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We present a theoretical and numerical analysis of the diffraction of acoustic waves by

space-time modulated gratings with rigid-type modulations. This is done by deriving the

form of the modes which are exact, uncoupled, solutions of the problem in the unbounded

regions, inside and outside the grating. The dispersion of the modes is studied as a function

of the ratio of the modulation speed to the speed of sound which shows that each spatial

diffraction order is associated with a single temporal diffraction order. For a grating of

finite extend, the solution is obtained as a superposition of these modes, which couple at

the grating interfaces. This provides a numerical, multimodal, method when considering a

truncated version of the solution. We provide analysis of the solutions in the harmonic and

in the transient regimes.

 2022 Published by Elsevier Inc.

1. Introduction

Starting with the pioneering works of Simon [1] and of Oliner and co-workers [2,3], the interaction of waves with media

whose properties are space-time dependent has aroused deep interest in the past years since they offer additional degrees

of freedom for the control of sound propagation when compared to their conventional space modulated counterparts. This

includes non-reciprocal propagation which is similar although non identical to the non-reciprocity in the presence of a flow

[4–9]. Another remarkable feature of space-time modulated media is their capacity to generate frequency conversions to

almost arbitrarily high frequencies thanks to the appearance of space-time diffraction orders dictated by the speed of the

modulation [10–13]. Based on these properties, a plethora of applications have been proposed within few years, including

experimental realizations [5,9,11,12,14,15].

Besides fabrication challenges, the numerical implementation of these problems involving several spatial and temporal

scales which can be very different, is an issue as well. Indeed, the commercial solvers are not yet performant to do that

and, if in principle standard methods such as the finite-difference time-domain FDTD can be employed, the simulations

can become prohibitively expensive. An exception is the FDTD schemes developed with success in [16,17] owing to the

simplifications which arise when the metasurface is treated as an idealized spatial discontinuity. To circumvent these com-

putational limitations, multimodal methods, already used for classical patterned devices, have been extended to devices

with space and time modulations [18–22]. Multimodal methods use the discrete set of modes which are the exact solutions

in each unbounded region, say the unbounded grating and the unbounded free space. The solution of diffraction problems

is then written as a superposition of these modes which propagate without coupling in each sub-region and couple only at

✩ Fully documented templates are available in the elsarticle package on CTAN.
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Fig. 1. Space-time modulated grating of length ℓ. The grating consists in a h-periodic lamination alternating air and rigid parts modulated in time at

constant speed v in direction ey .

their interface. For periodic structures, the reduction of the computational domain to a single period and the absence for

requirement of any spatial meshing often enable multimodal methods to outperform other numerical solvers.

In this study, we consider a diffraction grating made of a periodic arrangement of sound-rigid and sound-soft layers

modulated along its interfaces at velocity v (Fig. 1). We aim to understand the dispersion of the fundamental solutions,

or modes, inside and outside the grating and to provide semi-analytical solutions of scattering problems thanks to the

aforementioned multimodal analysis. In §2, we derive the dispersion of the modes, being propagating or evanescent, and we

show that our diffraction grating produces spatial diffraction orders associated with up-converted frequencies. The numerical

method based on this multimodal analysis is detailed in §3. Solutions of scattering problems for incident plane waves and

incident beams in the harmonic regime are given and commented (a script is provided). Eventually in §4, we analyse the

temporal and spatial separations of the diffraction orders (or modes) for an incident narrow Gaussian pulse in the transient

regime. We notice that this study is closely related to that of [23] which provide a comparison between such a multimodal

method and FDTD. In this reference, the authors consider a similar grating with sinusoidal variations of the permittivity,

being the electromagnetic equivalent of the bulk modulus in acoustics. The sound-rigid layers can be thought as high values

of the mass density and bulk modulus and we consider the limiting case of infinite values.

2. Analysis of the modes inside and outside the space-time modulated grating

We consider the linearized Euler equations for acoustic waves

ρ
∂u

∂t
= −∇p, divu + 1

ρc2
∂p

∂t
= 0, (1)

with u and p the acoustic pressure and velocity, ρ the mass density and c the sound speed (the bulk modulus is ρc2).

Following [24], we introduce the velocity potential ϕ so that (1) can be written





u

p

Z



=
(

I 0

0 1

)





∇ϕ

−1

c

∂ϕ

∂t



 , (2)

with I the 2×2 identity matrix and Z = ρc, along with

divu + 1

Zc

∂p

∂t
= 0. (3)

Eventually, at the moving rigid boundaries (with velocity v), we have

Zu y = Mp, y = {vt, ξh + vt}, (4)

with M = v/c (see Appendix A).

