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A B S T R A C T

Real-time 3D ultrasound imaging with matrix arrays remains a challenge in Non-Destructive Testing (NDT)
due to the time-consuming reconstruction algorithms based on delay-and-sum operations. Other algorithms
operating in the Fourier domain have lower algorithmic complexities and therefore higher frame rates at the
cost of more storage space, which may limit the number of reconstruction points. In this paper, we present an
implementation for real-time 3D imaging of the Total Focusing Method (TFM) and the Plane Wave Imaging
(PWI), as well as of their Fourier-domain counterparts, referred to as k-TFM and k-PWI. For both types of
acquisition, the Fourier-domain algorithms are used to increase frame rates, and they are compared to the
time-domain TFM and PWI in terms of image quality, frame rates and memory requirements. In order to
greatly reduce their memory requirements, a new implementation of k-TFM and k-PWI is proposed. The four
imaging methods are then evaluated by imaging in real time a block of stainless steel containing a 3D network
of spherical porosities produced by additive layer manufacturing using a powder bed laser fusion process.
1. Introduction

Nowadays, real-time 2D imaging methods with linear or matrix
arrays are available in most industrial Non-Destructive Testing (NDT)
systems [1,2]. The most popular is the Total Focusing Method (TFM),
which requires the inter-element response acquisition often referred
to as Full Matrix Capture (FMC) [3]. The set of FMC signals are
focused numerically both in transmit and receive mode everywhere in
the region of interest, which greatly improves the spatial resolution
compared to focused B-scan or S-scan [4]. 2D matrix arrays offer the
great advantage of allowing 3D imaging without any displacement [5–
7]. However, the 3D TFM remains a challenge for real-time applications
due to time-consuming reconstructions. Indeed, the number of signals
to be processed is huge as it corresponds to the square of the number
of array elements, which is typically equal to 256 in NDT. In addition,
the number of points to be reconstructed is generally two orders of
magnitude greater than in 2D imaging. The problem is therefore to
process this large amount of data in a short period of time. To this
end, the Plane Wave Imaging (PWI) method, initially developed for
elastography in medical imaging [8], has been adapted to various NDT
inspection configurations, such as multi-mode imaging of crack-like
defects [9,10] or imaging under complex surfaces [11,12]. In most
cases, the transmission of plane waves reduces the amount of data to
be processed while maintaining a similar image quality compared to
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the TFM. Today the PWI method is already available in some NDT
acquisition systems to speed up imaging in 2D [13], but the principle of
plane wave emissions remains still insufficient to achieve 3D real-time
imaging with current NDT systems.

The TFM and PWI reconstructions take place in the time-domain
and are based on the Delay-And-Sum (DAS) principle, where the sig-
nals are delayed for each divergent or plane wave emission and then
coherently summed. Another way to compute images is to use Fourier-
domain algorithms that lead to shorter computation times than the DAS
algorithms. The two best-known Fourier-domain imaging methods are
the Stolt’s migration based on the exploding reflector model [14,15]
and the wavenumber algorithm. The second is more suitable in many
NDT configurations because it remains valid when images are wider
than the array aperture [16,17] or when images of crack type defects
involve multi-mode ultrasonic paths [10]. The wavenumber algorithm
consists in computing the spectrum of the set of signals on a specific
wavenumber grid that depends on the chosen reconstruction region,
and then in obtaining the image by inverse Fourier transform. It was
first used in Synthetic Aperture Radar (SAR) imaging with a monostatic
configuration [18] and later with a bistatic one [19]. In the field of
NDT, Hunter et al. [20] propose to extend the method to FMC data
in order to reduce computation times in 2D imaging compared to
TFM. Almost at the same time, Cheng and Lu [21] proposed a similar
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algorithm dedicated to 2D imaging with plane wave emissions. In
NDT, the performances of the Fourier-domain algorithms are generally
evaluated in 2D cases [22] where real-time frame rates can be achieved
with approaches that are more usual. Here, we propose to study the
efficiency of these algorithms for 3D applications where real-time
imaging remains a difficult task whatever the method.

In this paper, we present an implementation of both TFM and PWI
in 3D as well as their frequency-domain counterparts, referred to as
k-TFM and k-PWI in the following. In both cases, the aforementioned
frequency-domain algorithms are used in order to increase frame rates.
They are compared to the time-domain TFM and PWI in terms of
image quality, frame rates and memory requirements. For the k-TFM,
the wavenumber algorithm is generalized to 3D imaging with matrix
arrays, while for the k-PWI, we follow the same approach as Merabet
et al. [16] based on the theory developed by Cheng and Lu [21].
The four imaging algorithms are implemented in a versatile Vantage
system allowing to perform acquisitions and reconstructions directly
with Matlab (Mathworks). The Matlab parallel computing toolbox is
used in order to launch all computations on a graphic card and per-
form real-time imaging. Finally, the four real-time imaging algorithms
are evaluated on an additively manufactured stainless steel sample
containing a 3D network of equispaced spherical porosities.

The paper is organized as follows. In Section 2, the theoretical
background of 3D imaging is presented. We first recall the mathe-
matical formulation of the time-domain TFM and PWI based on the
DAS algorithms, and of their frequency-domain counterparts, i.e. k-
TFM and k-PWI. The relationship between the image and the signal
spectra is derived for both types of acquisition. In Section 3, some
technical details and tricks to improve real-time imaging are provided.
In particular, we propose an implementation of the Fourier-domain
algorithms that greatly reduces the required memory space. Minimum
storage capacity and algorithmic complexities for k-TFM and k-PWI
are derived and compared to those obtained with TFM and PWI. In
Section 4, we present the experimental setup and the results from
the real-time imaging of the steel sample. The image qualities and
frame rates are discussed and compared with theoretical and numerical
predictions.

2. Theoretical background in 3D imaging

In this section, the 3D imaging algorithms are over-viewed. For sake
of clarity, we only present the theory for a square matrix array and an
inspection configuration where elements are in direct contact with the
sample. However, given that inspections through a water layer are quite
common in NDT, in Appendix A we derive the method accounting for
the refraction at the fluid–solid interface.

2.1. Time-domain methods: TFM and PWI

For the FMC, the array elements are excited one by one to transmit
𝑁 divergent waves, where 𝑁 is the total number of elements. As 𝑁
ignals are recorded for each transmission, the dataset to handle is
omposed of 𝑁2𝑁𝑡 samples with 𝑁𝑡 the number of time samples. As

indicated in Fig. 1(a), 𝐯 = (𝑣1, 𝑣2, 0)𝑇 and 𝐮 = (𝑢1, 𝑢2, 0)𝑇 are the vectors
that locate respectively the transmitting and receiving element centers.
The origin of the Cartesian coordinate system is placed at the center of
the matrix and the sets of transmitter and receiver positions are denoted
 and  .

The TFM consists in focusing in transmission and reception at every
point in the region of interest. If 𝑠(𝐮, 𝐯, 𝑡) is the signal received by the
element at 𝐮 when the element at 𝐯 is excited by an impulse signal,
the TFM image is built as the coherent sum of 𝑁2 analytic signals
𝑠̂(𝐮, 𝐯, 𝑡) = 𝑠(𝐮, 𝐯, 𝑡) + 𝑖{𝑠(𝐮, 𝐯, 𝑡)} with appropriate time delays [4,23],
2

where  denotes the Hilbert transform. Using these notations, the
Fig. 1. Geometries and notations used for 3D imaging with divergent or plane waves:
(a) transmission of a spherical wave from a single element centered at 𝐯 = (𝑣1 , 𝑣2 , 0)𝑇 ;
b) transmission of a plane wavefront of normal vector 𝐞𝑚 by time delayed excitations
f all array elements. For both transmission types, all the receivers of coordinates
= (𝑢1 , 𝑢2 , 0)𝑇 are used to record 𝑁 signals.

mage amplitude at a given voxel located by the position vector 𝐫 for
a Dirac excitation is defined as

𝐼TFM(𝐫) =
|

|

|

|

|

∑

𝐮∈

∑

𝐯∈
𝑠̂
(

𝐮, 𝐯, ‖𝐯 − 𝐫‖ + ‖𝐮 − 𝐫‖
𝑐

)

|

|

|

|

|

, (1)

where 𝑐 is the phase velocity of longitudinal or transverse ultrasonic
waves depending on the NDT application.

