/out is displayed as a function of w
and shows the convergence of the IPR process [Fig. 3a]. For a suffi-
ciently large box [third panel of Fig. 3d], T̂ is supposed to have con-
verged towards T when T̂in and T̂out are almost equal [third panel of
Fig. 3e,f], while, for a small box [left panels of Fig. 3d], a large dis-
crepancy can be found between them. In the following, the parameter
Pin/out will thus be used as a guide star for monitoring the convergence
of the UMI process.

The scaling law of Eq. (6) with respect to NW is checked in Fig. 3b.
The inverse scaling of the bias withNW shows the advantage of 3DUMI
over 2D UMI, since NW ∼wd , with d the imaging dimension. This
superiority is evident in Fig. 3a, which shows a faster convergencewith
3D boxes (green curve) than with 2D patches (orange curve). For a
given precision, 3D UMI thus provides a better spatial resolution for
our T-matrix estimator as shown by right panels of Fig. 3f, wheremuch
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yellow box W2, of fixed size w2 = 2 mm and centered around the point
r2 = (5, − 5, 45) mm, is the area where the effect of aberration correction is investi-
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better agreement between T̂in and T̂out is observed for a 3D box [third
panel of Fig. 3d] than for a 2D patch [right panel of Fig. 3d] of same
dimension w.

Multi-scale compensation of wave distortions
The scaling of the bias intensity ∣δT∣2 with the coherence factor C has not
been discussed yet. This dependence is however crucial since it indi-
cates that a gradual compensationof aberrations shall be favored rather
than a direct partition of the field of view into small boxes22 [see Sup-
plementary Fig. 4]. An optimal UMI process should proceed as follows:
first, compensate for input and output wave distortions at a large scale
to increase the coherence factor C; then, decrease the spatial windowW
and improve the resolution of the T-matrix estimator. The whole pro-
cess can be iterated, leading to a multi-scale compensation of wave
distortions (see Methods). As explained above, the convergence of the
process is monitored using spatial reciprocity (Pin/out > 0.9).

The result of 3DUMI is displayed in Fig. 2. It shows the evolution of
the T-matrix at each step [Fig. 2c] and the corresponding local RPSFs
[Fig. 2d]. In the most aberrated area (i.e. under the fat), the phase
fluctuations of the aberration law corresponds to a time delay spread of
56 ns (rms). This value is comparable with past measurements through
the human abdominal wall37. The pork tissue layer thus induces a level
of aberrations typical of standard ultrasound diagnosis. The compar-
isonwith the initial and full-fieldmapsofRPSFhighlights thebenefit of a
local compensation via the T-matrix, with a diffraction-limited resolu-
tion reachedeverywhere. The local aberrationphase laws exhibitedby T̂
perfectlymatchwith thedistributionofmuscle and fat in thepork tissue
layer. The comparison of the final 3D image [Fig. 2f] and its cross-
sections with their initial counterparts [Fig. 2e] show the success of the
UMI process, in particular for the deepest nylon rod, which has
retrieved its straight shape. The local RPSF on the top right of Fig. 2
shows a contrast improvement by 4.2 dB and resolution enhancement
by a factor 2 [see Methods and Supplementary Fig. 5].

Overcoming multiple scattering for trans-cranial imaging
The same UMI process is now applied to the ultrasound data col-
lected on the head phantom [Fig. 4a]. The parameters of the multi-
scale analysis are provided in the Methods section [see also Sup-
plementary Fig. 6]. The first difference with the pork tissue
experiment lies in our choice of correction basis. Given the multi-
layer configuration in this experiment, the D-matrix is investigated
in the plane wave basis17.

The second difference is that our spatial reciprocity criterion
Pin/out is very low [see the blue box plot in Fig. 4e]. This is the
manifestation of a bad convergence of our T-matrix estimator. The
incoherent background exhibited by the original PSFs [Fig. 5c]
drastically affects the coherence factor C28, which, in return, gives
rise to a strong bias on the T-matrix estimator (Eq. (6)). The inco-
herent background is due to multiple scattering events in the skull
and electronic noise, whose relative weight can be estimated by
investigating the spatial reciprocity symmetry of the R-matrix (see
Methods). Figure 5b shows the depth evolution of the single and
multiple scattering contributions, as well as electronic noise. While
single scattering dominates at shallow depths (z < 20 mm), multiple
scattering quickly reaches 35% and remains relatively constant until
electronic noise increases, so that the three contributions are
almost equal at depths of 75 mm.