2
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2.1. Modes in the moving frame

The analysis of the problem is performed in the moving frame owing to the change of variables (x, y, t) → (x, y, t),

x = x, y = y − vt, t = t,

φ(x, y, t) = ϕ(x, y, t),
(5)

(the same for (u, p) → (u,p)). Eqs. (2)-(3) become















u = ∇φ,
p

Z
= −1

c

(

∂φ

∂ t
− v

∂φ

∂y

)

,

divu + 1

Zc

(

∂p

∂ t
− v

∂p

∂y

)

= 0.

(6)

Accordingly, the wave equation takes the form

∂2φ

∂x2
+ (1− M

2)
∂2φ

∂y2
+ 2M

1

c

∂2φ

∂y∂ t
− 1

c2
∂2φ

∂ t2
= 0. (7)

In the harmonic regime, we consider an incident wave at frequency ω0 in the laboratory frame with (α0, β0) wavevector

and k0 =
√

α2
0 + β2

0 = ω0
c
, ϕinc(x, y, t) = e−iω0tei(α0x+β0 y) . In the moving frame, the incident wave reads

φinc(x, y, t) = e−i(ω0−β0v)tei(α0x+β0y), (8)

and we look for solutions of (7) at the shifted frequency

φ(x, y, t) = e−iω̂0t φ̂(x, y), ω̂0 = ω0 − vβ0. (9)

To that end, we look for the set of elementary solutions, or modes, labeled by n, namely φ(x, y, t) = φn(x, y, t) with

φn(x, y, t) = e−iω̂0t φ̂n(x, y), (10)

that we shall determine outside and inside the modulated grating. We notice that they satisfy exactly (7) in the (shifted)

harmonic regime, if they are solutions to

∂2φ̂n

∂x2
+ (1 − M

2)
∂2φ̂n

∂y2
− 2iM

ω̂0

c

∂φ̂n

∂y
+

ω̂2
0

c2
φ̂n = 0. (11)

2.1.1. Modes outside the grating

Outside the modulated grating, the pseudo-periodic condition, imposed by the incident wave, applies along y. Accord-

ingly, the transverse dependence of φ̂n has to be sough in the form

8n(y) = 1√
h
eiβny, βn = β0 + 2nπ

h
, (12)

with n ∈ Z. The associated mode is determined by inserting φ̂n(x, y) = fn(x)8n(y) in (11), from which fn is solution to

f ′′
n + α2

n fn = 0 with α2
n + β2

n =
(

ω̂0
c

+ Mβn

)2
and with ω̂0 in (9). Hence the modes











φ̂n(x, y) = eiαnx 8n(y),

αn =
√

k2n − β2
n , kn = k0 + M

2nπ

h
,

(13)

are exact solutions of the problem outside the grating associated with the 8n forming a basis of pseudo-periodic functions

satisfying the orthogonality relation

h
∫

0

8n(y)8
∗
m(y)dy = δmn, (14)

where ∗ denotes the complex conjugate. We notice that the modes with kn > βn correspond to right-going propagating

modes (from −∞ to +∞ along x) and left-going modes are deduced using αn → −αn; modes with kn ≤ βn are evanescent

modes vanishing when x → +∞ with the convention on the root αn = +iα̃n with α̃n real positive. We shall use these

properties to write the reflected and transmitted waves in the forthcoming equation (27).

3
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Fig. 2. Dispersion of the propagating waves outside the modulated grating (M=0.8, ξ = 0.8).

2.1.2. Modes inside the grating

The boundary condition in (4) now reads Zuy = Mp, at y = {0, ξh}. With (p,uy) in (6) we look for modes φ̂n satisfying

the boundary conditions

(1− M
2)

∂φ̂n

∂y
= i

ω̂0

c
Mφ̂n, y = {0, ξh}, (15)

from which they can be thought in the form φ̂n(x, y) = gn(x)9n(y) with

9n(y) =
√

2− δn0

ξh
e
i
M(k0−Mβ0)

1−M2 y
cos

(

nπ

ξh
y

)

, n ∈ N, (16)

which satisfy exactly (15). Inserting the form of φ̂n in (11), we obtain that gn(x) satisfies g′′
n + γn

2gn = 0, hence the modes











φ̂n(x, y) = eiγnx 9n(y),

γn =
√

(k0−Mβ0)
2

1−M2 − (1 − M2)
(

nπ
ξh

)2
,

(17)

are exact solutions inside the grating associated with the basis of transverse functions 9n(y) satisfying the orthogonality

relation

ξh
∫

0

9n(y)9
∗
m(y)dy = δmn. (18)

2.2. The modes in the laboratory frame

Owing to the previous analyses, we now express the discrete sets of modes in the laboratory frame.

