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Abstract: Exploring the interaction of light with materials periodically structured in space and
time is intellectually rewarding and, simultaneously, a computational challenge. Appropriate
computational tools are urgently needed to explore how such upcoming photonic materials can
control light on demand. Here, we introduce a semi-analytical approach based on the transition
matrix (also known as T-matrix) to analyze the optical response of a spatiotemporal metasurface.
The metasurface consists of a periodic arrangement of time-varying scattering particles. In our
approach, we depart from an individual scatterer’s T-matrix to construct the effective T-matrix of
the metasurface. From that effective T-matrix, all observable properties can reliably be predicted.
We verify our semi-analytical approach with full-wave numerical simulations. We demonstrate a
speed-up with our approach by a factor of more than 500 compared to a finite-element simulation.
Finally, we exemplify our approach by studying the effect of time modulation on a Huygens’
metasurface and discuss some emerging observable features.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

With the advent of nanofabrication technologies [1–3], metasurfaces have gathered much
attention within the scientific community. They are essentially arrays of scatterers arranged
in two dimensions (2D), which are highly tunable in terms of their optical response. While
originally metasurfaces made from metallic constituents were at the focus of interest, it has
been recognized that scatterers made from dielectrics or semi-conductors can also affect light
propagation in a deterministic manner. Amplitude, phase, polarization, and spectral contents in
reflection and transmission can be controlled. So far, a lot of fruitful research has been performed
to tailor such metasurfaces to achieve desired functionalities for specific needs [4–6], with tunable
metasurfaces playing a prominent role in that regard [7–14]. Also, stacking metasurfaces to
achieve metamaterials or, more general, photonic bulk materials that control light propagation
is quite a mature research domain by now. However, all these studies were mostly restricted to
time-invariant materials.

Whereas tunable metamaterials usually suffer from a low tuning speed in comparison to the
operating frequency of light, there have been recent experiments that demonstrated a rather fast
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and considerably strong temporal modulation of the electric material properties of transparent
conducting oxides (TCOs) [15–17]. Consequently, time-varying materials and structures have
recently emerged as a promising field of research [18–23]. Our article is dedicated to this
burgeoning topic. The time-variation of the scatterer’s properties provides an additional degree
of freedom to tune the optical response of the metasurfaces and metamaterials and opens the
opportunity to reach four-dimensional metamaterials [24,25]. Many interesting findings have
been reported regarding the optical response of time-varying materials. These include anisotropic
antireflection temporal coatings [26,27], photonic time crystals (PTCs) [28,29], nonresonant
tunable PTC lasers [30], non-reciprocity [31,32], multifrequency perfect absorbers [33], power
combining of waves [34], dynamic polarization converters [35], time-varying optical vortices
[36], time-varying epsilon-near-zero materials [37,38], and temporal aiming [39].

In our contribution, we are specifically interested in developing a comprehensive theory
to describe the optical response from a metasurface made from a periodic arrangement of
time-varying scatterers. Two developments are primers for this contribution. On the one hand, the
interaction of light with an individual, localized scatterer made from a time-varying material has
already been solved semi-analytically [40–42]. A prototypical example of such an object would be
a sphere. Furthermore, efficient computation of the optical response of an array of time-invariant
scatterers has also been demonstrated [43,44]. However, the extension of the multiple-scattering
formalism to the case of arrays of time-varying scatterers is still missing. Several full-wave
numerical solvers exist [45] that can provide the scattering output for such clusters, but they
require large computational resources and are considerably slow. These requirements limit their
usability since most metasurface applications rely on repeated calculations to optimize for desired
tailored functionality. Therefore, a semi-analytical tool is urgently needed for much more efficient
computations, and it is developed and presented herein.

In this contribution, we semi-analytically solve the multiple-scattering problem of an infinite
periodic array of time-varying scatterers arranged in 2D. We emphasize upfront that dispersive
materials are considered. That is necessary because a material whose properties can tremendously
be modulated in time can likely only be achieved by dispersive materials. Our semi-analytical
approach is generally based on the T-matrix methodology. First, we introduce time modulation
in our system by employing the Lorentz oscillator model with a time-varying electron density.
Then, we use the existing knowledge of the T-matrix of a single time-varying scatterer [40] to
construct an effective T-matrix of a spatiotemporal metasurface. We use the Ewald summation
technique to compute the effective T-matrix of such a metasurface efficiently [43,46,47]. It is an
effective T-matrix because, in essence, the properties of the individual scatterer are renormalized
by the interaction with all the other scatterers forming the infinite 2D arrays of particles. This
technique has already been successfully applied for time-invariant metasurfaces [43]. While our
approach is general in its formulation, we assume spherical scatterers for which we know their
T-matrices analytically. Once we know the effective T-matrix, all observable properties, such as
reflection and transmission in each spatial diffraction order and at each frequency component
generated by the time-varying metasurface, can be predicted reliably.