Beyond the depth evolution, 3D imaging even allows the study of
multiple scattering in the transverse plane, as shown in Fig. 5a. Two
areas are examined, marked with black boxes, corresponding to the
RPSFs shown in [Fig. 5c] (z = 32mm). In the center, the RPSFs exhibits a
lowbackgrounddue to the presenceof a spherical target, resulting in a
single scattering rate of 90%. The second box on the right, however, is
characterized by a much higher background, leading to a multiple-to-
single scattering ratio slightly larger than one. This high level of mul-
tiple scattering highlights the difficult task of trans-cranial imaging
with ultrasonic waves.
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median, lower and upper quartiles, and the minimum and maximum values. f, g.
Correlation function of the T̂-matrix in the (x, z)-plane (f) and (x, y)-plane (g),
respectively. We attribute the sidelobes along the y-axis (g) to the inactive rows
separating each block of 256 elements of the matrix array.
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In order to overcome these detrimental effects, an adaptive con-
focal filter can be applied to the focused R-matrix19.

R0ðρin,ρout,zÞ=Rðρin,ρout,zÞ exp � jρout � ρinj2
2lcðzÞ2

 !
ð8Þ

This filter has a Gaussian shape, with a width lc(z) that scales as
3δρ0(z)19. The application of a confocal filter drastically improves the
correlation between input and output aberration phase laws [see
Fig. 4e and Supplementary Fig. 7], proof that a satisfying convergence
towards the T-matrix is obtained.

Figure 4d shows the T-matrix obtained at different depths in the
brain phantom. Its spatial correlation function displayed in Fig. 4f, g
provides an estimation of the isoplanatic patch size: 5 mm in the
transverse direction [Fig. 4g] and 2 mm in depth [Fig. 4f]. This rapid
variation of the aberration phase law across thefield of view confirmsa
posteriori the necessity of a local compensation of aberrations induced
by the skull. It also confirms the importance of 3D UMI with a fully
sampled 2D array, as previous work recommended that the array pitch
should be no more than 50% of the aberrator correlation length to
properly sample the corresponding adapted focusing law38.

The phase conjugate of theT-matrix at input and output enables a
fine compensation of aberrations. A set of corrected RPSFs are shown
in Fig. 5d. The comparison with their initial values demonstrates the
success of 3D UMI: a diffraction-limited resolution is obtained almost
everywhere [Fig. 5e], whether it be in ultrasound speckle or in the
neighborhood of bright targets, at shallow or high depths, which
proves the versatility of UMI.

The performance of 3D UMI is also striking when comparing the
three-dimensional image of the head phantom before and after UMI
[Fig. 4b, c, respectively]. The different targets were initially strongly
distorted by the skull, and are now nicely resolved with UMI. In parti-
cular, the first target, located at z = 19 mm and originally duplicated,
has recovered its true shape. In addition, two targets laterally spaced
by 10 mm are observed at 42 mm depth, as expected [Fig. 4a]. The

image of the target observed at 54 mm depth is also drastically
improved in terms of contrast and resolution but is not found at the
expected transverse position. One potential explanation is the size of
this target (2 mm diameter) larger than the resolution cell. The guide
star is thus far from being point-like, which can induce an uncertainty
on the absolute transverse position of the target in the
corrected image.