2.2.1. Dispersion outside the modulated grating

Outside the modulated grating, we use (12)-(13) along with (5) which results in the forms of the modes

ϕn(x, y, t) = e−iωntei(αnx+βn y), (19)

with

ωn = ω0 + Mc
2nπ

h
, n ∈ Z,

βn = β0 + 2nπ

h
, α2

n + β2
n = k2n, kn = ωn

c
,

(20)

(for simplicity, we have omitted the normalization factor 1/
√
h in (12)). We show in Fig. 2 the typical dispersion of the

propagating modes (αn real) outside the grating by means of (αn, βn) against ω0 (M = 0.8 and ξ = 0.8). For M = 0, α2
n +β2

n =
k20 = (ω0/c)

2 , the dispersion of all the modes would fall on the same cone of radius ω0/c (of apex at (0,0)) in the plane

(αn, βn). In contrast for M 6= 0, the propagating modes describe only a part of the cones of radius kn > 0 (and apex at

4
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Fig. 3. Dispersion of the propagating waves inside the modulated grating.

(0,0)). We notice that in the subwavelength regime (k0h/2π < 1), the condition of real αn in (20) imposes that for M > 0,

the mode n is propagating if

− 1+ s

1+ M

k0h

2π
≤ n ≤ 1− s

1− M

k0h

2π
, (21)

with s = β0/k0 < 1. The modulation fosters higher diffraction orders n > 0 up to arbitrarily high values when M → 1, that

is associated with up-shifted frequencies ωn > ω0 from (20). In contrast, it prevents from the appearance of diffraction

orders n < 0 associated with down-shifted frequencies ωn < ω0 (with ωn > 0 since, from (21), for n < 0, we have ωn ≥
− 1−Ms

1+s
2nπc
h

> 0). For instance, n = −1 becomes propagating for k0h/2π ≥ (1 + M)/(1 + s), that is for an higher frequency

than in the absence of modulation. Note that the result holds for M < 0 since the problem is invariant for (M,n, β0) →
−(M,n, β0).

2.2.2. Dispersion inside the modulated grating

Inside the modulated grating, we use (16)-(17) along with (5) which results in the forms of the modes

ϕn(x, y, t) = e−iω0(1−Ms)t eiγnx 9n(y − vt), (22)

where s = β0/k0 . To get insight of the dispersion in the grating, we write the mode n as the superposition of two waves,

namely

ϕn(x, y, t) =
(

e−i�nteiδn y + e−i�−nteiδ−n y
)

eiγnx, (23)

where, extending n to Z, we have

�n = �0 + Mc
nπ

ξh
, �0 = ω0

1− Ms

1− M2
,

δn = M K0 + nπ

ξh
, γ 2

n + δ2n = K 2
n , Kn = �n

c
,

(24)

see Fig. 3. Note that the above expression of γn is consistent with that given in (17), namely we have γ 2
n = (1 − M2)(K 2

0 −
(nπ/ξh)2), hence γ-n = γn . As it should be, for M = 0, we recover

ϕM=0
n (x, y, t) = 2e−iω0teiγnx cos

(

nπ
ξh

y
)

, (25)

with γn =
√

k20 −
(

nπ
ξh

)2
providing cut-on frequencies for ω0 ≥ c nπ

ξh
. When M 6= 0, (24) is close, although not identical, to the

inverse Doppler effect reported in [25] for s → 1 which corresponds to a wave propagating along the modulation. Indeed the

fundamental frequency �0 = ω0/(1 + M) is down-shifted for M > 0 corresponding to the usual Doppler effect for receding

walls. In contrast higher harmonics n with nπ(1+ M) > ξ k0h are up-shifted which correspond to inverse Doppler effects.

The propagating modes inside the modulated grating correspond to γn real. At frequency ω0 , (γn, δn) describe the hyper-

bola of semi major/minor axis nπ
ξh

(M,
√

1− M2) and center (γn, δn) = nπ
ξh

(1,0). (Specifically, the hyperbola is (X−1)2

M2 − Y 2

1−M2 =
1 with δn = τ X , γn = τ Y and τ = nπ/(ξh).) If we account for the constraint s ∈ (−1,1), �0 is bounded, which imposes that

δn describes only the upper part of the hyperbola. Namely for M ≥ 0 we have

(1+ M)
nπ

ξh
≤ δn ≤ Mk0

1− M
+ nπ

ξh
. (26)

5
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3. Numerical implementation using multimodal method

We work in the laboratory frame where ϕ(x, y, t) can be expressed as the superposition of the modes (19) for x ∈
(−∞,0) and for x ∈ (ℓ,+∞) and a superposition of the mode (22) for x ∈ (0, ℓ). We shall consider wave sources which

can be decomposed as a superposition of plane waves and we consider below a plane wave with wave-vector (α0, β0) at

frequency ω0 satisfying (20). Accordingly, the solution inside and outside the grating reads