Next, we verify our theory against numerical simulations with a full-wave solver [45] based on
the finite-element time-domain method. We observe excellent agreement between the numerical
and analytical solutions. Then, we study the effect of time modulation on a Huygens’ metasurface
[48–51] and obtain insights into the richness of the physics involved in light interaction with
spatiotemporal metasurfaces. We find that a Huygens’ metasurface no longer exhibits zero
backscattering under time modulation. Furthermore, we demonstrate the possibility of negative
absorption already reported for time-varying scatterers [30,40,52]. The theory developed in
our paper can be straightforwardly extended to the case of three-dimensional (3D) time-varying
multilayer structures and metamaterials.



Research Article Vol. 30, No. 25 / 5 Dec 2022 / Optics Express 45834

2. Theory

We consider the problem of light scattering from an infinite periodic array of dispersive scatterers
arranged in 2D. The electric material properties of each of these scatterers vary periodically
in time with the same modulation frequency ωm. Figure 1(a) shows an illustration of that
scattering problem. First, we recapitulate the electrodynamics of time-varying bulk media. Then,
we use the discrete translational symmetries of a spatiotemporal metasurface to introduce the
representations for the incident and scattered fields. We define them in spherical and Cartesian
basis for convenience. Then, starting from the T-matrix of an isolated time-varying scatterer
[40], we construct the T-matrix of a metasurface in both representations. We use appropriate
transformation rules between spherical and Cartesian representations for that purpose. Finally,
we give expressions for relevant physically observable quantities.

Fig. 1. a) Illustration of light scattering from a spatiotemporal metasurface made of
periodically time-varying scatterers (with frequency ωm) arranged on a 2D lattice in the
xy-plane. The excitation of a spatiotemporal metasurface with a monochromatic plane wave
induces a response that is comprised of a rich spectrum of diffraction orders both in the
spectral and the momentum dimensions. b) Illustration of the reciprocal lattice of such a
spatiotemporal metasurface, which constitutes a 3D crystal with two spatial and one temporal
dimension, i.e., demonstrating discrete translation symmetries along two directions in space
and, also, in time. The reciprocal lattice resides in a 3D space comprised by the x and y
components of the linear momentum in the two dimensions (kx, ky), and the frequency of
light in the third dimension (ω). The shaded magenta box represents the first Brillouin zone
of the 3D crystal that is spanned by the Floquet frequency vectors (denoted with yellow
color) characterizing the reciprocal lattice with some temporal Floquet frequency Ω and
spatial Floquet frequency vector G.

2.1. Time-varying bulk media

Initially, we consider the propagation of an electromagnetic wave in a linear, isotropic, non-
magnetic, source-free, dispersive, and time-varying bulk medium. The constitutive relations that
accompany Maxwell’s equations inside such a medium, for the electric displacement D and the
magnetic flux density B, are written as

D(r, t) = ε0E(r, t) + P(r, t), (1a)

B(r, t) = µ0H(r, t), (1b)

where ε0 is the vacuum permittivity, µ0 is the vacuum permeability, E is the electric field, P is
the electric polarization density, and H is the magnetic field intensity. The electric polarization
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density P for such a time-varying medium is written as [53,54]

P(r, t) = ε0

∞∫
−∞

Re(t, t − τ)E(r, τ)dτ, (2)

where Re(t, t − τ) is the electric response function of the medium, which shall respect causality
[40].

We use the Lorentz dispersion model to describe the electric response. A superposition of
such Lorentz oscillators can describe the general electric response of the medium [55]. However,
in what follows, we consider a single oscillator. Specifically, we assume the electron number
density of such a system to be an explicit function of time given by [40]

N(t) = N0[1 +Ms cos(ωmt)], (3)

where N0 is the electron density of the time-invariant medium, Ms is the modulation strength, and
ωm is the modulation frequency. According to the Lorentzian model, the electric polarization
density obeys the differential equation [40,56,57][︃

∂2

∂t2
+ γn

∂

∂t
+ ω2

n

]︃
P(r, t) =

N(t)e2E(r, t)
me

, (4)

where γn and ωn are the damping parameter and resonance frequency of the Lorentz oscillator,
respectively, and e and me are the charge and mass of an electron, respectively. Equation (4)
can be further solved to calculate the electric response function R̃e(ω − ω′,ω′) of our system
(see Eq. (S2) and [40]). Importantly, note that, in the frequency domain, due to the periodic
time-variance of the electric response function of the system, a harmonic electric field at frequency
ω induces a polychromatic polarization density inside the medium at the harmonics ω + jωm,
with j ∈ Z [40]. Hence, Maxwell’s equations inside such time-varying media are now coupled in
frequency through the electric response.