Finally, an isolated target can be leveraged to highlight the gain in
contrast provided by 3D UMI with respect to its 2D counterpart. To
that aim, a linear 1D array is emulated from the same raw data by
collimating the incident beam in the y-direction [Fig. 6]. The ultra-
sound image is displayed before and after UMI in Fig. 6b, c, respec-
tively. The radial average of the corresponding focal spots is displayed
in Fig. 6d. Even though 2DUMI enables a diffraction-limited resolution,
the contrast gain G is quite moderate (G2D ~ 8dB) as it scales with the
number N of coherence grains exhibited by the 1D aberration phase
law [Fig. 6a]:N2D ~ 6.2. On the contrary, as expected, 3DUMIprovides a
strong enhancement of the target echo [see the comparison between
Fig. 6e–g]:G3D ~ 18 dB. The 2D aberration phase law actually provides a
much larger number of spatial degrees of freedom than its 1D coun-
terpart: N3D ~ 63. The gain in contrast is accompanied by a drastic
improvement of the transverse resolution [>8 × for z > 40 mm in
Fig. 5e]. Figure 6 demonstrates the necessity of a 2D ultrasonic probe
for trans-cranial imaging. Indeed, the complexity of wave propagation
in the skull can only be harnessedwith a 3D control of the incident and
reflected wave fields.

Discussion
In this experimental proof-of-concept, we demonstrated the capacity
of 3D UMI to correct strong aberrations such as those encountered in
trans-cranial imaging. This work is not only a 3D extension of previous
studies17,28since several crucial elements havebeen introduced tomake
UMI more robust.

First, the proposed iterative phase reversal algorithm outper-
forms the SVD for local compensation of aberrations because it can
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evaluate the aberration law on a larger angular support [see Supple-
mentary Fig. 3], resulting in a sharper compensation of aberrations.
Second, the bias of our T-matrix estimator has been expressed analy-
tically (Eq. (6)) as a function of the coherence factor that grasps the
detrimental effects of the virtual guide star blurring induced by aber-
rations, multiple scattering and noise. This led us to define a general
strategy for UMI with: (i) a multi-scale compensation of wave distor-
tions to gradually reduce the blurring of the virtual guide star and
tackle high-order aberrations associated with small isoplanatic
lengths; (ii) the application of an adaptive confocal filter to cope with
multiple scattering and noise; (iii) a fine monitoring of the con-
vergence of our estimator bymeans of spatial reciprocity. The latter is
a real asset, as it provides an objective criterion to check the physical
significance of the extracted aberration laws and optimize the reso-
lution of our T-matrix estimator.

Although the results presented in this paper are striking, they
were obtained in vitro, and some challenges remain for in vivo brain
imaging. Until now, UMI has only been applied to a static medium,
while biological tissues are usually moving, especially in the case of
vascular imaging, where blood flowmakes the reflectivity vary quickly
over time. A lot of 3D imaging modes are indeed designed to image
blood flow, such as transcranial Doppler imaging39 or ULM40,41. These
methods are strongly sensitive to aberrations42,43 and their coupling
withmatrix imagingwould be rewarding to increase the signal-to-noise
ratio and improve the image resolution, not only in the vicinity of
bright reflectors44 but also in ultrasound speckle.

However, due to spatial aliasing, the number of illuminations
required for UMI scales with the number of resolution cells covered by
the RPSF [see Supplementary Fig. 8]. Because the aberration level
through the skull is important, the illumination basis should thus be
fully sampled. It limits 3D transcranial UMI to a compounded frame
rate of only a few hertz, which ismuch too slow for ultrafast imaging45.
Moreover, a reduced number of illuminations breaks the symmetry of
the reflectionmatrix. It would therefore also affect the accuracy of our
monitoring parameter based on spatial reciprocity.

Soft tissues usually exhibit much slower movement, and provide
signals several dB higher than blood. Ultrasound imaging of tissues is
generally discarded for the brain because of the strong level of aber-
rations and reverberations. Interestingly, UMI can open a new route
towards quantitative brain imaging since a matrix framework can also
enable the mapping of physical parameters such as the speed-of-
sound1,46–48, attenuation and scattering coefficients49,50, or fiber
anisotropy51,52. Those various observables can be extremely enligh-
tening for the characterization of cerebral tissues.

Alternatively, a solution to directly implement 3D UMI in vivo for
ultrafast imaging, would be to design an imaging sequence in which
the fully sampledR-matrix is acquired prior to the ultrafast acquisition
itself, where the illumination basis can be drastically downsampled.
The T̂-matrix obtained from R could then be used to correct the
ultrafast images in post-processing.