ϕ =



































e−iω0teiα0x80(y) +
∑

n∈Z

rne
−iωnte−iαnx8n(y), x ∈ (−∞,0)

e−iω̂0t
∑

n∈N

(

a+ne
iγnx + a-ne

−iγn(x−ℓ)
)

9n(y − vt), x ∈ (0, ℓ),

∑

n∈Z

tn e
−iωnteiαn(x−ℓ)8n(y), x ∈ (ℓ,+∞),

(27)

where ω̂0 = (ω0 − vβ0) and with (8n,αn) in (12)-(13), (9n,γn) in (16)-(17). It is worth noticing that (27) is consistent as

we have

e−iωnt8n(y) = e−iω̂0t8n(y − vt), (28)

hence the matchings at x = 0 and x = ℓ can be done once for all, being valid for any time t in y = (y − vt) ∈ (0, ξh). The

continuity of ϕ on y ∈ Yξ = (0, ξh) applies at x = 0 and x = ℓ, resulting in

∫

Yξ

ϕ(0−, y, t)9∗
m(y)dy =

∫

Yξ

ϕ(0+, y, t)9∗
m(y)dy,

∫

Yξ

ϕ(ℓ−, y, t)9∗
m(y)dy =

∫

Yξ

ϕ(ℓ+, y, t)9∗
m(y)dy.

(29)

Next, with Y = (0,h), the continuity ∂xϕ on Yξ is used along with the Neumann condition on Y\Yξ , namely ∂xϕ(0−, y, t) =
∂xϕ(ℓ+, y, t) = 0 for y ∈ (Y\Yξ ). Using (28), thus we have

∫

Y

∂xϕ(0−, y, t)8∗
m(y)dy =

∫

Yξ

∂xϕ(0+, y, t)8∗
m(y)dy,

∫

Yξ

∂xϕ(ℓ−, y, t)8∗
m(y)dy =

∫

Y

∂xϕ(ℓ+, y, t)8∗
m(y)dy.

(30)

The system (29)-(30) is classical owing to the orthogonality relations (14)-(18). It involves the coupling matrices

bmn =
∫

Yξ

9∗
m(y)8n(y)dy =

√
(2 − δm0)ξ

2

(

eiq
+
sinc(q+) + eiq

−
sinc(q−)

)

(31)

where q± = (β0−Mk0)ξh

2(1−M2)
+ nπξ ± mπ

2
. With the above definition of b, the matchings (29) provide for m ∈ N

bm0 +
∑

n∈Z

bmnrn = a+m + a-meiγmℓ, a+meiγmℓ + a-m =
∑

n∈Z

bmntn, (32)

and the matchings (30) provide, for m ∈ Z

α0δm0 − αmrm =
∑

n∈N

b∗
nmγn

(

a+n − a-ne
iγmℓ

)

,

∑

n∈N

b∗
nmγn

(

a+ne
iγmℓ − a-n

)

= αmtm.
(33)

The numerical implementation of the multimodal analysis is then also classical using a truncated version of (29)-(30). In

doing so, we obtain the unknown scattering coefficients (rn, tn), n = −M, · · · ,M , outside the grating and the amplitudes

a±
n , n = 0, · · · ,N , of the right-going and left-going waves within the grating, hence the whole solution (27). Specifically, the

final system reads Mv = s, with

6
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Fig. 4. Real part of the potential fields for a plane wave at incidence θ = −40◦ on the space-time modulated grating (ξ = 0.8 and ℓ/h = 10). The left panels

show the diffraction patterns for x/ℓ ∈ (−1,2). The right panels show magnifications for increasing times. Higher space-time diffraction orders appear for

M = 0.8 (n = 1) and for M = 0.9 (n = 1,2).

M =









−b I d(eiγ ℓ) 0

0 d(eiγ ℓ) I −b

d(α) cd(γ ) −cd(γ eiγ ℓ) 0

0 −cd(γ eiγ ℓ) cd(γ ) d(α)









(34)

where we have defined d(e) the diagonal matrix with diagonal elements en , c = (b∗)T the transpose complex conjugate of

b, and

v =









r

a+

a−

t









, s =









s1

0

s2

0









, (35)

with s1m = bm0 and s2m = α0δm0 , which can be solved by simple matrix inversion. For completeness, we provide in the Ap-

pendix B the corresponding Matlab script. It is worth noticing that the resolution holds for any time, and the representation

of the solution at different times is a simple post-treatment.