For the PWI method, we assume that the solid is insonified by 𝑀
plane waves propagating in different directions. As shown in Fig. 1(b),
each plane wave is indexed by 𝑚 where 𝑚 ∈  = [1, . . . ,𝑀] and have
a wave vector equal to 𝑘𝐞𝑚 where

𝐞𝑚 =
(

sin 𝜃𝑚 cos𝜙𝑚, sin 𝜃𝑚 sin𝜙𝑚, cos 𝜃𝑚
)𝑇 , (2)

with (𝜃𝑚, 𝜙𝑚) the pair of angles defining the direction of propagation
of the 𝑚th plane wave and 𝑘 the wavenumber. If all elements are
used as receivers, then the number of samples to be stored after 𝑀
transmission is 𝑀𝑁𝑁𝑡. Similarly to the TFM, if 𝑠𝑚(𝐮, 𝑡) is the signal
received by the element at 𝐮 for the 𝑚th emission, the PWI image
results from a coherent sum of 𝑀𝑁 analytic signals 𝑠̂𝑚(𝐮, 𝑡) = 𝑠𝑚(𝐮, 𝑡) +
𝑗{𝑠𝑚(𝐮, 𝑡)} [16]. The image amplitude at a point 𝐫 is defined as

𝐼PWI(𝐫) =
|

|

|

|

|

∑

𝐮∈

∑

𝑚∈
𝑠̂𝑚

(

𝐮,
𝐫.𝐞𝑚 + ‖𝐮 − 𝐫‖

𝑐
+ 𝜏𝑚

)

|

|

|

|

|

, (3)

where 𝜏𝑚 is the emission delay of one element taken as reference.
In practice, the signals 𝑠 and 𝑠𝑚 are known only for times 𝑡 in a set of

recorded time samples  . Thus, the acquisition gate has to be carefully
chosen to allow the image computation at all points in the region of
interest. Furthermore, in Eqs. (2) and (3), 𝑠̂ and 𝑠̂𝑚 must be interpolated
to accurately extract the amplitudes corresponding to the theoretical
arrival times. A nearest neighbor interpolation is a sufficiently good
approximation if the sampling frequency 𝑓𝑠 is large with respect to the
central frequency of the array.
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2.2. Frequency-domain methods: k-TFM and k-PWI

The general idea of the Fourier-domain imaging methods is to use
the mathematical relation between the Fourier transform of the dataset
and the Fourier transform of the reflector distribution in the medium.
Here, the theory of the Fourier-domain imaging is presented in 3D:
first k-TFM where spherical waves insonify the medium, then k-PWI
with plane wave transmissions. 3D k-TFM is an extension of the work
of Hunter et al. [20] to matrix arrays, while 3D k-PWI was recently
developed by Merabet et al. [16,17] based on the work of Cheng and
Lu [21].

2.2.1. 3D k-TFM method
Let us consider a spherical wave transmitted by an element located

at 𝐯, backscattered by a distribution of isotropic point-like reflectors,
and received by an element located at 𝐮. Assuming that there is
no attenuation and that the elements have omnidirectional radiation
patterns, the time Fourier transform of 𝑠 may be written as

𝑆(𝐮, 𝐯, 𝑘) = 1
(4𝜋)2 ∫

e−i𝑘‖𝐯−𝐫‖

‖𝐯 − 𝐫‖
𝑔(𝐫) e

−i𝑘‖𝐮−𝐫‖

‖𝐮 − 𝐫‖
d𝐫, (4)

here 𝑔 is the distribution of point-like reflectors and d𝐫 = d𝑥d𝑦d𝑧.
or sake of brevity, the factor in front of the integral in Eq. (4) is
mitted in the following. We denote by 𝑆̂ the 5-D Fourier transform
f 𝑠, 𝐤𝑟 = (𝑘𝑥, 𝑘𝑦, 𝑘𝑧)𝑇 , 𝐤𝑢 = (𝑘𝑢1 , 𝑘𝑢2 , 0)

𝑇 and 𝐤𝑣 = (𝑘𝑣1 , 𝑘𝑣2 , 0)
𝑇 the wave

ectors corresponding to 𝐫, 𝐮 and 𝐯, respectively. Following the same
pproach than in 2D [20], we use the Weyl identity to decomposed
ach Green function in Eq. (4) as continuous sum of plane waves [24],
nd the 3D Fourier transform of 𝑔 can be expressed as

̂ (𝐤𝑟) = 𝐾𝑢𝐾𝑣𝑆̂(𝐤𝑢,𝐤𝑣, 𝑘), (5)

rovided that 𝐤𝑟, 𝐤𝑢, 𝐤𝑣 and 𝑘 satisfy the relation

𝑟 = 𝐊𝑢 +𝐊𝑣 (6)

here, noting 𝑤 = 𝑢 or 𝑣, 𝐊𝑤 = (𝑘𝑤1
, 𝑘𝑤2

, 𝐾𝑤)𝑇 and 𝐾𝑤 =
𝑘2 − 𝑘2𝑤1

− 𝑘2𝑤2
.

To compute an image, we need to express 𝐤𝑢, 𝐤𝑣 and 𝑘 as a
function of 𝐤𝑟. As the problem is ill-posed with three equations for five
unknowns, we solve it by fixing 𝐤𝑣 in Eq. (6). The solution is expressed
as

⎧

⎪

⎨

⎪

⎩

𝑘𝑢1 = 𝑘𝑥 − 𝑘𝑣1
𝑘𝑢2 = 𝑘𝑦 − 𝑘𝑣2
𝑘 = 1

2𝑘𝑧

√

(

𝑘2𝑧 + ‖𝐤𝑣‖2 − ‖𝐤𝑢‖2
)2 + 4𝑘2𝑧‖𝐤𝑢‖2

. (7)

Thus, we can compute a spectrum 𝐺̂ from the spectrum 𝑆̂ at a fixed
value of 𝐤𝑣 that will be denoted 𝑆̂𝐤𝑣 in the following. Then, the spectra
are added for all 𝐤𝑣, and the final image is obtained by the 3D inverse
Fourier Transform over dimensions 𝑘𝑢1 , 𝑘𝑢2 and k, noted −1

𝐤𝑢 ,𝑘
. Finally,

the imaging equation is

𝐼k-TFM(𝐫) =
|

|

|

|

|

|

−1
𝐤𝑢 ,𝑘

{

∑

𝐤𝑣∈

𝐾𝑢𝐾𝑣𝑆̂𝐤𝑣 (𝐤𝑢, 𝑘)
}

|

|

|

|

|

|

, (8)

where Eq. (7) provides the required frequencies of the spectra 𝑆̂𝐤𝑣 and
where the set  is the wavenumber counterpart of  .

