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Abstract:  

 

Time varying media recently emerged as promising candidates to fulfill the dream of controlling 

the wave frequency without nonlinear effects. However, frequency conversion remains limited by 

the dynamics of the variations of the propagation properties. Here we propose a new concept of 

space-time cascade to achieve arbitrary large frequency shifts by iterated elementary 

transformation cycles. These cycles use an intermediate medium in which wave packets enter and 

exit through non-commutative space and time interfaces. This concept avoids high frequency or 

sub-wavelength demanding metamaterials. Upward and downward frequency conversions are 

performed with 100% efficiency regardless of impedance matching. As an example, we implement 

this concept with water waves controlled by electrostriction and achieve frequency conversion 

cascades over a range of 4 octaves.  
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Spatial control of wave propagation has hardly any limits, while time manipulation remains very 

challenging. Frequency conversion is an essential component of spectral processing upon which 

many fundamental researches 1–4 and countless industrial applications 5–7 are based. It is 

traditionally performed using nonlinear processes which are amplitude dependent and requires 

high power signals. Time-varying media have recently open exciting perspectives for linear 

frequency conversion based on wave speed variations 8,9. This relies on the considerable theoretical 

developments 10,11 and technological achievements in metamaterials, pervading all types of waves 

such as electromagnetics 12–19, acoustics 20, elastic 21,22 or hydrodynamics 23,24. However, large 

frequency conversions are still challenging as the achievable changes in the medium properties are 

limited.  

Here, we introduce the concept of a “space-time cascade” to perform arbitrary large frequency 

conversions and circumvent the previous limitations. It consists in iterating arbitrarily-small 

transformation steps made of a temporal and a spatial interface. The required space-time scaling 

of the medium variations depends on the space-time extension of the entire wave packet rather 

than on the wavelength or the frequency of the wave. We implement experimentally this concept 

with water waves and achieve a frequency conversion cascade over 4 octaves. 

 

 

Figure 1 Principle of wave manipulation by iterative space-time interface crossing. a, 

dispersion cones of a reference medium (black) with a (𝒌, 𝜔) wave trajectory representing 
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wave bending and frequency conversion (green line) achieved by successive elementary 

transformations through space and time interface crossing with an intermediary medium with 

a slightly different dispersion cone (grey). b, A plane wave (𝒌𝟏, 𝜔1) in medium #1 is 

projected to (𝒌𝟐, 𝜔2) when crossing an interface between medium #1 and #2. For a plane 

space interface, the projection is horizontal along its normal direction 𝒖 ∝ 𝒌𝟐 − 𝒌𝟏 and 

𝜔2 = 𝜔1 (red arrows). Elementary horizontal transformation (solid line arrows) composed 

of two space interface crossings with different directions can be iterated to achieve arbitrary 

wave bending (dashed arrows). c, For a time interface, the projection is vertical with 𝒌𝟐 =

𝒌𝟏 and 𝜔2 ≠ 𝜔1 (blue arrows). The iteration of an elementary vertical frequency conversion 

transformation composed of a time interface projection followed by a space interface 

projection (solid arrows) generates arbitrary frequency conversions (dashed arrows). The 

reflected waves have been omitted for clarity (see Supplementary Information). 

 

The idea of space-time cascade is conceptually sketched in Fig. 1a. A wave packet centered around 

the angular frequency 𝜔1 can be represented to a good approximation as a point (𝒌𝟏, 𝜔1) on the 

dispersion cone of medium #1, with 𝒌𝟏 being its associated wave vector (Fig. 1a). Comprehensive 

wave control involves the ability to change the direction and frequency of a wave, i.e., to move 

the characteristics of the wave from one point (𝒌𝟏, 𝜔1) to another arbitrary point (𝒌′𝟏, 𝜔′1) on the 

dispersion cone. Such a shift can be achieved by using an intermediate medium #2. As the wave 

packet moves from medium #1 into #2, (𝒌𝟏, 𝜔1) is projected at (𝒌𝟐, 𝜔2) on the dispersion cone of 

medium #2. The projection transformation depends on the characteristics of the interface 

separating the two media through which the wave packet passes. For instance, a planar space 

interface yields a horizontal projection, 𝑆1→2, in the direction normal to the interface (Fig. 1b). 

