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Abstract 

Wave localization induced by spatial disorder is ubiquitous in physics. Here, we study the 

temporal analog of such phenomenon on water waves. Our time disordered media consists in 

a collection of temporal interfaces achieved through electrostriction between water surface and 

an electrode. The wave field observed is the result of the interferences between reflected and 

refracted waves on the interfaces. Although no eigenmode can be associated to the wave field, 

several common features between space and time emerge. The waves grow exponentially 

depending on the noise level in agreement with a 2D matrix evolution model such as in the 

spatial case. The relative position of the momentum-gap appearing in the time modulated 

systems plays a central role in the wave field evolution. When tuning the excitation to 

compensate for the damping, transient waves, localized in time, appear on the liquid surface. 

They result from a particular history of the multiples interferences produced by a specific 

sequence of time boundaries.  
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The localization and focusing of the waves induced by disorder in the propagation medium is 

observed in many contexts1. Examples can be found in quantum2–4, optical5,6, acoustic7, 

seismic8 or hydrodynamic9–11 systems. When a wave travels through a disordered medium 

interferences between counter-propagating waves result in enhanced backscattering and weak 

localization5,12. Upon increasing the disorder, waves propagation is inhibited and undergoes 

Anderson localization2,6. In weak disorder landscapes whose fluctuations are correlated on 

length scales greater than the wavelength, the waves form caustics and branched transport 

channels with strongly enhanced intensity9,13,14.  

Because time and space are, to some extent, interchangeable in wave propagation, several 

phenomena observed in spatially modulated systems have a temporal counterpart in the time 

modulated ones15–21. A type of temporal localization, called dynamical localization, have been 

previously studied in the dual momentum space with “kicked rotor” systems22 or with quantum 

particles confined spatially in a time varying potential through a theoretical approach23,24. Here, 

we study the case of spatially invariant system for a direct exchanged between space and time 

variables. What are the consequences of time disorder? Does energy localization occur in the 

time domain? First, we present a model based on a spatially invariant system submitted to a 

Dirac comb excitation with controlled noise. We then show experimental results obtained on 

electrically excited water waves and discuss the various effects of temporal noise on the energy 

localization in time. 

 



Figure 1: Schematics of the wave front reflections and transmissions on a spatial Dirac 

comb (a) and a temporal one (b). (c) Floquet diagram with vertical k-gaps for a temporal 

Dirac comb with damping (𝑉0  =  8.0 kV, 𝑑 =  5 mm and 2𝜈 =  7 ⋅ 10−6 m2/s). (d) 

Schematics of the wave front propagation in a temporal Dirac comb with noise obtained 

by shifting the time interfaces and (e) associated electric forcing 𝑉(𝑡)2. (f) Schematics 

of the experimental setup with the amplitude wave generator (AWG) controlling the 

voltage of the electrode. 

 

Our model is based on a spatially invariant system submitted to a temporal modulation in the 

shape of a Dirac comb with a controlled level of disorder. The Dirac comb is a standard model 

used for spatially periodic potentials in which a modulated potential is replaced with discrete 

boundary conditions imposed on the wave function25. Figure 1a shows a schematics of a wave 

front propagating in a 1D Dirac comb potential with the multiple reflections and transmissions 

at each interface. Figure 1b shows the time analog with the Dirac comb composed of time 

interfaces induced by the periodic forcing. The time reflections and transmissions on the 

interfaces generate counter-propagating and co-propagating waves respectively26,27. In both 

cases, the wave field is the result of the interferences of these multiple waves generated at the 

interfaces. 