2.2.2. 3D k-PWI method
The imaging equation for k-PWI is derived in the same way as

previously. First, we express the time Fourier transform of 𝑠𝑚 as

𝑆𝑚(𝐮, 𝑘) =
1
4𝜋 ∫ e−i𝑘𝐫.𝐞𝑚𝑔(𝐫) e

−i𝑘‖𝐮−𝐫‖

‖𝐮 − 𝐫‖
d𝐫, (9)

ere, the Weyl identity needs to be used only once to replace the Green
unction in Eq. (9), which leads to

̂ (𝐤 ) = 𝐾 𝑆̂ (𝐤 , 𝑘), (10)
3

𝑟 𝑢 𝑚 𝑢 𝑆
ith 𝑆̂𝑚 the 3D Fourier transform of 𝑠𝑚 and where 𝐤𝑟, 𝐤𝑢 and 𝑘 must
satisfy the relation

𝐤𝑟 = 𝐊𝑢 + 𝑘𝐞𝑚. (11)

From Eq. (11), 𝐤𝑢 and 𝑘 can be expressed as a function of 𝐤𝑟. We obtain

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑘𝑢1 = 𝑘𝑥 − 𝑘 sin 𝜃𝑚 cos𝜙𝑚
𝑘𝑢2 = 𝑘𝑦 − 𝑘 sin 𝜃𝑚 sin𝜙𝑚

𝑘 =
‖𝐤𝑟‖2

2𝐤𝑟.𝐞𝑚

. (12)

Thus, a spectrum 𝐺̂ is calculated for each incident plane wave. The
spectra corresponding to 𝑀 plane waves are added and the final image
is obtained by 3D inverse Fourier transform. The imaging equation is

𝐼k-PWI(𝐫) =
|

|

|

|

|

|

−1
𝐤𝑢 ,𝑘

{

∑

𝑚∈
𝐾𝑢𝑆̂𝑚(𝐤𝑢, 𝑘)

}

|

|

|

|

|

|

, (13)

here Eq. (12) provides the required frequencies of the spectra 𝑆̂𝑚.

. Implementation of imaging algorithms

In this section, the implementation of the time-domain and Fourier-
omain methods is presented in detail. First, the strategy adopted to
ompute the signal spectra is described. In particular, we propose a
ethod to compute the signal spectra without resorting to any inter-
olation along the two lateral spatial dimensions. Then, the imaging
lgorithms in the time and frequency domains are compared in terms
f required memory space and complexities.

.1. Computation of the signal spectra

The frequencies (𝐤𝑢, 𝑘) required for k-TFM and k-PWI depend on
he desired image frequencies 𝐤𝑟 and are defined by Eqs. (7) and
12). However, in practice, the spectra 𝑆̂𝐤𝑣 and 𝑆̂𝑚 are computed with
iscrete Fourier Transforms (DFTs) on the wavenumber grid  ×
iven by

 =
[

−
𝑁𝑘𝑢1
2 + 1, . . . ,

𝑁𝑘𝑢1
2

]

2𝜋
𝑁𝑘𝑢1

𝑝

×
[

−
𝑁𝑘𝑢2
2 + 1, . . . ,

𝑁𝑘𝑢2
2

]

2𝜋
𝑁𝑘𝑢2

𝑝 × {0}

 =
[

−𝑁𝑘
2 + 1, . . . ,𝑁𝑘

2

]

2𝜋𝑓𝑠
𝑁𝑘𝑐

, (14)

where 𝑝 is the pitch of the matrix array and 𝑁𝑘𝑢1
, 𝑁𝑘𝑢2

and 𝑁𝑘 are
espectively the lengths of the Fourier transforms along the dimensions
𝑢1 , 𝑘𝑢2 and 𝑘. Provided that DFTs are computed without zero-padding,

𝑘𝑢1
and 𝑁𝑘𝑢2

are equal to
√

𝑁 and 𝑁𝑘 to the number of time samples

𝑁𝑡. The problem is to obtain the spectra on the required wavenumber
rid instead, and a classical way to do this is to interpolate the initial
pectra known on  × . In this paper, only the dimension 𝑘 will be
reated in this way, while a method is proposed to compute the signal
pectra without any interpolation along the lateral dimensions 𝑘𝑢1 and
𝑘𝑢2 .

In this method, the shifted signal spectra 𝑆̂′
𝐤𝑣

and 𝑆̂′
𝑚 are used

instead of the original signal spectra 𝑆̂𝐤𝑣 and 𝑆̂𝑚. These spectra are
calculated applying a phase shift before the spatial Fourier transform,
which is written as

𝑆̂′
𝐤𝑣
(𝐤𝑢, 𝑘) = 𝐮

{

𝑆𝐤𝑣 (𝐮, 𝑘)e
i𝐤𝑣 .𝐮

}

(15)

nd

̂ ′
𝑚(𝐤𝑢, 𝑘) = 𝐮

{

𝑆𝑚(𝐮, 𝑘)ei𝑘𝐞′𝑚 .𝐮
}

, (16)

here 𝐮 is the Fourier transform along the dimensions 𝑢1 and 𝑢2. If
̂ and 𝑆̂ are replaced respectively by 𝑆̂′ and 𝑆̂′ , the expressions
𝑘𝑣 𝑚 𝑘𝑣 𝑚
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Fig. 2. Diagram of spectral extension principle for an image of length 𝐿𝑥 along the 
axis: (a) initial spectrum ; (b) spectrum after extension. The trapezoidal area in gray
represents the support of propagative waves.

of the required wavenumbers 𝑘𝑢1 and 𝑘𝑢2 in Eqs. (7) and (12) simplify
and become 𝑘𝑢1 = 𝑘𝑥 and 𝑘𝑢2 = 𝑘𝑦. Satisfying these two relations means
having equality between the first two dimensions of  and the desired
lateral grid  × , where

⎧

⎪

⎨

⎪

⎩

 =
[

−𝑁𝑥
2 + 1, . . . ,𝑁𝑥

2

]

2𝜋
𝐿𝑥

 =
[

−𝑁𝑦
2 + 1, . . . ,𝑁𝑦

2

]

2𝜋
𝐿𝑦

. (17)

In other words, it is necessary to have equal sampling steps as well as
equal number of points for  ×  and the first two dimensions of
 . To this end, the method comprises two steps.

The first is zero-padded Fourier transform along the 𝑢1 and 𝑢2
dimensions of the above shifted signal spectra 𝑆′

𝐤𝑣
and 𝑆′

𝑚. The number
of points 𝑁𝑘𝑢1

and 𝑁𝑘𝑢2
are chosen so that the wavenumber pitch is

identical for the dimensions 𝑘𝑢1 and 𝑘𝑥 as well as for the dimensions
𝑘𝑢2 and 𝑘𝑦. For a volume with lateral sizes 𝐿𝑥 and 𝐿𝑦, the wavenumber
ampling step along the dimensions 𝑘𝑥 and 𝑘𝑦 must be equal to 2𝜋∕𝐿𝑥
nd 2𝜋∕𝐿𝑦. Furthermore, the pitch 𝑝 of the matrix probe along the 
nd  axes imposes that the computed spectra vary between −𝜋∕𝑝 and
∕𝑝. Thus, we choose

𝑘𝑢1
=
[

𝐿𝑥
𝑝

]

(18)

and

𝑁𝑘𝑢2
=
[𝐿𝑦

𝑝

]

. (19)