3.1. Scattering of an incident plane wave

To begin with, we consider a plane wave at frequency ω0h/c = 1 and at oblique incidence θ = −40◦ (hence (α0, β0)h =
(0.77,−0.64)) on a space-time modulated grating with ξ = 0.8 and ℓ = 10h. At this relatively low frequency, for M = 0,

there is a single propagating mode (or diffraction order) outside and inside the grating and this holds true up to M = 0.74.

We report in Fig. 4 the real part of the potential field for increasing modulation speeds producing the appearance of

higher space-time diffraction orders: for M = 0.8, the mode n = 1 with (α1, β1)h = (2.12,5.64) and ω1h/c = 6.03; for

M = 0.9, the mode n = 1 with (α1, β1)h = (3.53,5.64) and ω1h/c = 6.65, and the mode n = 2 with (α2, β2)h = (3.06,11.92)

and ω2h/c = 12.31. It is noticeable that, although the sound-rigid parts of the grating are thin, the diffraction strength is

significant; in particular strong evanescent fields are triggered at the junctions of the grating, particularly visible on the

temporal sequences for t ∈ (0,0.6T ) with T = h/v the period of the modulation.

7
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Fig. 5. Scattering of an incident beam at incidence θ = 40◦ and k0h = 1 in the reference case M = 0, for M = 0.65 producing an almost straight propagation

of the beam (20 ≃ θ0) and M = 0.9. The directions θ0 and 20 = sin−1(M) are shown with plain lines (black and red, respectively). The grating has length

ℓ = 30h with ξ = 0.8. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

3.2. Case of a Gaussian beam

Following [23], we now illustrate the non reciprocal sound diffraction by considering an incident beam. This is done by

computing the elementary contributions ϕ(x, y, t; θ) = ϕ(x, y, t) in (27) (we make explicit the dependence in the incidence

θ ) for a range of incidence θ ∈ (θ0 − 1θ, θ0 + 1θ) and by weighting these contributions according to

ϕbeam(x, y, t) =
θ0+1θ
∫

θ0−1θ

f (θ)ϕ(x, y, t; θ)dθ. (36)

Various weighting functions f (θ) are possible and we choose

f (θ) = e−i(k cos θx0+k sin θ y0)e−σ 2(cos θ−cos θ0)
2
,

with σ = 10 the width of the Gaussian beam, (x0, y0) = (−50,80) which fixes the position of the beam and 1θ = θ0/2.

We notice that the spatial separation of the different diffraction orders is attributable to two ingredients. On the one hand,

from (19) (see also Fig. 2), the mode n propagates with a direction θn given by

sin θn =
sin θ0 + 2nπ

k0h

1+ M
2nπ
k0h

, n ∈ Z, (37)

with the limiting case M = 0 being classical. It is also consistent with Eq. (9) in [23] with K = 2π/h and � = M 2π
k0

ω0

the spatial and temporal periodicities of the modulated grating. However, note that, in our case, a spatial diffraction order

is associated with a single temporal diffraction order. The striking feature is that for Mn > 0 new interference orders can

appear in the subwavelength regime k0h ≪ 1. Next, within the grating, the modulation at relative speed M produces a shift

of the direction of propagation which, from (24) (see also Fig. 3), reads

sin2n = M
√

1− (1−M2)3

(1−M sin θ0)
2

(

nπ
ξk0h

)2
, n ∈ N. (38)

In particular, sin20 = M, which is consistent with a propagation at speed c with a vertical component v imposes by the

grating modulation.

We report in Figs. 5 and 6 the diffraction patterns for a beam with center incidence angle θ0 = ±40◦ and different values

of the modulation speeds M ≥ 0. We still consider ω0h/c = 1, ξ = 0.8 and to make the spatial separation more visible, we

use ℓ = 30h.

For θ0 = 40◦ , there is a single diffraction order n = 0 and a single propagating mode within the grating. Accordingly, the

beam is partly reflected and transmitted in the directions ±θ0 and within the grating it propagates along 20 = sin−1(M)

(independent of θ0). In particular for M = 0.65, 20 ≃ θ0 resulting in a straight propagation of the beam.

8
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Fig. 6. Scattering of an incident beam at main incidence θ = −40◦ and k0h = 1. Same representation as in Fig. 5. Outside and inside the grating, increasing

M produces the appearance of higher interference orders: n = 0 for M = 0.7, n = 0,1 for M = 0.8 and n = 0,1,2 for M = 0.9.

Table 1

Space-time diffraction orders outside the grating from (20) and (37), and modes inside the grating from (38) for

the modulation speeds considered in Fig. 6 (θ0 = −40◦ , ω0h/c = 1).