Interestingly, if an ultrafast 3DUMI acquisition is possible (in cases
with less aberrations, or at shallow depths), the quickly decorrelating
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speckle observed in blood flow canbe anopportunity since it provides
a large number of speckle realizations in a given voxel. A high resolu-
tion T-matrix could thus be, in principle, extracted without spatial
averaging and relying on any isoplanatic assumption53,54.

So far, one limit of UMI concerns the strong aberration regime in
which extreme time delay fluctuations can occur. Indeed, our
approach relies on a broadband focused reflectionmatrix that consists
of a coherent time gating of singly scattered echoes. If time delay
fluctuations are larger than the time resolution δt of ourmeasurement,
the angular components of each echo will not necessarily emerge in
the same time gate and aberration compensation will be imperfect.

Beyond strong aberrations, another issue for transcranial imaging
arises from multiple reflections caused by the skull. While such
reverberations are not observed in the pork tissue experiment, their
detrimental effects are much greater in a transcranial experiment
because of the large impedancemismatch between the skull and brain
tissues. In this work, such artefacts are not corrected and they drasti-
cally pollute the image at shallow depths (z < 20 mm).

To cope with those issues, a polychromatic approach to matrix
imaging is required. Indeed, the aberration compensation scheme
proposed in this paper is equivalent to a simple application of time
delays on each transmit and receive channel. On the contrary, a full
compensation of reverberation requires the tailoring of a complex
spatio-temporal adaptive (or even inverse) filter. To that aim, 3D UMI
provides an adequate framework to exploit, at best, all the spatio-
temporal degrees of freedom provided by a high-dimension array of
broadband transducers.

To conclude, 3D UMI is general and can be applied to any inso-
nification sequence (planewave or virtual source illumination) or array
configuration (random or periodic, sparse or dense). Matrix imaging
can be also extended to any field of wave physics for which a multi-
element technology is available: optical imaging20–22, seismic
imaging25,26 and also radar55. All the conclusions raised in that paper
can be extended to each of these fields. Thematrix formalism is thus a
powerful tool for the big data revolution coming in wave imaging.

Methods
Description of the pork tissue experiment
The first sample under investigation is a tissue-mimicking phantom
(speed of sound: c0 = 1540 m/s) composed of random distribution of
unresolved scatterers which generate ultrasonic speckle characteristic
of human tissue [Fig. 2a]. The system also contains nylon filaments
placed at regular intervals, with a point-like cross-section, and, at a
depth of 40mm, a 10mm-diameter hyperechoic cylinder, containing a
higher density of unresolved scatterers. A 12-mm thick pork tissue
layer is placed on topof the phantom. It is immersed inwater to ensure
its acoustical contact with the probe and the phantom. Since the pork
layer contains a part of muscle tissue (cm ~ 1560 m/s) and a part of fat
tissue (cf ~ 1480 m/s), it acts as an aberrating layer. This experiment
mimics the situation of abdominal in vivo imaging, in which layers of
fat and muscle tissues generate strong aberration and scattering at
shallow depths.

The acquisition of the reflection matrix is performed using a 2D
matrix array of transducers (Vermon) whose characteristics are pro-
vided in Table 1. The electronic hardware used to drive the probe was
developed by Supersonic Imagine (member of Hologic group) in the
context of a collaboration agreement with the Langevin Institute.

The reflection matrix is acquired by recording the impulse
response between each transducer of the probe using IQ modulation
with a sampling frequency fs = 6 MHz. To that aim, each transducer uin

emits successively a sinusoidal burst of three half periods at the central
frequency fc. For each excitation uin, the back-scattered wave field is
recorded by all probe elements uout over a time length Δt = 139μs. This
set of impulse responses is stored in the canonical reflection matrix
Ruu(t) = [R(uin,uout, t)].