2.2. Representations for the input and output fields of a time-varying metasurface and
T-matrix calculations

Here, we want to study the electromagnetic response of a 2D periodic array of scatterers made
from a time-varying medium. Such a system is periodic in space and time. Hence, it constitutes
a spatiotemporal crystal. First, the spatiotemporal crystal is invariant upon discrete translations
in space since it is composed of scatterers placed at r = R = n1R1 + n2R2. Here, n1, n2 ∈ Z, and
R1, R2 are the two primitive lattice vectors of the 2D Bravais lattice of the metasurface (which
we consider to lay in the xy-plane). Moreover, the spatiotemporal crystal is also invariant upon
discrete translations in time since the electric response function of the scatterers is periodic
in time, with a period of Tm = 2π/ωm. Therefore, a time-varying metasurface comprises a
three-dimensional (3D) spatiotemporal crystal. According to Floquet theory, our system is
conveniently analyzed in terms of eigenstates of the respective discrete translation operators
by introducing the temporal Floquet frequency Ω and the spatial Floquet frequency vector G
(that also lays in the xy-plane). By letting those Floquet frequencies take values within the first
Brillouin zone (BZ) of the reciprocal lattice of our spatiotemporal crystal [see Fig. 1(b)], we
can generally express the involved fields as a superposition of fields that are eigenstates of the
respective discrete translation operators in space [T̂s(R)] and time [T̂t(T)] by

E(r, t) =
1

(
√

2π)3

∫ ωm

0
dΩ

∬
BZ1

dG Ẽ(r, t;Ω, G), (5)

where BZ1 denotes integration within the first BZ of the reciprocal lattice of the 2D array
of scatterers. With Ẽ(r, t;Ω, G), we denote fields that are eigenstates of the following set of
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spatiotemporal discrete translation operators:

T̂s(R) |Ẽ(r, t;Ω, G)⟩ ≡ Ẽ(r + R, t;Ω, G) = eiG·RẼ(r, t;Ω, G), (6)

T̂t(T) |Ẽ(r, t;Ω, G)⟩ ≡ Ẽ(r, t + T;Ω, G) = e−iΩT Ẽ(r, t;Ω, G), (7)

where R = n1R1 + n2R2, with n1, n2 ∈ Z, and T = n3Tm, with n3 ∈ Z. We will represent those
fields using two basis sets: a Cartesian and a spherical. That is to say, we will further expand
those fields into a superposition of plane and spherical waves, respectively. The plane wave
(PW) expansion is conveniently used to represent the input and output fields of our time-varying
metasurface, as it constitutes a planar-like structure [43]. However, the spherical wave (SW)
expansion needs to be used to solve the scattering problem of such an array of scatterers based
on the prior knowledge of the solution to the scattering problem of an individual scatterer. In
what follows, we will use the superscripts "(c)" and "(s)" to refer to such Cartesian and spherical
expansions of the fields, respectively.

Specifically, we represent the incident field in the two bases as [58]

Ẽinc(r, t;Ω, G) ≡ Ẽinc,(c)(r, t;Ω, G) ≡
∑︂
jgds

Ainc,(c)
jgds (Ω, G)|Ωj Gg d s⟩, (8)

Ẽinc(r, t;Ω, G) ≡ Ẽinc,(s)(r, t;Ω, G) ≡
∑︂
jlms

Ainc,(s)
jlms (Ω, G; r0)|Ωj l m s⟩(1)r0 , (9)

where we introduced the complex Cartesian and spherical incident amplitudes, Ainc,(c)
jgds (Ω, G) and

Ainc,(s)
jlms (Ω, G; r0), respectively.
On the one hand, |Ωj Gg d s⟩ represents a monochromatic PW with frequency Ωj = Ω +

jωm, with j ∈ Z. Its wave vector is kjGgd = Gg + Γjgd(Ω, G)ẑ, with Gg = G + gp,q, and

Γjgd(Ω, G) = (−1)∆
√︂

k2
j −

|︁|︁Gg
|︁|︁2. We consider the square root to have a positive real part. Here,

∆ =
[︁
δd↓δj≥0 + δd↑δj<0

]︁
(1 − ∆0) + δd↓∆0, with ∆0 taking the value of one, when k2

j ∈ R and
k2

j <
|︁|︁Gg

|︁|︁2, and zero otherwise. We use the index d to refer to the direction of propagation of the
PW, taking the values ↑ (↓) to refer to propagation/decay towards the upper(lower) half-space,
respectively. We introduce ∆ to guarantee propagation/decay along the direction defined by
the index d for all frequencies. Further, δαβ is the Kronecker delta, kj = n(Ωj)Ωj/c0 is the
wave number of the PW, gp,q = pg1 + qg2, with p, q ∈ Z, and g1, g2 are the two primitive
reciprocal lattice vectors [43]. The summation over g implies a summation over the indices
p, q. Furthermore, n(Ωj) is the (generally dispersive) refractive index of the host medium that is
supposed to be isotropic, and c0 is the speed of light in free space. Moreover, the index s takes
the values M(N) to refer to TE(TM) polarization.