We use liquids to study the effect of disorder in time modulated systems. Large amplitude and 

versatile time modulations can be easily implemented in liquids28–30. A time interface has been 

obtained for instance by applying a sudden vertical jolt. An initial wave propagating on the 

liquid produced a co-propagating and a counter-propagating wave which are respectively 

associated to the transmitted and the reflected wave at the time interface26. Here, we use an 

alternative versatile excitation based on electrostriction using a flat electrode placed at a 

distance 𝑑 above the grounded conductive water surface31–33. The electric field exerts an 

attractive force on the liquid surface which modifies the wave speed 𝑐(𝑘) for a wavenumber 𝑘 

satisfying 

𝑐(𝑘)2 = 𝑐0
2(1 − 𝛼(𝑡))  with 𝛼(𝑡) = 𝜒0𝑉(𝑡)2 and 𝜒0 = 𝜖/(𝜌𝑐0

2𝑑2 tanh(𝑘𝑑)) (1) 

𝑉(𝑡) is the electric potential, 𝑐0 the wave speed for 𝑉(𝑡) = 0 given by the gravity-capillary 

dispersion relation, 𝜖 the dielectric permittivity of the air and 𝜌 the density of the liquid31–33. 

Electric pulses of maximum amplitude 𝑉0 and duration 𝜏p at successive discrete times 𝑇𝑛, 𝑛 



being an integer, are modelled as a Dirac comb 𝑉(𝑡)2 = 𝑓𝑉0
2𝜏p ∑ 𝛿(𝑡 − 𝑇𝑛)𝑛≥0  with 𝑓 

accounting for the shape of the pulse. In the experiments, 𝜒0𝑉0
2 is typically of the order of 0.3-

0.5.   

The time evolution of the wave field 𝜙(𝒌, 𝑡) of wavevector 𝒌 is given by the following non 

homogeneous wave equation26 

𝜕2𝜙

𝜕𝑡2
(𝒌, 𝑡) + 2𝛤

𝜕𝜙

𝜕𝑡
(𝒌, 𝑡) + 𝜔0

2𝜙(𝒌, 𝑡) = 𝜔0
2𝛽0 ∑ 𝛿(𝑡 − 𝑇𝑛)𝑛≥0 𝜙(𝒌, 𝑡)   (2) 

with 𝜔0 = 𝑐0𝑘 the wave angular frequency, 𝛽0 = 𝑓𝜒0𝑉0
2𝜏p and 𝛤 the wave damping rate due 

to viscosity, 𝛤 = 2𝜈𝑘2 with 𝜈 bring the kinematic viscosity of the liquid34. In practice, 1/𝛤 ≫

𝜏p. The time interfaces can be interpreted as sources proportional to the wave field 𝜙(𝒌, 𝑇𝑛) at 

the time of the electric pulse26. We solve eq (2) using a matrix transfer approach. The evolution 

of the wave field is completely characterized by Ψ = [𝜙  
1

𝜔0

𝜕𝜙

𝜕𝑡
]

T

. The crossing of the time 

interface is given by 𝐾 = [
1 0

𝜔0𝛽0 1
] and the propagation during 𝛥𝑇𝑛 = 𝑇𝑛+1 − 𝑇𝑛 between 

two successive time interfaces is given by 𝑅(𝛥𝑇𝑛) = 𝑒−𝛤𝛥𝑇𝑛  [
cos(𝜔0𝛥𝑇𝑛) sin(𝜔0𝛥𝑇𝑛)

−sin(𝜔0𝛥𝑇𝑛) cos(𝜔0𝛥𝑇𝑛)
].  

Thus, the evolution of the wave field satisfies Ψ𝑛+1 = 𝑀𝑛Ψ𝑛 = 𝑅(𝛥𝑇𝑛)𝐾Ψ𝑛 which by 

recurrence gives Ψ𝑛+1 = (∏ 𝑀𝑝𝑝≤𝑛 )Ψ0. For a periodic excitation, Δ𝑇𝑛 = 𝑇, 𝑀0 = 𝑅(𝑇)𝐾 and 

Ψ𝑛+1 = 𝑀0
𝑛+1Ψ0. Following Floquet analysis, the two eigenvalues of 𝑀0 can be written 𝜆𝑗 =