Description of the head phantom experiment
In this second experiment, the same probe [Table 1] is placed slightly
above the temporal window of a mimicking head phantom, whose
characteristics are described in Table 2. To investigate the perfor-
mance of UMI in terms of resolution and contrast, the manufacturer
(True Phantom Solutions) was asked to place small spherical targets
made of bone-mimicking material inside the brain. They are arranged
crosswise, evenly spaced in the 3 directions with a distance of 1 cm
between two consecutive targets, and their diameter increases with
depth: 0.2, 0.5, 1, 2, 3 mm [Fig. 4a]. Skull thickness is of ~6 mm on
average at thepositionwhere theprobe isplaced and thefirst spherical
target is located at z ≈ 20 mm depth, while the center of the cross is at
z ≈ 40 mm depth. The transverse size of the head is ~ 14 cm.

To improve the signal-to-noise ratio, the R-matrix is here
acquired using a set of plane waves56. For each plane wave of angles
of incidence θin = (θx, θy), the time-dependent reflected wave field
R(θin, uout, t) is recorded by each transducer uout. This set of wave
fields forms a reflection matrix acquired in the plane wave basis,
RθuðtÞ= Rðθin,uout,tÞ

� �
. Since the transducer and plane wave

bases are related by a simple Fourier transform at the central
frequency, the array pitch δu and probe size Δu dictate the
angular pitch δθ and maximum angle θmax necessary to acquire a
full reflection matrix in the plane wave basis such that:
θmax = arcsin½λc=ð2δuÞ�≈ 28�; δθ= arcsin λc=ð2ΔuyÞ

h i
≈0:8�, with

λc = c0/fc the central wavelength and c0 = 1400 m/s the speed-of-
sound in the brain phantom. A set of 1225 plane waves are thus
generated by applying appropriate time delays Δτ(θin, uin) to each
transducer uin = (ux, uy) of the probe:

Δτðθin,uinÞ= ½ux sinθx +uy sin θy�=c0: ð9Þ

Focused beamforming of the reflection matrix
The focused R-matrix, Rρρ(z) = [R(ρin, ρout, z)], is built in the time
domain via a conventional delay-and-sum beamforming scheme that
consists in applying appropriate time-delays in order to focus at dif-
ferent points at input rin = (ρin, z) = ({xin, yin}, z) and output
rout = (ρout, z) = ({xout, yout}, z):

Rðρin,ρout,zÞ =
X
iin

X
uout

Aðfiin,ring,fuout,routgÞR iin,uout,τðiin,rinÞ
	

+ τðuout,routÞ


(10)

Table 1 | Matrix array datasheet

Number of transducers 32 ×32 = 1024 (with 6 dead elements)

Geometry (y-axis) 3 inactive rows between eachblock of 256 elements

Pitch δu = 0.5 mm ( ≈ λ at c = 1540 m/s)

Aperture
Δu=

Δux
Δuy

� �
=

16mm
17:5mm

� �
Central frequency fc = 3 MHz

Bandwidth (at −6 dB) 80%→Δf = [1.8−4.2] MHz

Transducer directivity θmax = 28° at c = 1400 m/s

Table 2 | Head phantom characteristics

Speed-of-
sound [m/s]

Density [g/cm3] Attenuation at
2.25 MHz [dB/cm]

Cortical bone 3000 ± 30 2.31 6.4 ± 0.3

Trabecular bone 2800 ± 50 2.03 21 ± 2

Brain tissue 1400 ± 10 0.99 1.0 ± 0.2

Skin tissue 1400 ± 10 1.01 1.7 ± 0.2
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where i =u or θ accounts for the illumination basis. A is an apodization
factor that limit the extent of the synthetic aperture at emission and
reception. This synthetic aperture is dictated by the transducers’
directivity θmax ∼ 28�57.