The second step is to extend the obtained discrete spectra. For
a given spectrum known between −𝜋∕𝑝 and 𝜋∕𝑝, an extension by
periodicity over any interval is possible, as illustrated in Fig. 2 for
the dimension 𝑘𝑢1 . The lower and upper bounds of the wavenumber
grid are chosen equal to −𝜋𝑁𝑥∕𝐿𝑥 and 𝜋𝑁𝑥∕𝐿𝑥 for the dimension 𝑘𝑢1
and equal to −𝜋𝑁𝑦∕𝐿𝑦 and 𝜋𝑁𝑦∕𝐿𝑦 for the dimension 𝑘𝑢2 . In this way,
the amplitudes of the spectra 𝑆̂′

𝑘𝑣
and 𝑆̂′

𝑚 are directly obtained on the
desired wavenumber grid × , without any interpolation. Note that
we do not directly apply an inverse DFT to this extended spectrum, it is
only used for the interpolation step. This makes it possible to obtain an
image spectrum after interpolation having a wider support than if zeros
were added instead of extending the signal spectra, which improves the
quality of the reconstructed images.
4

The expression of 𝑘 in Eqs. (7) and (12) is non-linear with respect
to 𝐤𝑟 and so, the required wavenumber grid for 𝑘 is non-uniform. Thus,
the method described above is not applicable for this dimension and, as
previously mentioned, an interpolation of the signal spectra along the 𝑘
dimension is performed. A nearest neighbor interpolation is chosen but,
knowing that the interpolation accuracy is a preponderant factor for the
quality of the Fourier-domain reconstructions, zero-padding is used for
the time dimension before DFT computation and 𝑁𝑘 is chosen large
enough to obtain a satisfactory image quality. Note that different ways
to control the quality of images obtained with Fourier methods are
proposed in the literature. For example, by improving the quality of the
interpolation step [25], by using a non-uniform FFT [26,27] or by using
the interpolation-free Stolt mapping method developed by Li et al. [28].
However, the amount of memory required for these algorithms will be
greater and the obtained frame rate lower. For real-time 3D imaging,
the use of zero-padding and nearest neighbor interpolation seems to
be a good compromise to obtain good performance without excessively
degrading the image quality.

3.2. Required memory space

Regarding the real-time implementation of imaging algorithms, high
frame rates can be reached if all matrices needed to reconstruct an
image are computed before starting the imaging loop. However, large
enough memory space is required to store the reconstruction algorithm
matrices, in addition to the recorded signals. This is the main constraint
for real-time imaging. In this paper, we do not make a trade-off between
frame rates and memory requirements and we only present the fastest
possible implementation and therefore the most memory intensive.

For TFM and PWI, the computation of 𝑁 × 𝑁 and 𝑁 × 𝑀 arrival
imes is needed for each reconstruction point in the region of interest.
or each of these times, the index of the closest value in  is stored in
he graphic card. In the same way, for the Fourier-domain algorithms,
he indices corresponding to the closest values in  of the required
alues of 𝑘 are stored in the memory space of the graphic card. Using
hifted signal spectra reduces the number of indexes to be stored by a
actor of 𝑁 for the k-TFM and k-PWI methods because the required 𝑘 in
qs. (7) and (12) no longer depend on 𝑘𝑢1 and 𝑘𝑢2 which are imposed
qual to 𝑘𝑥 and 𝑘𝑦 in this case. The skew factors 𝐾𝑢 and 𝐾𝑣, as well
s the phase shifts in Eqs. (15) and (16) and those used for taking into
ccount a water/solid interface (see Appendix A), are also computed
nd stored.

The sizes of the different stored matrices are summarized in Table 1
nd the memory requirements corresponding to our experimental set-
ings are presented in Fig. 3(a). It appears that our implementation of
he Fourier-domain algorithms provides lower memory costs compared
o those in the time domain. This is especially valuable in the context
f 3D real-time imaging where the amount of available memory in NDT
ystems is a huge constraint if large volumes have to be reconstructed
ith high resolutions. In our experiment, where 𝑁 = 256, 𝑀 = 33,
𝑡 = 237, 𝑁𝑘 = 711, 𝐿𝑥 = 9.9 mm, 𝐿𝑦 = 9.9 mm and 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧∕2,

k-TFM requires approximately 80 times less memory space than TFM
for 105 < 𝑁𝑥𝑦𝑧 < 108 where 𝑁𝑥𝑦𝑧 = 𝑁𝑥𝑁𝑦𝑁𝑧 is the total number of
voxels. In the case of plane wave emission and for the same range of
𝑁𝑥𝑦𝑧 values, k-PWI has memory requirement between 2 and 60 times
lower than PWI.

3.3. Algorithmic complexity analysis

For the TFM and PWI methods, the signal amplitudes in the dataset
are extracted using the indices stored in the graphic card. This oper-
ation is a nearest neighbor interpolation of the signals that comprises
only memory accesses. The results of the interpolation step are stored
in a 5-D double array of size 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 ×𝑁 ×𝑁 for the TFM method
and 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 × 𝑁 × 𝑀 for the PWI method. Each component
of those 5-D variable corresponds to an amplitude extracted in the
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Table 1
Types and sizes of the variables precomputed and stored in the graphic card.
Variable Type Size

TFM k-TFM PWI k-PWI

Interpolation indices uint32 𝑁𝑥𝑁𝑦𝑁𝑧𝑁2 𝑁𝑥𝑁𝑦𝑁𝑧𝑁 𝑁𝑥𝑁𝑦𝑁𝑧𝑁𝑀 𝑁𝑥𝑁𝑦𝑁𝑧𝑀
Skew factors single complex 𝑁𝑥𝑁𝑦𝑁𝑧𝑁 𝑁𝑥𝑁𝑦𝑁𝑧𝑀
Signals phase shift single complex 𝑁2 𝑁𝑘𝑁𝑀∕2
Water phase shift single complex 𝑁𝑘𝑁𝑥𝑁𝑦𝑁∕2 𝑁𝑘𝑁𝑥𝑁𝑦𝑀∕2
Fig. 3. Required memory (a) and algorithmic complexity (b) plotted as a function of the number of voxels for TFM, PWI, k-TFM and k-PWI. The results correspond to the
cquisition and reconstruction parameters used in the experiments: 𝑁 = 256, 𝑀 = 33, 𝑁𝑡 = 237, 𝑁𝑘 = 711, 𝐿𝑥 = 9.9 mm, 𝐿𝑦 = 9.9 mm and 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧∕2.
c
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experimental dataset at a corresponding arrival time. For both methods,
the calculation of a single voxel requires a double summation (see
Eqs. (1) and (3)). Thus, for 𝑁𝑥𝑦𝑧 voxels, the algorithmic complexities
for TFM and PWI are respectively

TFM = 𝑁𝑥𝑦𝑧𝑁
2 (20)

and

PWI = 𝑁𝑥𝑦𝑧𝑀𝑁. (21)

For the k-TFM algorithm, the 5-D Fourier transform of the dataset
must be computed before interpolation. As explained before, zero-
padding is used for the DFT computations along the dimensions 𝑢1,
𝑢2 and 𝑡 with the number of points 𝑁𝑘𝑢1

𝑁𝑘𝑢2
and 𝑁𝑘. Thus, this 5-D

Fourier transform comprises the following computation steps:

1. Zero-padded DFT along the time dimension with suppression of
the useless negative frequencies;

2. DFTs along the dimensions 𝑣1 and 𝑣2;
3. Application of phase shifts before zero-padded DFTs along the

dimensions 𝑢1 and 𝑢2.