𝑒(𝑖𝜇𝑗−𝛤)𝑇 with 𝜇𝑗 a complex value and 𝑗 = 1 or 2. Figure 1c shows the real part of (𝑖𝜇𝑗 − 𝛤)𝑇 

(blue lines) and its imaginary part (red lines) as a function of 𝑘. Vertical momentum k-gaps 

associated with real values of 𝜇𝑗 are clearly visible. They are the analog of energy-gaps in 

spatial crystals. However, while the latter are forbidden admitting only exponentially decaying 

solutions due to energy conservation, k-gaps also allow exponentially increasing solutions, as 

energy can be supplied by the forcing. For ℜ(𝑖𝜇𝑗 − 𝛤) > 0, these solutions lead to the Faraday 

instability at half the excitation frequency35. 

 

We now introduce noise in the system as a random time shift such that 𝑇𝑛 = (𝑛 + 𝜖𝑛)𝑇, 𝜖𝑛 

being a variable taken independently and uniformly in [−√3𝜎, √3𝜎] with 𝜎 the noise standard 

deviation (see Fig. 1d). The evolution matrices 𝑀𝑛 are now random and correlated depending 

on 𝜖𝑛+1 − 𝜖𝑛. However, they can be redefined uncorrelated by setting Ψ𝑛
′ = 𝑅(−𝜖𝑛𝑇)Ψ𝑛 and 



𝑀𝑛
′ = 𝑅(−𝜖𝑛𝑇)𝑀𝑛𝑅(𝜖𝑛𝑇) to apply the Fürstenberg theorem36 which states that Ψ𝑛

′ ≃

exp(𝜐𝑛) for 𝑛 large enough, with 𝜐 being the Lyapunov exponent. This should lead to a 

localization behavior similar to the one observed in disordered spatial crystals37.  

The experimental setup is shown in Figure 1e. It consists of a 30x30x3 cm3 plexiglass container 

filled with tap water. A transparent ITO electrode deposited on a glass is suspended 

horizontally at a distance 𝑑 = 5 mm over the electrically grounded water. The electric potential 

𝑉(𝑡) consists of narrow peaks of amplitudes 𝑉0 in the range of 6 to 8 kV with a repetition rate 

of 𝜔0/2𝜋 = 60 Hz. The pulses are arch of sinus of duration 𝜏p = 0.4𝑇 and maximum 

amplitude 𝑉0 (see Fig. 1e). Matching the integrals 𝑉(𝑡)2 to fit the Dirac comb model gives 

𝛽0 = (3𝜏p/8)𝜒0𝑉0
2. An electrically induced Faraday instability is triggered above a certain 𝑉0

2 

threshold (~ 8 kV) with waves oscillating at half the forcing frequency 𝜔0/4𝜋=30 Hz. The 

wave field is measured from images taken at 90 fps with a camera mounted above the bath 

using the deformation of a checkerboard pattern placed below38. The amplitude of the Faraday 

waves 𝐴F(𝑡) at time 𝑡 is obtained by applying a time filter at 𝜔0/4𝜋 and spatial averaging 

under the electrode.  

 

 

Figure 2: (d) Growth of the Faraday wave amplitude 𝐴F(𝑡) with time for various noise 

levels 𝜎 = 0, 0.017, 0.046, 0.069 and 0.081. The Lyapunov exponents 𝜐 are obtained 

from the exponential fits (dashed lines). Inset: Decay of 𝐴F(𝑡) with time when the forcing 

is turned off. The damping rate 𝛤 is obtained from an exponential fit (dashed line). (b) 

Fitted Lyapunov exponents 𝜐 as a function of 𝜎 for various experiments. Numerical 

simulations from the matrix model (dotted line) taking into account the fitted 𝛤 and 

theoretical model (full line) based on the decrease of the forcing component at 𝜔0.   