In the transducer basis, the time-of-flights, τ(u, r), writes:

τðu,rÞ= ju� rj
c0

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � uxÞ2 + ðy� uyÞ2 + z2

q
c0

: ð11Þ

In the plane wave basis, τ(θ, r) is given by

τðθ,rÞ= x sinθx + y sinθy + z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2θx � sin2θy

q� 

=c0: ð12Þ

Local average of the reflection point spread function
To probe the local RPSF, the field of view is divided into spatial regions
Wðrm � rpÞ, defined by their center rp and their extent w = (wρ,wz),
where wρ and wz denote the lateral and axial extent, respectively. A
local average of the back-scattered intensity can then be performed in
each region:

RPSFðΔρ,rpÞ= RMðΔρ,rmÞ
�� ��2Wðrm � rpÞ
D E

rm
ð13Þ

where the symbol 〈⋯ 〉 denotes here a spatial average over the vari-
able in the subscript. Wðrm � rpÞ= 1 for ∣ρm − ρp∣ <wρ/2 and
∣zm − zp∣ <wz/2, and zero otherwise. The dimensions of W used for
[Fig. 2b, d] are: w = (wρ,wz) = (3.2, 3) mm. The dimensions of W to
obtain [Fig. 5c, d] are: w = (wρ,wz) = (4, 5.5) mm.

Distortion matrix in 3D UMI
The first step consists in projecting the focused R-matrix Rρρ(z)
[Fig. 1e] onto a dual basis c at output [Fig. 1i]:

RρcðzÞ=RρρðzÞ×GρcðzÞ ð14Þ

where the symbol × stands for the matrix product. Gρc(z) is the pro-
pagation matrix predicted by the homogeneous propagation model
between the focused basis (ρ) and the correction basis (c) at each
depth z. c can be either the plane wave, the transducer, or any other
correction basis suitable for a particular experiment23,58,59.

In the transducer basis (c =u), the coefficients of Gρu(z) corre-
spond to the z − derivative of the Green’s function19:

Gðρ,u,zÞ= zeikc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju�ρj2 + z2

p

4πðju� ρj2 + z2Þ
ð15Þ

where kc is thewavenumber at the central frequency. In the Fourier basis
(c=k), Gρk simply corresponds to the Fourier transform operator17:

Gðρ,kÞ= exp jk:ρð Þ= exp jðkxx + kyyÞ
� �

: ð16Þ

At each depth z, the reflected wave-fronts contained in Rρc are
then decomposed into the sum of a geometric component Gρc, that

would be ideally obtained in absence of aberrations, and a distorted
component that corresponds to the gap between the measured wave-
fronts and their ideal counterparts [Fig. 1j]17,19:

DρcðzÞ=G*
ρcðzÞ � RρcðzÞ ð17Þ

where the symbol ○ stands for a Hadamard product.
Drc =Dρc(z) = [D({ρin, z}, cout)] is the so-called distortion matrix, here
expressed at the output. Note that the same operations can be
performed by exchanging input and output to obtain the input
distortion matrix Dcr = [D(cin, rout)] = [D(cin, {ρout, z})].

Local correlation analysis of the D-matrix
The next step is to exploit local correlations in Drc to extract the T-
matrix. To that aim, a set of output correlation matrices Cout(rp) shall
be considered between distorted wave-fronts in the vicinity of each
point rp in the field of view:

Cðcout,c0out,rpÞ= Dðrin,coutÞD*ðrin,c0outÞWðrin � rpÞ
D E

rin
ð18Þ

An equivalent operation can be performed in input in order to
extract a local correlation matrix Cin(rp) from the input distortion
matrix Dcr.

Iterative phase reversal algorithm
The iterative phase reversal algorithm is a computational process that
provides an estimator of the transmission matrix,

ToutðzÞ=G>
ρcðzÞ×HoutðzÞ, ð19Þ

where the superscript ⊤ stands formatrix transpose. Tout = [T(cout, rp)]
links each point cout in the dual basis and each voxel rp of the medium
to be imaged [Fig. 1k]. Mathematically, the algorithm is based on the
following recursive relation:

T̂
ðnÞ
outðrpÞ= exp i arg CoutðrpÞ× T̂

ðn�1Þ
out ðrpÞ

n oh i
ð20Þ

where T̂
ðnÞ
out is the estimator of Tout at the nth iteration of the phase

reversal process. T̂
ð0Þ
out is an arbitrary wave-front that initiates the

iterative phase reversal process (typically a flat phase law) and

T̂out = lim
n!1

T̂
ðnÞ
out is the result of this iterative phase reversal process.