Direct and inverse DFTs are computed using the Fast Fourier Trans-
form (FFT) and the algorithmic complexity of the 5-D FFT is therefore
equal to 𝑁𝑘𝑁𝑘𝑢1

𝑁𝑘𝑢2
𝑁 log2

(

𝑁𝑘
√

𝑁𝑘𝑢1
𝑁𝑘𝑢2

𝑁
)

. The application of the
phase shift corresponds to a term-by-term multiplication of two 5-D
arrays of size 𝑁𝑘

2 ×
√

𝑁 ×
√

𝑁 ×
√

𝑁 ×
√

𝑁 which has therefore an algo-
rithmic complexity equal to 𝑁𝑘

2 𝑁2. After the extension of the spectrum
long the dimensions 𝑘𝑢1 and 𝑘𝑢2 , a nearest neighbor interpolation is
erformed along the dimension 𝑘. We thus obtain a 5-D array of size
𝑥 × 𝑁𝑦 × 𝑁𝑧 ×

√

𝑁 ×
√

𝑁 that we multiply by 𝐾𝑢𝐾𝑣 and sum over
the two last dimensions. Each of these two operations has a complexity
5

v

equal to 𝑁𝑥𝑦𝑧𝑁 and finally, an image spectrum is stored in a 3D array
of size 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧. The last operation is an inverse 3D FFT with
omplexity equal to 𝑁𝑥𝑦𝑧 log2

(

𝑁𝑥𝑦𝑧
)

. All these above operations lead
to an algorithmic complexity for k-TFM equal to

k-TFM = 𝑁𝑘𝑁𝑘𝑢1
𝑁𝑘𝑢2

𝑁 log2

(

𝑁𝑘

√

𝑁𝑘𝑢1
𝑁𝑘𝑢2

𝑁
)

+
𝑁𝑘
2

𝑁2 + 2𝑁𝑥𝑦𝑧𝑁 +𝑁𝑥𝑦𝑧 log2
(

𝑁𝑥𝑦𝑧
)

. (22)

k-PWI includes the same computation steps, which leads to a similar
algorithmic complexity:

k-PWI = 𝑁𝑘𝑁𝑘𝑢1
𝑁𝑘𝑢2

𝑀 log2

(

𝑁𝑘

√

𝑁𝑘𝑢1
𝑁𝑘𝑢2

)

+
𝑁𝑘
2

𝑁𝑀 + 2𝑁𝑥𝑦𝑧𝑀 +𝑁𝑥𝑦𝑧 log2
(

𝑁𝑥𝑦𝑧
)

. (23)

In this expression, the first term corresponds to the calculation of 𝑀
3D FFT, one for each transmission. It is the main difference with the
algorithmic complexity expression of k-TFM where the first term cor-
responds to a single 5-D FFT of the entire recorded data set. The other
differences are simply due to the different numbers of transmissions
for both methods. Each algorithmic complexity consists in two mains
contributions: the first corresponds to the Fourier transform of the
dataset and mainly depends on the number 𝑁 of array elements; and
the second corresponds to the inverse Fourier transform of the image
spectrum and mainly depends on the number of voxels 𝑁𝑥𝑦𝑧.

The algorithmic complexities of the four imaging methods were
stimated considering the matrix probe and the imaging parameters
sed in our experiment, and are plotted as a function of the number
f voxels in Fig. 3(b). Using the Fourier-domain algorithms leads to
ower algorithmic complexities, but only for a number of reconstructed
oxels greater than 5.103 in our configuration. As the desired number
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Fig. 4. Experimental setup with a matrix array and a stainless steel block immersed in water (a). The block was elaborated by additive manufacturing and contains 27 porosities
of 0.8 mm diameter arranged in a 3D network of 4 mm period: side view with a water column height of 10 mm (b); 3D view (c).
of voxels in 3D imaging typically varies between 105 and 108, the
Fourier-domain algorithms are therefore useful to speed up real-time
3D imaging. However, if a matrix array with more elements is used,
the imaging algorithms will be more efficient in the time domain rather
than in the frequency domain for a larger range of number of voxels.
Indeed, the terms that mainly depend of the number of elements in
the algorithmic complexities of the Fourier-domain methods will stay
preponderant for a larger number of reconstruction points.

An analysis of (22) and (23) shows that the gains in terms of
numbers of operations for the Fourier-domain algorithms for 105 <
𝑁𝑥𝑦𝑧 < 108 are given by

k-TFM
TFM

∼
2𝑁 + log2

(

𝑁𝑥𝑦𝑧
)

𝑁2
(24)

and

k-PWI
PWI

∼
2𝑀 + log2

(

𝑁𝑥𝑦𝑧
)

𝑁𝑀
. (25)

For example, these expressions lead to approximatively 125 times less
operations for k-TFM over TFM and of approximatively 95 for k-PWI
over PWI. Although this does not directly give us the gain in terms of
improved frame rate, it indicates that Fourier domain algorithms are a
good tool for performing real-time imaging.

4. Real-time 3D imaging results

In the present section, an additively manufactured 316L stainless
steel block containing a set of spherical porosities is imaged with the
four imaging methods. First, the experimental setup and the manu-
facturing additive sample are presented. Then, the quality of the 3D
images is compared for a certain number of voxels allowing image
computation with the four methods. Finally, the imaging rates for each
method as a function of the number of voxels are compared.

4.1. Experimental setup

The experimental setup is shown in Fig. 4. The matrix array man-
ufactured and distributed by Imasonic (Voray-sur-l’Ognon, France) is
composed of 16 × 16 square elements of 1 mm2 arranged with a pitch
of 1.1 mm in the  and  directions. The elements operate at the central
frequency of 5 MHz. The sample to be imaged is a 316L stainless steel
block elaborated by additive manufacturing with a laser powder-bed
fusion process. The block includes a network of 27 porosities of 0.8 mm
diameter organized in a cubic mesh of 4 mm period with a maximum
angle between the reflectors and the probe axis of about 18◦. The block
6

is 20-mm high and is assumed to be isotropic with longitudinal wave
velocity equal to 5.74 mm μs−1 [29]. The experiment was carried out
in a water tank and the matrix array placed 10 mm above the sample
surface so that its central axis coincides with the central porosities
of the 3D network. It should be pointed out that the printed sample
was controlled by X-ray radiography to ensure that all the defects are
identical spheres and that they are not completely filled with steel
powder.

The data acquisition with divergent or plane waves were performed
using a 256-channel Vantage (Verasonics) system and the 3D imaging
codes were implemented on Matlab 2021a and were launch on a graphic
card (Nvidia Geforce RTX 3090) with 24 GB of available memory.
The recorded time window is set between 16.25 and 20.05 μs, so
the echoes from the specimen surfaces are not digitized. This avoids
imaging artifacts possibly caused by aliasing for the Fourier-domain
methods [20]. The Vantage system has a programmable sample rate of
up to 62.5 MHz. The maximum available sample rate is used, so each
recorded signal contains 237 time samples.

For the PWI and k-PWI methods, a satisfactory quality image of the
printed sample can be obtained with only 33 plane waves provided that
the transmission angles

(

𝜃𝑚, 𝜙𝑚
)

are defined as

(

𝜃𝑚, 𝜙𝑚
)

=
{

(0, 0)
(2.5𝑖, 45𝑗)

where
{

𝑖 ∈
[

1, . . . ,4
]

𝑗 ∈ [0, . . . ,7] . (26)

It should be noted that our objective is not to obtain the best possi-
ble image by increasing the number of plane waves, but to evaluate the
benefit of a reconstruction in the Fourier domain for a given number
of plane waves. Note also that no apodization was applied at the time
of acquisition in order to maintain a satisfactory spatial resolution.