θ1 ω1h/c θ2 ω2h/c 20 21 22

M= 0.7 − − − − 44.4◦ − −
M= 0.8 69.4◦ 6.03 − − 53.1◦ 75.0◦ −
M= 0.9 57.9◦ 6.65 75.6◦ 12.31 64.1◦ 66.9◦ 81.0◦

For θ0 = −40◦ , the most striking feature in the diffraction patterns is the apparent negative refraction within the grating

(e.g. for M = 0.7), a feature that has been used for unmodulated grating to produce perfectly transmitting metamaterial [26].

Next, several diffraction orders take place when increasing M > 0 whose characteristics are collected in Table 1.

As already commented in [23], the diffraction is nonreciprocal. This property is due to the breaking of the invariance

(θ0,n) → (−θ0,−n) which is replaced by the invariance (M, θ0,n) → (−M,−θ0,−n), see (19)-(20). In the present case, this

is equivalent to the effect of flows on sound propagation, a property which has been used to break the time invariance

[27,28] and to produce nonreciprocal scattering [29].

4. Time-domain analysis

We now move to the time-domain and focus on the temporal separation of the harmonics, in addition to their spatial

separation. We consider an incident pulse at normal incidence described by the real signal s(t) coming from x = −∞ and

we denote ŝ(ω) its Fourier transform (ŝ(ω) = 1
2π

∫∞
−∞ s(t)eiωtdt and s(t) = 2ℜ

∫∞
0 ŝ(ω)e−iωtdω where ℜ(z) denotes the real

part of z). With an incident wave in the form

ϕinc(x, y, t) = 2ℜ
∞
∫

0

e−iωteiαx ŝ(ω)dω = s(t − x/c), (39)

with α = ω/c, and using (27), the potential field ϕ = ϕ(x,0, t) at y = 0 reads

ϕ =



























































ϕinc(x,0, t) + 2ℜ
∑

n∈Z

∞
∫

0

rn(ω)e−iωnte−iαnx ŝ(ω)dω,

2ℜ
∑

n∈N

∞
∫

0

e−iωt
(

a+n(ω)eiγnx + a-n(ω)e−iγn(x−ℓ)
)

9n(−vt) ŝ(ω)dω,

2ℜ
∑

n∈Z

∞
∫

0

tn(ω) e−iωnteiαn(x−ℓ) ŝ(ω)dω,

(40)

9
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Fig. 7. Case ωc/2π = 0.1 – (a) Snapshots of the diffraction of the incident pulse by a modulated grating at time ti ∈ (−100,500). (b) Temporal records at

x = −d, with d = 0, 20 and 40. The two reflected pulses have a time separation ℓ0 = ℓ/
√

1− M2 .

for x ∈ (−∞,0), x ∈ (0, ℓ), x ∈ (ℓ,+∞), respectively, and with ωn = ω + M2nπ and αn =
√

ω2
n − (2nπ)2 , from (20) (for

simplicity, we work in dimensionless form by setting h = c = 1). Within the grating, 9n(−vt) is given by (16) when −vt ∈
(p, p + ξ) with p an integer, otherwise 9n(−vt) = 0 (the line y = 0 falls in a region of air or in a rigid part of the grating).

We consider a narrow band Gaussian pulse with center frequency ωc and bandwidth τ

s(t) = cos(ωct) e
−(t/τ )2 , ŝ(ω) = τ

4
√

π

(

e−(ω−ωc)
2τ 2/4 + e−(ω+ωc)

2τ 2/4
)

, (41)

and we choose τ = 30, ℓ = 100, ξ = 0.8 and ωc/2π = 0.1, 0.2 and 0.3 and M = 0.8. In all cases, the potential field (40) is

calculated using 104 values of ω/2π ∈ (0,1). Then we use two representations:

(1) Snapshots for which ϕ(x,0, t j) is represented against x ∈ (−200,300) (2.103 values of x are used) at discrete times

t j ∈ (−100,500), j = 1, · · · ,24.

(2) Time records ϕ(−d,0, t) at discrete values x = −d for d = 0,20,40 against time t ∈ (−100,600) using 104 values of

times.

We report in Fig. 7 the snapshots and time records for ωc/2π = 0.1. At this center frequency, a single mode n = 0

is propagating inside and outside the grating. Accordingly, we observe that the incident pulse is multiply reflected and

transmitted as it would be for M = 0 (in panel (a) we observe two low reflected pulses and a single high transmitted pulse).

Next, within the grating, the pulse propagates with an angle 20 = sin−1(M). As a consequence we observe that the reflected

pulses emerge from the grating with a time separation 2ℓ0/c, ℓ0 = ℓ/ cos20 = ℓ/
√

1− M2 in panel (b), conform with the

10
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Fig. 8. Case ωc/2π = 0.2 – Same representation as in Fig. 7; the dashed lines show the edge of the cone θ1 ∈ (θ1m,90◦) near the grazing angle.

apparent lower speed of sound c cos20 in the panel (a). In this simple case, the signature of the temporal harmonics is

the contribution of evanescent modes triggered at the grating interface, particularly visible on the first pulse of ϕ(0,0, t).