On the other hand, |Ωj l m s⟩(ι)r0 represents a monochromatic vector spherical harmonic (VSH),
that is either regular (ι = 1) or radiating (ι = 3), with total angular momentum l = 1, 2, . . . ,
angular momentum along the z-axis m = −l, . . . , l, and frequency Ωj. The VSH is centered at an
arbitrary position r = r0. Due to the discrete translation symmetry in space, the spherical incident
amplitudes have the symmetry Ainc,(s)

jlms (Ω, G; r0 + R) = eiG·RAinc,(s)
jlms (Ω, G; r0). An incident field

that has no singularities within the slab that bounds the array of scatterers at the planes z = z−
and z = z+, is conveniently represented inside that slab through Eq. (8). Furthermore, from
the Cartesian incident amplitudes Ainc,(c)

jgds (Ω, G), we can analytically get the spherical incident
amplitudes Ainc,(s)

jlms (Ω, G; r0).
We refer to the supplementary material for the definitions and the spatiotemporal representations

of |Ωj Gg d s⟩ and |Ωj l m s⟩(1)r0 and for the aforementioned transformations between the two
equivalent representations of the incident field.
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The scattered field is similarly represented by

Ẽsca(r, t;Ω, G) ≡ Ẽsca,(c)(r, t;Ω, G) ≡
∑︂
jgs

{︄
Asca,(c)

jg↑s (Ω, G)|Ωj Gg ↑ s⟩, for z>z+

Asca,(c)
jg↓s (Ω, G)|Ωj Gg ↓ s⟩, for z<z−

(10)

Ẽsca(r, t;Ω, G) ≡ Ẽsca,(s)(r, t;Ω, G) ≡
∑︂
jlms

Asca,(s)
jlms (Ω, G)|Ωj G l m s⟩(3), (11)

where we introduced the complex Cartesian and spherical scattered amplitudes, Asca,(c)
jgds (Ω, G)

and Asca,(s)
jlms (Ω, G) respectively.

Here, |Ωj G l m s⟩(3) represents an array of radiating VSHs distributed over the Bravais lattice,
i.e., the origins of the scatterers:

|Ωj G l m s⟩(3) =
∑︂
R

eiG·R |Ωj l m s⟩(3)R . (12)

The summation over R implies a summation over the integers n1, n2. From the spherical scattered
amplitudes Asca,(s)

jlms (Ω, G) we can analytically get the Cartesian scattered amplitudes Asca,(c)
jgds (Ω, G)

(see the supplementary material).
Conclusively, by employing vectors that contain the incident and scattered amplitudes and by

appropriately truncating the infinite sums over the indices of the eigenstates, we can represent
the (linear) scattering system of a periodically time-varying, 2D array of scatterers, either in the
Cartesian or the spherical representation, by

Asca,(c)(Ω, G) = T̂(c)(Ω, G) · Ainc,(c)(Ω, G), (13)

Asca,(s)(Ω, G) = T̂(s)(Ω, G) · Ainc,(s)(Ω, G; R), (14)

where we introduced the Cartesian and the spherical T-matrices, T̂(c)(Ω, G), and T̂(s)(Ω, G). They
represent the scattering system in either of the two bases. The spherical representation of the
T-matrix of our system, T̂(s)(Ω, G), is also known in the literature as the effective T-matrix of the
scatterer. It is an effective T-matrix because it could be conceived as a renormalization of the
T-matrix of the individual scatterer once it is placed inside the lattice (see Fig. 2).

We denote the T-matrix of an individual time-varying scatterer, placed at r = r0, as T̂(s)
0 (Ω; r0).

Its elements are given by (3)
r0 ⟨Ωj l m s|T̂(s)

0 (Ω; r0)|Ωj′ l′ m′ s′⟩(1)r0 . They connect the scattered fields
with the incident fields of the individual scatterer, once they are represented in the basis of a series
of VSHs centered at r = r0, i.e., at the origin of the individual scatterer. In principle, T̂(s)

0 (Ω; r0)
can be calculated numerically for an individual scatterer of arbitrary geometry by generalizing
an existing numerical method for static scatterers to the time-varying case [59]. However, this,
unfortunately, generally requires a rather big computational effort. Nevertheless, in Ref. [40], the
T-matrix of an individual, homogeneous time-varying sphere is semi-analytically calculated. It
can be conveniently used here to study the optical response of an array of time-varying spheres,
even though our theoretical approach is generally valid for arbitrary scatterers.