 



We first focus on the effect of disorder on the exponential growth of the wave. Figure 2a shows 

a typical example of the time evolution of 𝐴F(𝑡) for various noise standard deviations 𝜎 from 

𝜎 = 0 to 8.1 ∙ 10−2. The amplitude of the electric pulses 𝑉0 is set to 7 kV to trigger the Faraday 

instability. In agreement with the Fürstenberg theorem36, the wave grows exponentially for 

small enough amplitudes (𝐴F(𝑡) ≪ 𝜆F) for which non-linear hydrodynamic effects are 

negligible. The fitted Lyapunov exponents 𝜐 (dashed lines) decrease with increasing noise. A 

characteristic damping time 1/𝛤 = 0.19 s is measured from the decay of the Faraday waves 

when excitation is stopped (see inset Fig. 2a). This value used in the matrix model yields to the 

Faraday threshold value at 𝑉0 = 7 kV which agrees with experiments. From the value of 𝛤 we 

can extract 2𝜈 = 7.10−6 m2/s  that is higher than the expected value for water but of the right 

order of magnitude21. 

Figure 2b shows the fitted exponents 𝜐 as a function of the noise level for a series of 

experiments with different noise sequences. Each sequence is run three times to ensure that the 

measured growth rates are robust to experimental drifts. The decrease of 𝜐 with increasing 

noise level 𝜎 can be accurately reproduced by the numerical calculations with the matrix model 

using the fitted damping rate 𝛤 (see dashed line Fig. 2b). It can be ascribed to a growing random 

phase in the interfering reflections and transmissions on the time interfaces which reduces the 

wave field amplitude of the otherwise perfectly in phase multiple contributions. This result can 

also be interpreted in the spectral domain. Faraday instability is directly related to the 

oscillation of 𝑉(𝑡)2 at 𝜔0. For small noise levels, 𝜐 is expected to follow 𝜐(𝜎) ∝ (𝑉2̂(𝜎) −

𝑉F
2̂), with 𝑉2̂(𝜎) and 𝑉F

2̂ being the Fourier components of 𝑉2(𝑡) at 𝜔0 in the presence of noise 

and when forcing is set at the Faraday threshold respectively39. From the central limit theorem, 

one can show that 𝑉2̂(𝜎) = 𝑉2̂(0)sinc(2𝜋√3𝜎) ≈ 𝑉2̂(0)(1 − 2𝜋2𝜎2) for small 𝜎 and a large 

number of pulses. The resulting quadratic shape 𝜐(𝜎) = 𝜐(0)(1 − 𝜁𝜎2) is in good agreement 

with experimental findings and can be adjusted by setting 𝜐(0) ≈ 1.4 and 𝜁 ≈ 120 (see Fig. 

2b solid line). 



 

Figure 3: (a) Time evolution of the Faraday wave amplitude 𝐴F(𝑡) for a periodic 

excitation with a given noise sequence with 𝜎 = 0.1/√3. 𝑉0 is tuned at the Faraday 

instability threshold. The noise is suppressed at 𝑡 > 160 s (vertical line). (b) and (c) 

Wave fields at the Faraday frequency at time 𝑇𝐴 and 𝑇𝐵 respectively. (d) 𝐴F(𝑡) for the 

same excitation sequence as in (a). (e) Simulated time evolution of 𝐴F(𝑡) using the matrix 

model for the same excitation sequence as in (a) with 𝑉0 = 7.322 kV, 𝜈 = 7 ⋅ 10−6 m2/s 

and 𝑑 = 5 mm. 