Spatial and time translation invariance results in the conservation of the wave vector component 

tangent to the interface and 𝜔2 = 𝜔1, respectively. Projections associated with time interfaces, 

𝑇1→2, are obtained by time varying the propagation properties from medium #1 to #2 8,17,19. In this 

case, momentum is conserved (𝒌𝟐 = 𝒌𝟏) while the frequency changes 𝜔2 ≠ 𝜔1 (Fig. 1c). The 

wave packet transmitted in medium #2 can be projected back to medium #1 but through a different 

interface. Since the projections depend on the interfaces, the transformation cycle is not reduced 

to the identity. For example, passing through two spatial interfaces of different directions induces 

wave bending with a change in direction 𝚫𝒌 at fixed 𝜔 (Fig. 1b). Transformations inducing 

frequency conversion require a combination of a time interface and a space interface such as 
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𝑇2⟶1𝑆1⟶2 or 𝑆2⟶1𝑇1⟶2. Pure frequency conversion transformation are obtained for vertical step 

between the dispersion cones when the space interface is oriented normal to the initial wave vector 

forms a (Fig. 1c).    

In practice, the dispersion cones of the two media are very close to each other due to the difficulty 

of significantly varying the propagation properties of a medium. Step transformations therefore 

induce very limited frequency shifts Δ𝜈. However, these small shifts can be added by iteration 

(Fig. 1c) allowing arbitrarily large transformations between two media with arbitrarily close 

properties. Any trajectory on the dispersion cone characterizing wave bending and frequency 

conversion can be implemented using this concept (Fig. 1a). Frequency conversions can be 

achieved by cascading elementary vertical steps to form a staircase-like transformation with a 

priori no limitation. A simple permutation of space and time interfaces can change a blue-shift into 

a redshift, going up or down the transformation staircase. The commutated product, changing 

𝑇2⟶1𝑆1⟶2 to  𝑆2⟶1𝑇1⟶2, corresponds to the time-reversed transformation. Since the 

transformations are linear, the previous considerations can easily be extended to wave packets with 

arbitrary frequency spectra. 
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Figure 2 Experimental implementation of elementary space-time transformation step. b, 

Schematic of the experimental setup. The shaker produces a plane water wave packet. The 

transparent electrode changes medium #1 into #2 by electrostriction with controllable high 

voltage switches. The wave field is measured by a camera from the deformation of a 

checkerboard pattern placed under the container (see Supplementary Information). b, Water 

waves dispersion curves of media #1 with no voltage and #2 with 𝑉0 = 7.5 kV. Example of an 

elementary frequency up-conversion transformation step composed of successive space 

projection 𝑆1→2  and time projection 𝑇2→1 for an initial wave at 𝜈 = 10 Hz. Normalized 

kymographs of a wave packet centered at 𝜈 = 10 Hz crossing c, a space interface 𝑆1⟶2, e, a 

time interface 𝑇2⟶1 and g, the elementary transformation step 𝑇2⟶1𝑆1⟶2 (see Supplementary 

Video 1 and Information). d, f and h normalized 𝑘-spectra and 𝜈-spectra taken before and after 

the interface crossings, measured from (c), (e) and (g) respectively.  
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We implemented this concept with electrostriction-controlled water waves. When an flat electrode 

is mounted above the grounded conductive water surface, the applied electric field exerts an 

attractive force on the liquid surface that changes the velocity of the water wave 25. This creates 

well-controlled space and time varying properties. Figure 2a shows the experimental setup 

consisting of a container filled with tap water (see Supplementary Information). Transparent ITO 

electrodes can be suspended horizontally at a distance 𝑑 above the water. The electric potential 𝑉 

can be tuned in the range of 0 to 10 kV using electrical switches. Plane waves are produced by a 

shaker exciting horizontally a paddle. The wave field is measured from top-view images using the 

deformation of a checkerboard pattern placed below 26. For a given wavenumber 𝑘, the voltage-

dependent refractive index 𝑛(𝑘, 𝑉) satisfies  

𝑛(𝑘, 𝑉) = (1 − 𝜒0(𝑘)𝑉2)−1/2  with 𝜒0(𝑘) = 𝜖/(𝜌𝑐2(𝑘)𝑑2 tanh(𝑘𝑑))  (1) 