In Fig. 2, we illustrate the different T-matrices representing the systems of static/time-varying
isolated spheres/array of spheres in the spherical basis. The symmetries of each of the four
scattering systems induce specific symmetry-protected zeros in the entries of the T-matrix.
Specifically, on one side, time-invariance enforces zeros in the entries of the T-matrix that
correspond to multipolar transitions between different frequencies, and, on the other side,
the rotational symmetry of an isolated sphere enforces zeros in the entries of the T-matrix
that correspond to multipolar transitions between multipoles with different multipolar indices.
Note that the symmetries of the lattice in the cases of an array of spheres introduce extra
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Fig. 2. Illustration of T-matrices in the spherical basis for different scattering systems: a)
time-invariant sphere, b) time-invariant metasurface, c) time-varying sphere, d) time-varying
metasurface. Here, the white shaded entries represent the symmetry-protected zeros of the
elements of the T-matrices, Ωj denotes the jth frequency of a given spectral comb, and Mk
denotes the kth spherical multipole characterized by l, m, s. The rotational symmetry of
the isolated sphere allows only for invariant transitions with invariant multipolar indices,
whereas the time-variance introduces coupling among multipoles of different frequencies.
Note that, in general, there are extra lattice-symmetry-induced-zeros in the elements of the
T-matrices of the arrays, which correspond to particular multipolar transitions prohibited by
the symmetries of the lattice. Also, note that the number of multipoles for each frequency
shall generally vary: typically, a larger number of multipoles for higher frequencies is
needed.
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symmetry-protected zeros in the elements of the T-matrix. They correspond to prohibited
multipolar transitions between multipoles that belong to different irreducible representations of
the symmetry group of the array [60]. We neglect this for simplicity in our illustration.

As a next step, we can solve for T̂(s)(Ω, G) in Eq. (14) by writing [43]

Asca,(s)(Ω, G) = T̂(s)
0 (Ω; R) ·

[︄
Ainc,(s)(Ω, G; R) +

∑︂
R′≠0

eiG·R′Ĉ(3)(−R′) · Asca,(s)(Ω, G)

]︄
. (15)

This equation physically states that each scatterer of the metasurface, once excited by a field
that has the same discrete translational symmetry as that of the lattice, 1) sees as an effective
incident field the external incident field plus the scattered field from all the other scatterers in the
2D array, and 2) scatters the same field, upon a difference of phase, according to its individual
T-matrix, T̂(s)

0 (Ω; R). The matrix Ĉ(3)(−R′) represents the translation of radiating VSHs centered
at r = R + R′, |Ωj′ l′ m′ s′⟩(3)R+R′ , into a series of regular VSHs centered at r = R, |Ωj l m s⟩(1)R
(see the supplementary material). Combining Eqs. (14) and 15, we readily get the expression for
the effective T-matrix of our system in the spherical representation:

T̂(s)(Ω, G) =

(︄
Û − T̂(s)

0 (Ω; R) ·
∑︂
R′≠0

eiG·R′Ĉ(3)(−R′)

)︄−1

· T̂(s)
0 (Ω; R), (16)

where Û is the identity matrix. The Ewald method can efficiently evaluate the infinite summation
of the translation matrices over the lattice in real space in the above equation (see the supplementary
material and [46]). Note that for the efficient calculation of the spherical T-matrix in Eq. (16),
one should generally consider representations with a different number of multipoles for each
frequency of a spectral comb characterized by some Floquet frequency Ω. Higher frequencies
require a larger number of multipoles since they correspond to interactions with optically larger
scatterers.

As a next step, we can analytically transform the T-matrices from the spherical to the Cartesian
representation and get T̂(c)(Ω, G). This requires the transformation of the input and the output
vectors of the T-matrix:

Ainc,(s)(Ω, G; r0) = Î(Ω, G; r0) · Ainc,(c)(Ω, G), (17)

Asca,(c)(Ω, G) = Ô(Ω, G) · Asca,(s)(Ω, G), (18)

where analytical expressions for the input and output transformation matrices, Î(Ω, G; r0),
Ô(Ω, G), are given in the supplementary material. We readily get the following expression for
the Cartesian T-matrix:

T̂(c)(Ω, G) = Ô(Ω, G) · T̂(s)(Ω, G) · Î(Ω, G; R). (19)

Finally, we can write the Cartesian S-matrix, that connects the Cartesian amplitudes of the outgoing
waves, Aout,(c)

jgds (Ω, G) = Ainc,(c)
jgds (Ω, G)+Asca,(c)

jgds (Ω, G), in either of the two half-spaces of the hosting
medium, with the Cartesian amplitudes of the incoming waves, Ain,(c)

jgds (Ω, G) = Ainc,(c)
jgds (Ω, G), as

follows:
Ŝ(c)(Ω, G) = Û + T̂(c)(Ω, G). (20)

Let us note that an extension to multilayer time-varying metasurfaces, based on the S-matrices of
each layer, is also straightforward (see the supplementary material and [43]).
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2.3. Physically observable quantities

We need to define some physically observable quantities to study the response of time-varying
metasurfaces. We assume that our metasurface is embedded inside a lossless host medium.
The total energy flux towards the positive z-axis of an electromagnetic field (represented in
the Cartesian basis by some amplitudes A(c)

jgds(Ω, G) and which may contain evanescent waves
decaying exclusively along a single direction) propagating in the host medium is given by:

W =
∭ +∞

−∞

dtdxdy ẑ · [E(r, t) × H(r, t)]

=

∫ ωm

0
dΩ

∬
BZ1

dG
∑︂
j≥0

∑︂
gds

Wjgds(Ω, G),
(21)

where H(r, t) is the magnetic field, and Wjgds(Ω, G) denotes the energy spectral density flux that
a PW, |Ωj Gg d s⟩, carries along the positive z-axis, which is given by the formula:

Wjgds(Ω, G) =
2Re

{︁
Γjgd(Ω, G)

}︁
Zjkj

|︁|︁|︁A(c)
jgds(Ω, G)

|︁|︁|︁2 . (22)

Here, Zj is the wave impedance of the host medium at the frequency Ωj. Assuming an excitation
of the time-varying metasurface with a single monochromatic PW, |Ωj Ggd s⟩ (with j ≥ 0 in
what follows), we can define the physical observables of reflectivity [Rjgds(Ω, G)], transmissivity
[Tjgds(Ω, G)], and absorptivity [Ajgds(Ω, G)] as:

Rjgds(Ω, G) = −

∑︁
j′≥0

∑︁
g′s′ Wout

j′g′d̃s′
(Ω, G)

W inc
jgds(Ω, G)

=
∑︂
j′≥0

∑︂
g′s′

ZjkjRe
{︁
Γj′g′d(Ω, G)

}︁
Zj′kj′Re

{︁
Γjgd(Ω, G)

}︁ |︁|︁|︁Ŝj′g′d̃s′;(c)
jgds (Ω, G)

|︁|︁|︁2 ,
(23)

Tjgds(Ω, G) =

∑︁
j′≥0

∑︁
g′s′ Wout

j′g′ds′(Ω, G)

W inc
jgds(Ω, G)

=
∑︂
j′≥0

∑︂
g′s′

ZjkjRe
{︁
Γj′g′d(Ω, G)

}︁
Zj′kj′Re

{︁
Γjgd(Ω, G)

}︁ |︁|︁|︁Ŝj′g′ds′;(c)
jgds (Ω, G)

|︁|︁|︁2 ,
(24)

Ajgds(Ω, G) = 1−Rjgds(Ω, G) − Tjgds(Ω, G), (25)

where d̃ ≠ d. We can see that those observables are directly related to the elements of the
S-matrix of the metasurface.

3. Comparing analytical solutions with full-wave numerical simulations

We verify at first the theory developed in the last section by comparing the near-field calculations
of a full-wave numerical solver [45] with our analytical solutions. These full-wave numerical
simulations are based on the finite-element time-domain method.

We consider a time-varying metasurface composed of a square lattice of dispersive spheres
embedded in free space [see Fig. 1(a)]. We make use of the Lorentz oscillator model of Eq. (4),
and in what follows, for generality, we will consider the resonance frequency ωn as a free
parameter with respect to which we define all the relevant quantities. Specifically, the damping
parameter γn is taken as ωn/8, and the electron number density N0 is set to 11ω2

nmeε0/e2.
Furthermore, the radius of the spheres is chosen as r = 3.77c0/ωn, and the spatial periodicity in
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both x and y directions is chosen as |R1 | = |R2 | = 5r. Moreover, the frequency of the modulation
of the electron number density is set to ωm = 0.1ωn, while its strength is taken as Ms = 0.9 [see
Eq. (3)]. Next, we set the incident field to be a Gaussian pulse of an x̂-polarized PW given by

Einc(r, t) = E0 e
−

(t−t0−z/c0)
2

2T2
0 cos[ω0(t − t0 − z/c0)]x̂, (26)

where E0 = 1 V/m, T0 = 2.9 × 2π/ωn, ω0 = 0.31ωn, t0 = 8T0, and c0 is the speed of light in
free space. We provide in the supplementary material the incident amplitudes that expand such
excitation in the Cartesian basis, which we use to calculate the input vector in our algorithm.

To set up these simulations in the full-wave reference solver, we exploit the mirror symmetries
of our system about the xz- and yz-planes [see Fig. 1(a)] to reduce the simulation domain.
We appropriately use perfect electric conductor (PEC) and perfect magnetic conductor (PMC)
boundary conditions to mimic a periodic system. The mesh size inside the sphere was taken as
0.7c0/ωn, while in the host medium, it was taken as 1.7c0/ωn.

We compute the near fields at two spatial points (above and below the metasurface). These
points have coordinates P(1.25r, 1.25r, 1.2r) and Q(1.25r, 1.25r,−1.2r). The comparison of near
fields is shown in Fig. 3. We observe an excellent agreement between our analytical solutions
with the fields calculated using the full wave numerical solver. Besides the excellent accuracy, it is
worth mentioning that the numerical full-wave solver takes around 68 hours for the computation.
In contrast, our analytical solutions could be obtained within only 0.128 hours, using multipoles
up to the third order and a truncation of the spectrum at 1.5ωn. These calculations were performed
on a computing node of a cluster.