This iterative phase reversal algorithm, repeated for eachpoint rp,
yields an estimator T̂out of the T-matrix. Its digital phase conjugation
enables a local compensation of aberrations [Fig. 1l]. The focused R-
matrix can be updated as follows:

RðcorrÞ
ρρ ðzÞ= DρcðzÞ � T̂

y
outðzÞ

h i
×Gy

ρcðzÞ ð21Þ

where the symbol † stands for transpose conjugate. The same process
is then applied to the input correlationmatrixCin for the estimation of
the input transmission matrix, TinðzÞ=G>

ρcðzÞ×HinðzÞ.

Multi-scale analysis of wave distortions
To ensure the convergence of the IPR algorithm, several iterations of
the aberration correction process are performed while reducing the
size of the patches W with an overlap of 50% between them. Three
correction steps are performed in the pork tissue experiment, whereas
six are performed in the head phantom experiment [as described in
Table 3]. At each step, the correction is performed both at input and
output and reciprocity between input and output aberration laws is
checked. The correction process is stopped if the normalized scalar
product Pin/out does not reach 0.9.

Table 3 | Parameters of UMI in both experiments

Pork tissue Head phantom

Correction step 1° 2° 3° 1° 2° 3° 4° 5° 6°

Number of transverse
patches

1 × 1 2 × 2 4 × 4 1 × 1 2 × 2 3 × 3 4 × 4 5 × 5 6 × 6

wρ = (wx,wy) [mm] 16 12 8 20 15 13.3 10 8 6.6

wz [mm] 3 3 3 5.5 5.5 5.5 5.5 5.5 5.5
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Synthesize a 1D linear array
To estimate the benefits of 3D imaging compared to 2D UMI, a simu-
lation of a 1D array is performed on experimental ultrasound data
acquired with our 2D matrix array. To that aim, cylindrical time delays
are applied at input and output:

τ0ðθðsÞ,s,zÞ= s sinθðsÞ + z cosθðsÞ

c0
ð22Þ

τ0ðuðsÞ,s,zÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs � uðsÞÞ2 + z2

q
c0

: ð23Þ

with s = x or y, depending on our focus plane choice.
The focusedR-matrix is still built in the timedomain but using this

time the following delay-and-sum beamforming:

Rð2DÞðyin, yout, zÞ=
P
θin

P
uout

R θin,uout, τ
0 ðθðyÞ

in , yin, zÞ+ τ
0 ðuðyÞ

out, yout, zÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{2Dbeamforming along ðy, zÞ�plane0

B@

+ τ
0 ðθðxÞin , xf , zf Þ+ τ

0 ðuðxÞ
out, xf , zf Þ � 2zf=c0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Cylindrical law to focus at ðxf , zf Þ

1
CA:

ð24Þ

The images displayed in Fig. 6b, c are obtained by synthesizing input
and output beams collimated in the (y, z) −plane by focusing on a line
located at (xf = 0 mm, zf = 37.25 mm), thereby mimicking the beam-
forming process by a conventional linear array of transducers.

Estimation of contrast and resolution
Contrast and resolution are evaluated by means of the RPSF. Equiva-
lent to the full width at half maximum commonly used in 2D UMI, the
transverse resolution δρ is assessed in 3D based on the areaAð�3dBÞ at
half maximum of the RPSF amplitude:

δρð�3dBÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Að�3dBÞ=π

q
ð25Þ

The contrast, F , is computed locally by decomposing the normalized
RPSF as the sum of three components28:

RPSFðrp,ΔρÞ=
RPSFðrp,ΔρÞ

RPSFðrp,Δρ=0Þ =αSðrpÞ+αM ðrpÞ+αNðrpÞ: ð26Þ

αS is the single scattering rate that corresponds to the confocal peak.
αM is a multiple scattering rate that gives rise to a diffuse halo; αN
corresponds to the electronic noise rate which results in a flat plateau.
A local contrast can thenbededuced from the ratiobetweenαS and the
incoherent background αB = αM + αN,