𝑐(𝑘) is the wave velocity given by the gravity-capillary dispersion relation at 𝑉 = 0, 𝜖 is the 

dielectric permittivity of air and 𝜌 is the density of the liquid 25. Figure 2b shows the dispersion 

relation (1) for 𝑉 = 0 kV (medium #1) and for  𝑉 = 𝑉0 (medium #2) as well as the frequency up-

conversion transformation step consisting of a space interface 𝑆1⟶2 followed by a time interface 

𝑇2⟶1. The space interface is located at the edge of the electrode where the refractive index varies 

typically over a width ~𝑑. Figure 2c shows the experimental normalized kymograph of a wave 

packet crossing the interface 𝑆1⟶2 as it enters under the electrode set at 𝑉0 to produce a change of 

refractive index Δ𝑛 ≈ 0.5 (Supplementary Video 1). The wave vector is shifted by Δ𝑘 ≈ +200 m-

1 while its frequency spectrum remains unchanged (Fig. 2d). The wave packet propagating under 

an electrode can also cross a time interface 𝑇2⟶1 when the voltage 𝑉0 is switched off, resulting in 

a sudden change Δ𝑛 ≈ −0.5 (Supplementary Video 1). The frequency spectrum is blue-shifted by 

Δ𝜈 ≈ +4 Hz while the k-spectrum remains unchanged (Fig. 2f). The complete elementary 

transformation step consisting of a succession of interfaces 𝑆1⟶2 and 𝑇2⟶1 (Fig. 2g) shifts both 

the frequency and the wave vector (Fig. 2h) to satisfy the dispersion relation of medium #1. The 

kymographs show transformation steps as space-time tessellation. Medium #2 appears as square 

patterns which size depends on the space-time extension of the wave packet (Supplementary Fig. 

1). 
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Figure 3 Experiment of the frequency conversion cascade. a, Schematic of the space-

time cascade experimental setup (top view) with 3 electrodes controlled by independent 

electrical switches. The plane wave packet with 𝜈 ≈ 10 Hz undergoes 3 successive 

elementary transformation steps 𝑇2⟶1𝑆1⟶2 as it passes under each electrode initially set at 

𝑉0 and switched off synchronized with the wave propagation (see insets). b, Snapshots of 

the initial wave packet (𝑡 = 0.0 s) and of the successive frequency shifts after each 

transformation step at 𝑡 = 0.4 s, 1.25 s and 2.0 s (Supplementary Video 2). c, Snapshots of 

the same propagating wave packet taken in the absence of voltage (reference). d, Frequency 

spectra of the snapshots (B) showing a blue-shift Δ𝜈 ≈ 2 Hz for each transformation step. e, 

Frequency spectra associated with the time reversed process for an initial wave packet of 

𝜈 ≈ 16 Hz redshifted by successive elementary transformation steps 𝑆2⟶1𝑇1⟶2 

(Supplementary Video 3 and Fig. 1). 

 

The experimental setup can be modified to perform frequency conversion cascades (Fig. 3a). The 

wave packet undergoes multiple transformation steps 𝑇2⟶1𝑆1⟶2 as it propagates under successive 

electrodes. The wavelength 𝜆 of the wave packet decreases of after each step (Fig. 3b compared to 

a free propagating reference, Fig. 3c). These contractions are associated blue-shift in frequency 

satisfying 𝜈 =
𝑐

𝜆 
 (Fig. 2b and Supplementary Fig. 1 and Video 2). The frequency spectrum is 

shifted by Δ𝜈 ≈ 2 Hz at each step (Fig. 3d). The opposite redshift cascade can also be achieved by 
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the time reversed operation with successive time-flipped steps 𝑆2⟶1𝑇1⟶2 (Fig. 3e, Supplementary 

Video 3).  