 

We now focus on the amplitude fluctuations of the wave field, which are known to contain 

significant information on localization processes40. Temporal fluctuations of the wave field can 

be observed by tuning 𝑉0 at the Faraday threshold for a chosen noise level 𝜎 to achieve a null 

Lyapunov exponent. The average energy gain induced by the random time interfaces thus 

compensates for the damping. Figure 3a shows the amplitude of the Faraday waves 𝐴F(𝑡) as a 

function of time 𝑡/𝑇 for a given pulse sequence. The periodic excitation with added noise last 

160 seconds. Then, the noise is removed (vertical line) from the periodic excitation to measure 

the exponential growth of the wave amplitude. Localized peaks are observed in the Faraday 

waves with typical durations extending over hundreds of periods 𝑇. Figures 3b and 3c show 

the Faraday wave field during and outside a peak at time 𝑇A and 𝑇B respectively. When the 



same excitation sequence is applied again, the measured wave fluctuations (see Fig. 3d) are 

highly correlated in both experiments. This clearly show that these fluctuations are the result 

of a specific temporal sequence and that the multi-wave interference process which produce 

them is experimentally reproducible. Figure 3e shows the simulated fluctuations with the same 

sequence using the matrix model. Although the correlation is lower (0.55), the central double-

peak feature is still visible.  

 

Figure 4: Simulation of the wave growth with time for different noise standard deviations 

for waves (a) just inside and (b) outside the k-gap with wavenumber 𝑘in =  819.5 m-1 

and 𝑘out =  819.2 m-1 respectively (see insets) and 𝜎 = 0.1, 0.6, 1.1, 1.6, 2.1, 7, 10 . 10−2 

and 𝜎 = 0.1, 3, 6 . 10−2 respectively. Linear fits (not shown) give the Lyapunov 

exponents 𝜐. (c) Fitted exponents 𝜐 as a function of 𝜎. 

The disorder also changes significantly the waves other than the most unstable Faraday mode. 

In the experiments, observations of these waves is hindered by the presence of the larger 

amplitude Faraday waves. However, numerical simulations enable their study by setting 𝛤 =

0, 𝑉0 = 8.0 kV and d = 5 mm and changing the noise level 𝜎. We study two modes at the edge 

of the k-gap, with a wavenumber 𝑘in just inside (𝑘in =  819.5 m-1) and 𝑘out outside (𝑘out =

 819.2 m-1) the gap respectively. As shown in Figure 4a, the wave amplitude at 𝑘in (see inset) 

grows exponentially in all cases for various disorder levels in agreement with the model. As 

the noise level increases, the fitted exponents 𝜐 first decrease at low noise levels (0 < 𝜎 <

0.025) and then increase at higher noise levels (𝜎 > 0.025). Outside the k-gap, the growth is 

also exponential but in this case the exponent increases monotonously with increasing noise on 

the whole 𝜎 range, 0 < 𝜎 < 0.1. The evolution of the exponents 𝜐 with 𝜎 are plotted in Fig. 4c 

for the two cases 𝑘in (red crosses) and 𝑘out (blue circles). The two curves superimpose in the 

regions where 𝜐 increases with 𝜎. The decreasing behavior of 𝜐 at low noise level for 𝑘in is 

similar to the experimental observations obtained at the Faraday frequency (see Fig. 2a and 



2b). These results are consistent with an effective shrinking of the band gap as the periodicity 

deteriorates with the noise. . The validity of the Fürstenberg theorem implies that the waves 

must grow exponentially as observed either inside or outside the gap for arbitrary noise levels.  

Contrary to spatial interfaces, the crossing of a time interface is non-unitary meaning that the 

energy of the wave field is not conserved across the boundary. From the expression of the 

matrix 𝐾, in the case of a monochromatic wave at 𝜔0,  an incident wave field defined by Ψ− =

[𝜙−  
1

𝜔0
 
𝜕𝜙−

𝜕𝑡
]

T

 produces an additional wave field 𝑖𝜔0𝛽0 [0  
1

𝜔0

𝜕𝜙−

𝜕𝑡
]

T

when crossing the 

interface (using 𝜙− = 𝑖
1

𝜔0

𝜕𝜙−

𝜕𝑡
). Using the superposition principle, this can be written as the 

sum of a forward propagating wave 
𝑖𝜔0𝛽0

2
[𝜙−  

1

𝜔0

𝜕𝜙−

𝜕𝑡
]