As these harmonics have a time-dependence e−iωnt from (20), the spectral content of the signal near the interface is much

wider than that of the incident pulse.

In Fig. 8, the same representation is shown for a pulse with a center frequency ωc/2π = 0.2. As previously, a single mode

is propagating outside and inside the grating; accordingly, in the reported time range, we observe two reflected pulses and

one transmitted pulse (panel (a)). Next, the mode n = 1 is at its cut-off frequency with sin θ1 = 1 (from (37) with ωc/2π =
1 − M = 0.2). This mode emerges at the grazing angle and it generates continuously the mode 0 by mode conversion;

this is particularly visible on the time record ϕ(-40,0, t) where we observe a dissymmetry of the first pulse for t > 100

(panel (b)). Eventually, due to the narrow but finite spectral content of the incident pulse, we observe a long wave packet

with higher frequencies. A Fourier transform of this wave packet shows that it has been generated by mode conversion

of the fundamental frequency range ω ∈ (ωc,ωm), ωm/2π ≃ 0.22, corresponding to θ1 ∈ (θ1m,90◦) with θ1m ≃ 80◦ . This is

consistent with the observations in panel (a) where, for t > 0, part of the reflected signal remains close the interface, the

same in transmission for t > 120 (see additional results in Appendix C).

Eventually for ωc/2π = 0.3, reported in Fig. 9, two modes n = 0 and n = 1 are propagating inside and outside the grating.

The two modes are now associated with well defined reflected and transmitted pulses (without distortion), and the pulses,

with different frequencies, are separated in space and time far enough from the interface. This is visible for instance on

ϕ(-40,0, t) for the first reflected pulses at ωc and ωc1/2π = ωc + M = 1.1 around t = 50 and t = 100 (panel (b)). Besides,

11
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Fig. 9. Case ωc/2π = 0.3 – Same representation as in Fig. 7.

the mode conversions at each interface, mode 0 → mode 1 and mode 1 → mode 0, now produce additional pulses in

reflection and transmission. For t > 250, 3 reflected pulses associated with the mode 0 and 3 reflected pulses associated

with the mode 1 are superimposed (and they can be separated by Fourier transform, revealing each pulse without distortion,

see Appendix C).

5. Concluding remarks

We have analyzed the dispersion of a space-time modulated gratings alternating sound-rigid and sound-soft layers. This

has been done by deriving the exact dispersion relations of the modes inside and outside the grating. The use of these

modes is the basis of the numerical (multimodal) method proposed to solve easily classical diffraction problems. Examples

for an incident plane wave and for an incident beam have been given in the harmonic regime. Expectedly, the grating

allows for the generation of space and time diffraction orders and the diffraction is nonreciprocal. These properties are

similar, although non identical, to the properties of sound scattering in the presence of flow. In particular, each spatial

diffraction order is associated to a single temporal harmonic. We also provided the analysis of the diffraction of an incident

pulse in the transient regime revealing a complex mixing of the space-time diffraction orders, notably at the threshold of

appearance of a new diffraction order. The present analysis applies straightforwardly to the case of a space-time modulated

grating alternating sound-soft layers with contrasts in the mass density and/or in the bulk modulus.
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Fig. A.10. Discontinuity 6 moving at velocity v in the (x, y, t) space.
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Appendix A. Boundary condition at the moving rigid boundaries

The boundary condition at the moving rigid boundaries is deduced from the equation of mass conservation over a

volume � in which a source of mass ṁ located along Ŵ is used to produce the space-time modulation of the mass density

(Fig. A.10). Specifically, we have

dM

dt
= d

dt

∫

�

ρtdr = ṁ. (A.1)

Because of the source term, the boundary Ŵ ⊂ ∂� moves at velocity v along its normal n and we denote ṁ =
∫

Ŵ
jdx. The

application of the Reynolds transport theorem to the above equation provides
∫

�

(

∂ρt

∂t
+ div(ρtut)

)

dr +
∫

Ŵ

ρt(v − ut) · ndx =
∫

Ŵ

jdx, (A.2)

and at this stage, (ρt,ut) are the total mass density and velocity of the air. From the above, we deduce the local equations

∂ρt

∂t
+ div(ρtut) = 0, ρt(v− ut) · n = j. (A.3)