4.2. Comparison of obtained image quality

The 3D images corresponding to TFM, k-TFM, PWI and k-PWI are
displayed in Fig. 5 in the form of isosurfaces. The region of interest is a
10 mm3 cubic volume centered on the porosity of coordinates (0, 0, 22.1)
located at the center of the 3D network. For each volume, different
isovalues are used depending on the depth of the porosities so that all
the echoes remain visible with similar sizes. The number of voxels is
𝑁𝑥×𝑁𝑦×𝑁𝑧 = 24×24×50. This corresponds to voxels of size 𝜆∕3 in the
lateral directions and to 𝜆∕6 in the axial direction, which is below the
resolution limit given by the Rayleigh criterion [30,31]. Furthermore,
it corresponds to the maximum number of voxels for which we can
reconstruct an image with the four methods due to the limited memory
available on the graphics card. Note that the most memory-intensive

method is TFM imaging, so it is this method that limits this number.
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Fig. 5. Experimental 3D images of the network of 27 spherical porosities shown in the form of isosurfaces: (a) TFM; (b) k-TFM; (c) PWI; (d) k-PWI. The 0 dB reference level
corresponds to the maximum over amplitude measured in the whole volume, and the isovalues chosen to display the three horizontal networks of 9 porosities are indicated in dB
in the table below. (a) TFM. (b) k-TFM. (c) PWI. (d) k-PWI.
A first observation is that all porosities are properly imaged. The
different isovalues used suggest that the reconstructed porosity ampli-
tudes decrease faster as a function of the distance from the array for
both Fourier-domain reconstructions. For a quantitative comparison,
the amplitudes along the vertical central axis of the matrix are plotted
in Fig. 6. The amplitude gaps between the top porosity at  = 20 mm
and the bottom porosity at  = 28 mm are 7.9 dB for TFM and 13
dB for k-TFM. For PWI and k-PWI, the amplitude gaps correspond to
5.4 and 11.5 dB, respectively. As expected, the amplitudes decrease
more rapidly for TFM and k-TFM compared to PWI and k-PWI due
to the attenuation by spherical spreading. We also observe that the
three highest peaks correctly locate the porosities for all four methods.
Indeed, the positioning errors are below the wavelength (1.1 mm) for
all the porosities.

The horizontal cross sections are displayed in Fig. 7 for depths
 = 18.1 mm,  = 22.1 mm and  = 26.1 mm where the image amplitude
7

is maximum. They correspond to the top of the spherical defects. For
the Fourier-domain methods, we observe that the spatial resolution of
the upper plane is better and the image quality degrades more rapidly
with depth than the time-domain methods. This is particularly clear
for k-TFM. In order to compare the quality of the reconstructions,
two metrics are used: the Signal-to-Noise Ratio (SNR) and the Array
Performance Indicator (API) [32]. The SNR measures the detectability
of a defect in the presence of noise and can be expressed as

SNR =
𝐴echo
𝜎noise

, (27)

where 𝐴echo is the maximum amplitude of a defect echo and 𝜎noise is the
standard deviation of the noise at the same depth. In our experiment,
𝜎noise was measured by moving the probe over a defect-free region.
The API is introduced to quantify the spatial resolution of an imaging
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Fig. 6. Amplitudes of the 3D images extracted along the vertical central axis of the
matrix array: (a) TFM and k-TFM; (b) PWI and k-PWI.

method and can be expressed as

API =
𝑁−6dB𝐷𝑥𝐷𝑦𝐷𝑧

𝜆3
, (28)

where 𝐷𝑥, 𝐷𝑦 and 𝐷𝑧 are the dimensions of the voxels along the  , 
nd  axes, and 𝑁−6dB is the number of voxels with amplitudes greater
han the −6 dB threshold where 0 dB corresponds to the maximum re-
onstructed amplitude of the defect. The SNR and API values measured
round the positions of the central porosities are presented in Table 2.
he Fourier-domain imaging results in lower SNR values compared to
he time-domain reconstructions, and this SNR decay with depth is
imilar for the TFM and PWI methods. For the upper porosity, Fourier-
omain and time-domain imaging provide similar API. However, the
PI degrades more rapidly with depth for the Fourier-domain imaging.

Following the approach taken by Velichko et al. [33] and Merabet
t al. [16], the differences observed experimentally between the 3D
mages computed in the time and frequency domains can be justified
heoretically using asymptotic expansions of the integral expressions of
he reflector distributions. The analytical demonstration leading to the
maging equations is summarized in Appendix B. In the simplified case
here the array elements are directly in contact with the sample, the

maging equations for TFM and k-TFM can be put into the following
ntegral forms:

TFM(𝐫) = ∭ 𝐺TFM(𝐫,𝐮, 𝐯, 𝑘) d𝐮d𝐯d𝑘 (29)

nd

k-TFM(𝐫) ∼
𝑘𝑧→∞

𝐴2
∭

𝑘4 cos2 𝛽(𝐫,𝐮) cos2 𝛽(𝐫, 𝐯)
‖𝐫 − 𝐮‖‖𝐫 − 𝐯‖

𝐺TFM(𝐫,𝐮, 𝐯, 𝑘) d𝐮d𝐯d𝑘, (30)

here 𝐺TFM(𝐫,𝐮, 𝐯, 𝑘) = 𝑆(𝐮, 𝐯, 𝑘)ei𝑘(‖𝐫−𝐯‖+‖𝐫−𝐮‖), 𝐴 is a complex con-
stant and, noting 𝐰 = 𝐮 or 𝐯, 𝛽(𝐫,𝐰) is the angle at which a point located
at 𝐫 is seen from the element positioned at 𝐰. For the PWI method, the
8

s

Table 2
SNR and API values measured around the positions of the central porosities at  =
18.1 mm,  = 22.1 mm and  = 26.1 mm.

Depth (mm) SNR (dB) API

TFM k-TFM PWI k-PWI TFM k-TFM PWI k-PWI

18.1 39 33 16 11 0.43 0.53 0.81 0.7
22.1 41 33 15 8 0.48 0.86 1.2 1.34
26.1 35 28 18 9 1.2 1.9 1.3 2.1

expressions obtained for a single plane wave emission are

𝑔PWI(𝐫) = ∬ 𝐺PWI(𝐫,𝐮, 𝑘) d𝐮d𝑘 (31)

nd

k-PWI(𝐫) ∼
𝑘𝑧→∞

𝐴∬
𝑘2 cos2 𝛽(𝐫,𝐮)

‖𝐫 − 𝐮‖
𝐺PWI(𝐫,𝐮, 𝐯, 𝑘) d𝐮d𝑘, (32)

here 𝐺PWI(𝐫,𝐮, 𝑘) = 𝑆𝑚(𝐮, 𝑘)ei𝑘(𝐫.𝐞𝐦+‖𝐫−𝐮‖). For the frequency-domain
ethods k-TFM and k-PWI, the terms 𝐺TFM(𝐫,𝐮, 𝐯, 𝑘) and 𝐺PWI(𝐫,𝐮, 𝑘)

re multiplied by a function that acts as a space–time filter. The effects
f this filters can be summarized in three points:

1. The factors ‖𝐫 −𝐰‖−1 theoretically confirm that the echo ampli-
tudes decrease faster with the distance to the array when images
are computed in the frequency domain;

2. The factors 𝛽(𝐫,𝐰) show that the Fourier-domain imaging pe-
nalizes the detection of defects located outside of the matrix
aperture;

3. The factors in the form of powers of 𝑘 shift the spectral content
towards the higher frequencies, which improves the resolution
of images in the Fourier domain but can also increases the noise
sensitivity.