T

 and a time-reversed backward 

propagating one –
𝑖𝜔0𝛽0

2
[𝜙−  −

1

𝜔0

𝜕𝜙−

𝜕𝑡
]

T

. This interpretation highlights the momentum 

conservation with the symmetric production of counter-propagative waves as well as the non-

conservation of energy with the creation of waves. For an incident wave, the time interface can 

be characterized by a transmission coefficient 𝑡 = 1 +
𝑖𝜔0𝛽0

2
 and the reflection one 𝑟 =

−
𝑖𝜔0𝛽0 

2
. The general expression for the incident wave is two counter-propagating waves 

𝜙−(𝒌, 𝑡) = 𝐴𝑒𝑖𝒌.𝒓+𝑖𝜔0𝑡 + 𝐵𝑒𝑖𝒌.𝒓−𝑖𝜔0𝑡 with the total energy 𝐸− ∝ |𝐴|2 + |𝐵|2, 𝐴 and 𝐵 being 

complex values. Just after the boundary, the field becomes 𝜙+(𝒌) = [𝑡𝐴 + 𝑟∗𝐵]𝑒𝑖𝒌.𝒓+𝑖𝝎𝟎𝒕 +

[𝑟𝐴 + 𝑡∗𝐵]𝑒𝑖𝒌.𝒓−𝑖𝜔0𝒕. For an incident propagating wave (𝐵 = 0), the time interface creates a 

standing wave with limited amplitude in second order in 𝜔0𝛽0 (Δ𝐸 =
𝜔0

2𝛽0
2

2
𝐸−). For an incident 

standing wave, the interface also generates a standing wave with an associated energy Δ𝐸 ≈

(𝜔0𝛽0 sin φ)𝐸− with 𝐵 = 𝐴e−iφ. It yields to an energy increase or decay depending on the 

interference with the incident wave field. To accumulate energy in the time crystal, the phase 

condition φ must also be recovered after the propagation between two successive interfaces. 

The relative phase between the two counter propagative waves must thus change by 2𝜋𝑛, 𝑛 

being an integer between two interfaces. This leads to frequencies 𝑛𝜔0/2 in the k-gaps. The 

maximum energy output corresponds to the Faraday instability at φ ≈ π/2 . When moving to 

the k-gap limits, smaller energy gains are achieved when crossing the time interfaces, reaching 

zero at the k-gap limit (for 𝜑 ≈ 0 or 𝜋).  Note that an associated symmetric over-damped mode 

exists for the opposite phase 𝜑.21 The presence of a random time shift between the interfaces 

results in fluctuations of the phase-lock condition which in turn changes the energy gain at each 



interface. For the Faraday mode, since Δ𝐸 is maximal, any perturbation results in a decrease of 

wave growth as observed experimentally (see Fig. 2b). For modes such as 𝑘in for which is Δ𝐸 

not maximal, the output is more complex to infer due to the possible gain or loss of energy 

resulting from the interplay the perturbed phase shift acquired between two interfaces and the 

amplitude of Δ𝐸 at the crossing of each interface41. 

In summary, time localization induced by noise differ fundamentally from its spatial 

counterpart since it is not related possible to describe these localizations in terms of mode 

localization related to an Hamiltonian eigenstate. This is a consequence of the non-unitarily of 

the evolution operator and the non-conservation of energy along time. However, several 

features are common. Time disorder induces a temporal localization of the energy with features 

that are similar to its spatial analog. An interesting perspective of these results would be to 

generalize the effect of noise on wave propagation with a spatio-temporal disorder and to study 

the spatio-temporal localization of energy. In addition, this could be implemented 

experimentally with the use of several electrodes driven independently to realize time-varying 

inhomogeneous energy landscapes. 
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