Fig. 3. Comparison between analytically and numerically obtained near field signals, at
point P (transmission): a) in the frequency domain and b) in the time domain; and at point Q
(reflection): c) in the frequency domain and d) in the time domain. The light green shaded
region represents the frequency (time) interval where 99% of the energy of the incident
pulse resides in the frequency (time) domain. All specific details on the scattering setting
are described in the main text.

4. Effect of time modulation on Huygens’ metasurfaces

Huygens’ metasurfaces form an important class of metamaterials. They offer near-zero back-
scattering at specific spectral regions. Therefore, to highlight the opportunities of what can be
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explored with the present code, we study the impact of a time variation of the material properties
on the optical response of such a Huygens’ metasurface, i.e., in essence, we discuss a time-varying
Huygens’ metasurface.

As in the previous section, we consider a square lattice of spherical scatterers with the same
Lorentz dispersion model. Initially, we assume the time-invariant case (i.e., Ms = 0) and find a
specific geometry for which our metasurface shows near-zero backscattering at some spectral
region. We consider the normal incidence of a single TE-polarized, upwards-propagating,
monochromatic PW, whose frequency, ωinc, we vary. The incident PW is the same as shown
in Fig. 1(a). The Huygens’ condition is achieved for the radius r = 4.27c0/ωn and the spatial
periodicities |R1 | = |R2 | = 11.93c0/ωn. The cyan curve in Fig. 4(a) shows the reflectivity (R)
for the time-invariant case. We observe the existence of near-zero backscattering at two spectral
regions centered at ωinc/ωn = 0.18 and 0.32.

Fig. 4. The effect of time modulation on a Huygens’ metasurface. Plots of a) reflectivity
[Rj0↑M(Ω, 0)], b) transmissivity [Tj0↑M(Ω, 0)], and c) absorptivity [Aj0↑M(Ω, 0)] for dif-
ferent modulation strengths, Ms, as a function of the excitation frequency, ωinc = Ωj, of a
normally incident, TE-polarized, PW. The modulation frequency considered isωm/ωn = 0.1.
d) Ratio of amplitudes, and e) phase difference of magnetic and electric dipolar contri-
butions for the zeroth spectral diffraction order. Here, we use the following notation
AMD = Asca,(s)

j,1,−1,M(Ω, 0), and AED = Asca,(s)
j,1,−1,N(Ω, 0). Two Huygens’ conditions with zero

backscattering are observed at ωinc/ωn = 0.18, 0.32 for the case of unmodulated meta-
surface (denoted with the two black vertical lines). In the lower frequency, where the
response of the metasurface is mainly dipolar, the 1st Kerker condition of |AED | = |AMD |,
∠AMD − ∠AED = −π is satisfied. Note that at low excitation frequencies there exists a
spectral region with negative absorptivity in (c). The light-blue-shaded region represents the
frequency interval up to which the lattice is subwavelength concerning the wavelength of the
zeroth spectral diffraction order.

Next, we introduce the temporal modulation of the metasurface. The modulation frequency is
fixed at ωm = 0.1ωn. We consider two different modulation strengths, Ms = 0.5 and 0.9, and
observe the change in reflectivity R. Note that R includes contributions from all the reflected
frequencies [see Fig. 1(a) and Eq. (23)]. We find that the near-zero backscattering gets spoiled by
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the temporal modulation of the array [see Fig. 4(a)]. This is expected since the T-matrix of our
metasurface undergoes a renormalization process that is induced by the temporal modulation
[see Fig. 2(b) and (d)]. As expected, we observe a stronger deviation in the reflected spectra
with increasing modulation strength. In fact, we observe a blue shift in the resonances of R.
These observations also hold for T [see Fig. 4(b)]. These effects are mainly observed in the
subwavelength regime, where the material losses of the Lorentz dispersion model are low.

To explain these observations, we look at the electric (ED) and magnetic dipolar (MD)
contributions to the scattered field. For simplicity, we only show the plots of the multipolar
spectra for the zeroth spectral diffraction order, i.e., for ωj′ = ωj = ωinc. However, as we will
see later, a significant spectral coupling is also happening to other spectral diffraction orders.
We plot in Figs. 4(d) and (e) the amplitude ratios and the phase differences of these multipolar
contributions. We denote them as AMD = Asca,(s)

j,1,−1,M(Ω, 0) and AED = Asca,(s)
j,1,−1,N(Ω, 0), respectively.