For the first point, the experimental observations are in perfect
greement with the theory since the porosity echoes in the k-TFM and
-PWI images decrease more rapidly with depth compared to what is
bserved in the TFM and PWI images. As the porosities are all located
elow the matrix aperture, we cannot make a comparison in relation
o the second point. Concerning the third point, our previous study
n 3D imaging with simulated echoes confirmed that a better spatial
esolution is obtained for the reconstructed images in the Fourier
omain in the absence of noise [16]. Looking at the API values, it seems
hat the greater noise sensitivity of these methods does not allow to
ind the same results with the experimental data except for the highest
entral porosity where the k-PWI obtains a better API than the PWI.
urthermore, in the presence of experimental noise, the SNR measured
ith the Fourier-domain algorithms is lower than that obtained with

he time-domain methods. However, in the case of electronic noise,
he SNR could be improved by averaging several images since the
rame rates are significantly higher for the frequency-domain methods.
rovided acquisition time is small compared to image computation
ime, is should be also possible to increase the SNR by averaging the
cquired signals. This is the case when the number of emissions is
educed by using plane wave emissions, for example, and when the
egion of interest is close to the probe, which allows for a short signal
igitization time. Reducing noise in the data in this way is particularly
seful for k-TFM and k-PWI as they are more sensitive to noise than
FM and PWI methods, respectively.

.3. Comparison of obtained frame rates

The frame rates obtained with the four real-time imaging methods
re given in Table 3 for voxel numbers ranging from 3.5 × 103 to
.3 × 107. Due to the limited available memory in the graphic card,

ome algorithms cannot be applied to the larger number of voxels.
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Fig. 7. Horizontal cross sections of reconstructed volumes at  = 18.1 mm,  = 22.1 mm and  = 26.1 mm. (a) TFM. (b) k-TFM. (c) PWI. (d) k-PWI. Level limits are adapted to
noise and therefore TFM images are displayed between 0 and −30 dB and PWI ones between 0 and −20 dB.
Our implementation of the algorithms in the Fourier domain allows
us to gain a factor 46 on the maximum number of voxels for the
TFM and a factor 59 for the PWI. Furthermore, as expected from the
analysis of algorithmic complexities, better frame rates are obtained
with the Fourier-domain imaging beyond a certain number of voxels,
approximatively 104 voxels for the k-TFM method and 105 voxels for the
k-PWI method. For 24 × 24 × 48 voxels, a TFM image is computed in
9

333 ms whereas a k-TFM image is computed in 77 ms, i.e. about 4 times
faster. In addition, for 48 × 48 × 96 voxels, a PWI image is computed in
167 ms whereas a k-PWI image is computed in 15 ms, i.e. about 11 times
faster. The larger the number of voxels, the more useful the Fourier-
domain algorithms. Thus, a low memory cost implementation of these
algorithms makes it possible to overcome the difficulties of 3D real-time
imaging.
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Table 3
Frame rates expressed in frames-per-second reached with the different imaging algo-
rithms as a function of the number of voxels. A cross indicates that reconstruction is
not feasible due to lack of memory in the graphic card.
𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 Total voxels TFM k-TFM PWI k-PWI

12 × 12 × 24 3.5 × 103 17 13 115 83
24 × 24 × 48 2.8 × 104 3a 13 115 81
48 × 48 × 96 2.2 × 105 × 6 6a 69
88 × 88 × 176 1.3 × 106 × 1a × 52
188 × 188 × 376 1.3 × 107 × × × 2a

aIndicates that the associated reconstruction is performed with the maximum possible
number of voxels.

5. Conclusion

In this paper, we have presented a way to perform fast and memory-
efficient 3D imaging with matrix arrays. Two types of acquisition have
been investigated: the first consists in the transmission of spherical
waves by exciting the elements one by one, and the second uses
incident plane waves where the elements are all excited in parallel with
delay laws. In each case, we have presented the theory of the imaging
method in the Fourier domain and demonstrated a significant decrease
of the algorithmic complexity compared to the equivalent method
operating in the time domain. In addition, the Fourier-domain methods
have been improved in terms of required memory space, which makes
it possible to compute 3D images with many more voxels in comparison
with the implementation usually adopted in the literature. The four
methods, namely TFM, k-TFM, PWI and k-PWI, have been evaluated
experimentally using a 256-channel Vantage (Verasonics) system and
parallel computations on graphic card. The imaged sample is a stainless
steel block elaborated by additive manufacturing containing a 3D net-
work of porosities of 0.8 mm diameter and the probe used is a 16 × 16

atrix array at 5 MHz.
In terms of required memory space, it has been shown that for

n image composed of 108 voxels, the k-TFM algorithm requires 80
imes less memory than TFM while k-PWI 60 times less than PWI.
he gain in frame rate depends strongly on the number of voxels.
or an image with 2.2 × 105 voxels, it has been shown that the frame
ate is 11 times higher for k-PWI compared to PWI. For k-TFM, the
rame rate is 4 times higher compared to TFM for an image with
.8 × 104 voxels. These results show that the use of imaging algorithms
n the Fourier domain is a relevant approach for real-time 3D imaging
nd could improve the performance of NDT imaging systems in terms
f frame rate and maximum number of voxels. The comparison of
xperimental 3D images formed in the time and frequency domains
onfirmed the theory: the faster amplitude decay with depth and the
reater sensitivity to noise of the Fourier-domain algorithms lead to
ower values of SNR compared to time-domain methods, in particular
or defects far from the array. Further theoretical and experimental
ork is needed to better understand the origin of this attenuation and

ensitivity to noise, which is specific to the Fourier domain algorithms.
uture work will focus on finding methods to correct these effects using
pecific spatio-temporal filters.
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f the stainless steel sample with spherical porosities. t
Appendix A. Imaging equation for a water–steel interface

The theoretical background presented in the paper considers a
matrix array directly in contact with the specimen. It is common to
carry out an ‘‘immersion’’ control where the probe is placed in water
at a certain distance above the sample. The water height, noted ℎ, is
aken into account differently depending on the type of algorithm used.

For the time-domain algorithms, the calculation of the delay corre-
ponding to the direct path of the wave is adapted. For TFM, the image
mplitude can be expressed as

TFM(𝐫) =
|

|

|

|

|

∑

𝐮∈

∑

𝐯∈
𝑠
(

𝐮, 𝐯,
‖𝐡𝑣 − 𝐫‖ + ‖𝐡𝑢 − 𝐫‖

𝑐

+
‖𝐯 − 𝐡𝑣‖ + ‖𝐮 − 𝐡𝑢‖

𝑐

)

|

|

|

|

|

(33)

where 𝑐 is the phase velocity in water and the vectors 𝐡𝑣 and 𝐡𝑢
locate the impact points on the surface for the incident path and
outgoing path, respectively [9]. The vectors 𝐡𝑣 and 𝐡𝑢 are computed
by minimizing the time of flight while respecting Fermat’s principle.
Likewise, the image amplitude for PWI is expressed as

𝐼PWI(𝐫) =
|

|

|

|

|

∑

𝐮∈

∑

𝑚∈
𝑠𝑚

(

𝐮,
(𝐫 − 𝐡𝑚).𝐞𝑚 + ‖𝐡𝑢 − 𝐫‖

𝑐

+
𝐡𝑚.𝐞̃𝑚 + ‖𝐡𝑢 − 𝐫‖

𝑐
+ 𝜏𝑚

)

|

|

|

|

|

, (34)

here

𝑚 =
⎛

⎜

⎜

⎝

𝑥 − (𝑧 − ℎ) tan 𝜃𝑚 cos𝜙𝑚
𝑦 − (𝑧 − ℎ) tan 𝜃𝑚 sin𝜙𝑚

ℎ

⎞

⎟

⎟

⎠

,

ocates the impact point on the surface of the incident plane wave and

̃𝑚 =
(

sin 𝜃𝑚 cos𝜙𝑚, sin 𝜃𝑚 sin𝜙𝑚, cos 𝜃𝑚
)𝑇

with 𝜃𝑚 = arcsin
(

𝑐
𝑐 sin 𝜃𝑚

)

is the normal vector of the plane wavefront
in water.