Now, we linearize the problem for small acoustic perturbations (the equilibrium is the air at rest with mass density ρ);

introducing ε ≪ 1, we have ρt = ρ + ερ ′ , ut = εu. The left hand-side equation in (A.3) provides the usual (local) equation

of mass conservation for the acoustic perturbation after introduction of the acoustic pressure p = c2ρ ′ which defines the

acoustic velocity c. The right hand-side equation in (A.3) provides the boundary condition we are looking for. Namely we

obtain after linearization
(

ρ + ε
p

c2

)

(v− εu) · n = j, → j = ρv · n, ρu · n− v
p

c2
= 0. (A.4)

The relation j = ρv ·n is expected as the mass is either created (n = ey) or removed (n = −ey) at the moving boundary; the

resulting boundary condition links the acoustic pressure and velocity through the relation announced in (4), with u ·n = u y ,

Z = ρc and M = v/c. We notice that such boundary condition is used in [24] from compatibility relations; it is also a

relation similar to Rankine-Hugoniot condition between two fluids in the presence of a line of discontinuity.

Appendix B. Complement on the numerical implementation

We provide below a MATLAB M-file script used to compute the solutions presented in the present study. The first script

computes the solution ϕ(x, y, t) in (27) as described in §3 (specifically, the system (34)-(35)). The same procedure has been

used to implement the problem of the scattering of an incident beam and of incident pulse thanks to the linearity of the

solutions for the incident waves in (36) and (39). For the ease of use, we also provide an additional script that can be used

to represent the corresponding two-dimensional field as shown in Figs. 4.
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Fig. C.11. Case ωc/2π = 0.2 – Snapshots of ϕ0 (top panels, in blue) and ϕ1 (bottom panels, in green) defined in (C.2) and complementing the Fig. 8.

Appendix C. Additional results

In this section, we provide additional results which complement the analysis of the Figs. 8 and 9. This is done by

windowing the Fourier transform ϕ̂(-d,0,ω), ω ∈ (0,ω f ) of ϕ(-d,0, t), and then by coming back in the time domain,

namely we use

ϕ = ϕ0 + ϕ1, (C.1)

with






























ϕ0(-d,0, t) =
∫

W0

ϕ̂(-d,0,ω)e−iωt dω, W0 = (0,ωc + 1ω),

ϕ1(-d,0, t) =
∫

W1

ϕ̂(-d,0,ω)e−iωt dω, W1 = (ωc1 − 1ω,ω f ),

(C.2)

with ωc1 = ωc +2πM the center frequency of the mode 1, from (19). The two Fourier components are well separated, hence

this basic filtering is sufficient, and we choose 1ω = 1
2
(ωc1 − ωc).

The result is shown in Fig. C.11 for ωc/2π = 0.2. As previously said, each reflected pulses in ϕ0 are asymmetrical as a

long coda is generated by mode conversion of the grazing mode 1. The same codas are observed on ϕ1 due to the grazing

mode 1 without mode conversion. Next, increasing d produces arrival times of highly distorted pulses alimented by the cone

of propagating modes near the grazing angle. It is worth noticing that the amplitude of this group of harmonics is higher

than that of the fundamental mode which is consistent with the classical Wood’s anomaly (as a diffracted order appears at

grazing angle, the power in that order is removed from the zero order signal).

The result for ωc/2π = 0.3 is reported in Fig. C.12. We already notice an increase in the number of reflected pulses for

the two propagating modes 0 and 1. The first pulses are due to direct reflection of the incoming mode 0 without (0 → 0)

15
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Fig. C.12. Same representation as in Fig. C.11 for ωc/2π = 0.3 complementing Fig. 9.

and with (0 → 1) mode conversion. The following 3 pulses emerge in reflection after a round trip in the grating involving a

first transmission of the incoming mode 0 at x = 0, a reflection at x = ℓ and a second transmission at x = 0 toward x < 0.

For ϕ0 , the 3 pulses, in time order, are the result of: for the 2nd pulse, zero conversion (0 → 0 at each interface), for 3rd

pulse, two conversions 0 → 1 at x = 0 and 1 → 0 at x = ℓ (or the opposite), and for the 4th pulse, two conversions 0 → 1

and 1 → 0 at x = 0. We observe an apparent lower velocity c cos θ1 of the mode 1 due to oblique propagation outside the

grating, forth and back.
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Highlights

• We present a theoretical and numerical analysis of the diffraction of acoustic waves by space-time modulated gratings

with rigid-type modulations.

• We derive the form of the modes which are exact, uncoupled, solutions of the problem in the unbounded regions,

inside and outside the grating.

• For a grating of finite extend, the solution is obtained as a superposition of these modes, which couple at the grating

interfaces. This provides a numerical, multimodal, method when considering a truncated version of the solution.

• We provide analysis of the solutions in the harmonic and in the transient regimes.
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