It is well known that to achieve the Huygens’ condition (1st Kerker condition) for a metasurface
operating in the dipolar regime (i.e., with optically small scatterers), we need |AMD |/|AED | = 1
and ∠AMD − ∠AED = −π (see supplementary material of [52] and [50]). We observe that
those two conditions are simultaneously satisfied at the expected frequency of the first Huygens’
condition for the time-invariant case. They seem not to be satisfied for the case of the second
Huygens’ condition at the larger frequency, but this is just because the metasurface ceases to be
purely dipolar in that spectral region and, hence, an other, generalized Kerker condition applies
[61]. Indeed, the multipolar conditions for zero-backscattering are still satisfied for that case
if we consider all the multipolar contributions. As expected, the temporal modulation of the
metasurface alters the multipolar content of the radiating fields in amplitude and phase, spoiling
the Huygens’ condition and destroying the zero-backscattering effect.

It is important to note that for the time-modulated metasurface, satisfying the Huygens’
condition only at the zeroth spectral diffraction order is insufficient to achieve zero reflection.
The reason for this is the existence of finite contributions to the reflected energy from other
spectral diffraction orders [see Fig. 1(a) and Eq. (23)]. In Fig. 5, we analyze the contributions of
the different PWs that take part in the spectra of the observables previously discussed in Fig. 4,
for the particular case of Ms = 0.9. There, the complexity of the optical system of a time-varying
metasurface can be appreciated in view of its S-matrix. In Fig. 5, for simplicity, we only show
the absolute values of the S-matrix elements associated with up to the first spectral and spatial
diffraction orders. Higher spatiotemporal orders have vanishing contributions to the reflected
and transmitted fields. Note that the metasurface has mirror symmetries about the xy-, xz-, and
yz-planes. Those mirror symmetries of the metasurface introduce symmetries between elements
of the S-matrix that correspond to symmetric spatial diffraction orders. Therefore, we omit to
plot the spectra of those symmetric spatial diffraction orders. See the supplementary material
for more details about the effect of the above mentioned mirror symmetries of the system on its
S-matrix. For example, such a symmetry analysis predicts that, upon normal incidence, due to
the symmetries of the system concerning the xz- and yz- planes, there cannot be reflection or
transmission in the zeroth spatial diffraction order of the opposite polarization compared to that
of the excitation. We can also observe this symmetry selection rule in the spectra in Figs. 5(d)
and (j). We can observe in Figs. 5(a) and (g) the rather significant contributions to R and T from
the non-zero spectral diffraction orders (j′ = j ± 1) in the zeroth spatial diffraction order (g′

00).
This spectral coupling effect primarily spoils the Huygens’ condition in the time-varying case.
Also note the solid blue lines in the second column of Fig. 5 extending into the light-blue-shaded
spectral region in Fig. 4. As expected, this signifies the presence of propagating spatial diffraction
orders for the first blue shifted spectral diffraction order (j′ = j + 1) in the subwavelength spectral
region of the time-invariant metasurface. Therefore, time modulation allows the scattered field to
get coupled to the spatial diffraction orders even though the metasurface is sub-wavelength for
the incident field.
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Fig. 5. Plots of the absolute value of the elements of the S-matrix,
|︁|︁|︁Ŝj′g′d′s′;(c)

j0↑M (Ω, 0)
|︁|︁|︁, that

are related with the spectra of the metasurface presented in Fig. 4 for the case of Ms = 0.9,
as a function of the incident frequency ωinc = Ωj, (a)-(f): for reflection (d′ =↓), and (g)-(l):
for transmission (d′ =↑). Here, the solid curves correspond to propagating, and the dotted
curves correspond to evanescent waves. The color of the lines denotes the different spectral
diffraction orders considered. There are symmetries between the spectra of different spatial
diffraction orders induced by the symmetries of the square lattice (see text).

Last but not least, another important feature to be noted is the onset of negative absorption
for the time-modulated case [see Fig. 4(c)]. According to Noether’s theorem, time-invariance
symmetry is responsible for energy conservation within a system. Therefore, in time-modulated
media, the photons can exchange energy with the externally modulated matter. This explains the
observation of negative absorption in our spatiotemporal metasurface. In fact, we can adequately
adjust the parameters of such time-varying systems to observe parametric amplification effects
[52].

5. Conclusions

We have presented an approach to semi-analytically compute the scattering response of a
spatiotemporal metasurface. We started with the dynamics of a time-varying bulk media
having Lorentzian dispersion. Then, we constructed the effective T-matrix of a spatiotemporal
metasurface using the T-matrix of a time-varying sphere. We emphasize that our developed
multiple-scattering theoretical framework is quite general and does not depend on the shape
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of the constituent scattering object. Then, we verified our theory against full-wave numerical
simulations, demonstrating an excellent agreement. Finally, we studied the effect of time
modulation on Huygens’ metasurfaces and explained it in terms of spatiotemporal diffraction
orders.

As a next step, our multiple scattering approach can be extended to the 3D metamaterials
to study the complex band structure of such four-dimensional (4D) spatiotemporal crystals.
Moreover, using our semi-analytical formalism, it is interesting to study parametric amplification
effects in such spatiotemporal metasurfaces. Finally, another exciting extension of the current
research can be the study of homogenization techniques in spatiotemporal metamaterials.
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