For the Fourier-domain algorithms, we use an idea developed by
Skjelvareid et al. [34]. The spectra which can be obtained with a
control in direct contact are extrapolated from the spectra obtained
in immersion. This allows to apply the Fourier-domain algorithms
presented in this paper without any modification. The idea is to apply
a phase shift to the spectra of recorded signals corresponding to the
inverse propagation in water. For k-TFM, we multiply 𝑆̂ by the phase
factor

exp
(

iℎ
(
√

𝑘̃ − 𝑘𝑣 +
√

𝑘̃ − 𝑘𝑢

))

,

where 𝑘̃ = 𝜔∕𝑐 is the wavenumber corresponding to the propagation in
water. The first term in exponential corresponds to the first propagation
in water, just after emission, and the second term corresponds to the
second propagation in water, from the surface to the receivers. For
k-PWI, we multiply 𝑆̂𝑚 by the phase factor

exp
(

iℎ
(

𝑘̃ cos 𝜃̂𝑚 +
√

𝑘̃ − 𝑘𝑢

))

,

here the first term in exponential corresponds to the propagation in
ater of the plane wave. These operations provide a good approxima-

ion of the recorded data spectra that we would have obtained with a
ontact control.

ppendix B. Derivation of the reflector distributions

In the following, the expressions of the distribution of point-like
eflectors are derived for the four imaging methods following the idea
roposed in [33] for the divergent waves emissions and adapted in [16]

o plane waves emissions. The objective is to obtain expressions in the
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form of integral over the same variables for both types of acquisition
in order to compare the theoretical image amplitudes.

The isotropic point-like reflector distribution obtained with TFM at
the point 𝐫 is expressed as

TFM(𝐫) = ∭ 𝐺TFM(𝐫,𝐮, 𝐯, 𝑘) d𝐮d𝐯d𝑘. (35)

here 𝐺TFM(𝐫,𝐮, 𝐯, 𝑘) = 𝑆(𝐮, 𝐯, 𝑘)ei𝑘(‖𝐫−𝐯‖+‖𝐫−𝐮‖). Using Eq. (5), the
reflector distribution at the point 𝐫 obtained for k-TFM can be expressed
as

𝑔k-TFM(𝐫) = ∫ ⋯∫ 𝐾𝑢𝐾𝑣ei(𝐤𝐮 .(𝐫−𝐮)+𝐤𝐯 .(𝐫−𝐯)+(𝐾𝑢+𝐾𝑣)𝑧)

𝑆(𝐮, 𝐯, 𝑘) d𝐤𝑢d𝐤𝑣d𝐮d𝐯d𝑘. (36)

To obtain an expression comparable to Eq. (35), the integral

𝐽 (𝐫,𝐰, 𝑘) = ∫ 𝐾𝑤ei(𝐤𝑤 .(𝐫−𝐰)+𝐾𝑤𝑧) d𝐤𝑤 (37)

must be calculated. An asymptotic expression of the integrals of the
form

𝐿 (𝛼) = ∬ 𝑓
(

𝑘1, 𝑘2
)

ei𝛼𝑞(𝑘1 ,𝑘2) d𝑘1d𝑘2 (38)

can be derived for 𝛼 → ∞ using the stationary phase method [35,36].
The result is given by

𝐿 (𝛼) ∼
𝛼→∞

2𝜋ei
(

𝛼𝑞
(

𝑘∗1 ,𝑘
∗
2

)

+𝜎 𝜋
4

)

𝛼
√

|

|

|

det
(

Q
(

𝑘∗1 , 𝑘
∗
2
))

|

|

|

𝑓
(

𝑘∗1 , 𝑘
∗
2
)

, (39)

where
(

𝑘∗1 , 𝑘
∗
2
)

is a stationary point of 𝑞, i.e., satisfying ∇𝑞
(

𝑘∗1 , 𝑘
∗
2
)

= 0,
is the Hessian matrix of 𝑞 and 𝜎 = sign

(

det
(

Q
(

𝑘∗1 , 𝑘
∗
2
)))

. Thus, by
etting 𝛼 = 𝑘𝑧, 𝑓

(

𝑘𝑤1
, 𝑘𝑤2

)

= 𝐾𝑤 and

(

𝑘𝑤1
, 𝑘𝑤2

)

=
𝑘𝑤1

(

𝑥 −𝑤1
)

+ 𝑘𝑤2

(

𝑦 −𝑤2
)

𝑘𝑧
+

𝐾𝑤
𝑘

, (40)

an asymptotic expression of integral in Eq. (37) can be obtained for
𝑘𝑧 → ∞, which is given by

𝐽 (𝐫,𝐰, 𝑘) ∼
𝑘𝑧→∞

𝐴 𝑘2𝑧2

‖𝐫 − 𝐰‖3
ei𝑘‖𝐫−𝐰‖ (41)

with 𝐴 a complex constant. The integrals over 𝐤𝑢 and 𝐤𝑣 in Eq. (36)
can be evaluated for 𝑘𝑧 → ∞ using the result given in Eq. (41). The
corresponding asymptotic expression is given by

𝑔k-TFM(𝐫) ∼
𝑘𝑧→∞

𝐴2
∭

𝑘4 cos2 𝛽(𝐫,𝐮) cos2 𝛽(𝐫, 𝐯)
‖𝐫 − 𝐮‖‖𝐫 − 𝐯‖

𝐺TFM(𝐫,𝐮, 𝐯, 𝑘) d𝐮d𝐯d𝑘 (42)

ith 𝛽(𝐫,𝐰) = arccos
(

𝑧
‖𝐫−𝐰‖

)

the angle at which the point 𝐫 is seen
rom the element positioned at 𝐰. This expression is valid for the points
sufficiently far away from the array, i.e. for 𝑧 ≫ 𝜆.

The reflector distribution obtained with PWI for one plane wave
mitted in the direction 𝐞𝐦 at the point 𝐫 is expressed as

PWI(𝐫) = ∬ 𝐺PWI(𝐫,𝐮, 𝑘) d𝐮d𝑘. (43)

here 𝐺PWI(𝐫,𝐮, 𝑘) = 𝑆𝑚(𝐮, 𝑘)ei𝑘(𝐫.𝐞𝐦+‖𝐫−𝐮‖). Using Eq. (10), the reflector
istribution obtained for k-PWI at the point 𝐫 is expressed as

k-PWI(𝐫) = ∭ 𝐾𝑢ei(𝑘𝐫.𝐞𝐦+𝐤𝐮 .(𝐫−𝐮)+𝐾𝑢𝑧)

𝑆(𝐮, 𝐯, 𝑘) d𝐤𝑢d𝐮d𝐯d𝑘. (44)

n the same way than for k-TFM, the integral over 𝐤𝑢 in Eq. (44) can be
valuated for 𝑘𝑧 → ∞ using result in Eq. (41) to obtain the following
xpression

k-PWI(𝐫) ∼ 𝐴
𝑘2 cos2 𝛽(𝐫,𝐮)

𝐺PWI(𝐫,𝐮, 𝐯, 𝑘) d𝐮d𝑘. (45)
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𝑘𝑧→∞ ∬
‖𝐫 − 𝐮‖
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