F ðrpÞ=
αSðrpÞ
αBðrpÞ

=
1� αBðrpÞ
αBðrpÞ

ð27Þ

Single and multiple scattering rates
The single scattering, multiple scattering and noise rates can be
directly computed from the decomposition of the RPSF (Eq. (26)).
However, at large depths, multiple scattering and noise are difficult
to discriminate since they both give rise to a flat plateau in the
RPSF. In that case, the spatial reciprocity symmetry can be invoked
to differentiate their contribution. The multiple scattering com-
ponent actually gives rise to a symmetric R-matrix while electronic
noise is associated with a fully random matrix. The relative part of
the two components can thus be estimated by computing the
degree of anti-symmetry β in the R-matrix. To that aim, the R-
matrix is first projected onto its anti-symmetric subspace at each
depth:

RðAÞ
ρρ ðzÞ=

RρρðzÞ � R>
ρρðzÞ

2
ð28Þ

where the superscript ⊤ stands for matrix transpose. In a common
midpoint representation, (Eq. (28)) re-writes:

RðAÞ
M ðrm,ΔρÞ=

RMðrm,ΔρÞ � RMðrm,� ΔρÞ
2

: ð29Þ

A local degree of anti-symmetry β is then computed as follows:

βðrpÞ=
RðAÞ
M ðrm,ΔρÞ

��� ���2Wðrm � rpÞDðΔρÞ
� �

½rm,Δρ�

RMðrm,ΔρÞ
�� ��2Wðrm � rpÞDðΔρÞ
D E

½rm,Δρ�

ð30Þ

where DðΔρÞ is a de-scanned window function that eliminates the
confocal peak such that the computation of β is only made by
considering the incoherent background. Typically, we chose DðΔρÞ= 1
for Δρ > 6δρ0(z), and zero otherwise. Assuming equi-partition of the
electronic noise between its symmetric and anti-symmetric subspace,
themultiple scattering rate αM and noise ratio αN can then be deduced
(see Supplementary Section 11):

αMðrpÞ= 1� 2βðrpÞ
� �

αBðrpÞ ð31Þ

αNðrpÞ=2βðrpÞαBðrpÞ ð32Þ

In the head phantom experiment [Fig. 5b], these rates are estimated at
each depth by averaging over a window of size
w = (wρ,wz) = (20, 5.5) mm.

Computational insights
While the UMI process is close to real-time for 2D imaging (i.e. for
linear, curve or phased array probes), 3D UMI (using a fully popu-
latedmatrix array of transducers) is still far from it (see Table 4) as it
involves the processing of much more ultrasound data. Even if
computing a confocal 3D image only requires a few minutes,
building the focused R-matrix from the raw data takes a few hours

Table 4 | Computational insights

2D imaging 3D imaging

Number of channels
[Input ×Output]

32 × 32 ≈ 103 1024 × 1024 ≈ 106

Field of view (Δx,Δy,Δz) (20, 0, 80) mm (20, 20, 80) mm

Data Time Data Time

Reflection matrix acquisi-
tion: Ruu(t)

6 Mo 8 ms 6 Go 260 ms

Confocal image I ðrÞ 53 ko 5.1 ms 2.2 Mo 1.3 min

Matrix
Imaging

Focused R-
matrix: Rρρ(z)

2.2 Mo 15 ms 3.6 Go 2.3 h

Estimation of T
& correction

0.15 s 4.5 min

Here, we compare the typical amount of data and computational time at each post-processing
step of UMI. The comparison between 2D and 3D imaging is made using a single line of trans-
ducers versus all the transducers of our matrix array. In both cases, the pixel/voxel resolution is
fixed at 0.5 mm, which corresponds approximately to one wavelength. The maximum distance
between the input and output focusing points is set to 10 mm. The estimation of T is here
investigated without a multi-scale analysis on a single iteration at input and output.
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(on GPU with CUDA language) while one step of aberration cor-
rection only lasts for a few minutes. All the post-processing was
realized with Matlab (R2021a) on a working station with 2 pro-
cessors @2.20GHz, 128Go of RAM, and a GPU with 48 Go of dedi-
cated memory.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ultrasound data generated in this study is available at Zenodo60

(https://zenodo.org/record/8159177).

Code availability
Codes used to post-process the ultrasound data within this paper are
available from the corresponding author upon request.
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