 

Figure 4 Frequency conversion cascade confined within a cavity. a, Example of a cavity 

with a triangle geometry to perform multiple passes under the same electrode. The 

circulating wave packet is limited to the size of active medium (ST) with no links to the 

cavity modes. b, Experimental implementation in a modified Fabry-Pérot cavity with an 

amplification loop to compensate for the poor reflection efficiency of water waves. c, Up 

and down frequency conversion cascades and dispersion curves from eq. (1) in semi-

logarithmic scale for an initial wave packet at 𝜈 = 16 Hz. (inset: close-up). 

 

Other geometries are more suitable when the number of transformation steps increases. Cavities, 

such as a unidirectional triangular geometry (Fig. 4a) or a Fabry-Pérot cavity, allow a single active 

medium to perform all the transformation steps. The time interface is synchronized when the 

circulating wave packet is in the active medium. Since the extension of the wave packet is limited, 

it is completely independent of the cavity modes in contrast to time-varying resonators experiments 

9,12,13,27. Due to the limited efficiency of water waves reflection an amplification loop must be used 

to send the wave packet back into the active medium (Fig. 4b). With damping compensation, a 

cascade of up and down frequency conversion can be achieved over a range of more than 4 octaves 

with 23 elementary steps (Fig. 4c).  
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As in most time-varying experiments, electrostriction-driven interfaces have an impedance 

mismatch creating reflected waves. These small amplitude waves can be further reduced by anti-

reflection coating 17 or by using smoother interfaces 28. In the space-time cascade, the duration of 

time interfaces is limited only by the residence time of the wave packet in the active medium. This 

is an asset for implementation with other types of waves such as in optics. 

What is the influence of the impedance mismatch on the energy conversion yield of a 

transformation step? Energy being conserved in space interfaces, the impedance mismatch is 

detrimental reflecting part of the energy. For time interfaces, momentum is conserved, but not 

energy. Hence, the amplitude of the transmitted wave increases with impedance mismatch to 

balance the reflected momentum. For sharp space and time interfaces, the two effects compensate 

and the energy flux density yield for an elementary transformations step satisfies 𝛤 = 𝜔′/𝜔, 

independent of the order of the projections (Supplementary Information)8. Whatever the 

impedance mismatch, the yield for sharp interfaces is equal to that of a perfectly matched interface 

for which the entire wave packet is transmitted with 100% efficiency. From a photonic viewpoint, 

the energy of each photon is shifted from ℏ𝜔 to ℏ𝜔′ but the total number of transmitted photons 

remains constant. A different shaping of the space and time interfaces could even lead to an 

amplification of the output wave packet. 

Along with the transformation optics 29,30, the space-time cascade also find an interesting 

interpretation in terms of the space-time metric of general relativity. In the ray approximation, the 

light beam is characterized by a 4-momentum vector 𝑝𝜇 ∝ (
𝜔

𝑐
, −𝒌) tangent to the geodesic along 

which it propagates. Observers placed along the geodesic would measure in their rest frame 

changes in directions and frequencies following a (𝒌, 𝜔) curve on their common dispersion cone 

𝜔 = 𝑐𝑘 (Fig. 1a). A space-time cascade can thus mimic large light–bending and frequency 

conversions associated to gravitational effects or universe expansion.  
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Supplementary Information 
 

Supplementary Materials and Methods: 

 

1. Experimental setup  
 

Experiments are performed in a Plexiglas tank of 100 × 50 × 20 cm. The water depth is always greater than 7 cm so 

that the deep water approximation is always valid in our range of frequencies.   

 

The transparent electrodes are made of glass plates coated with a thin ITO layer. The resistance between two points 

of the electrode is always measured to be less than 100 Ω ensuring that potential applied is the same on the whole 

electrode.  

 

The high-voltage power supply (Spellman MPS15P10/24) delivers a constant voltage typically between 8 kV and 10 

kV. The electrodes are switched from high-voltage to ground using high-voltage relays (Meder HM24) controlled 

with an Arduino Controllino Mini. 

 

The tilt of the electrode with respect to the water surface is set with three micrometric screws. The horizontality of the 

electrodes is controlled by sending a collimated laser beam on the electrode and the water surface with a direction 

close to the normal of the two interfaces. The two reflected beams then pass through a converging lens with focal 𝑓 ≈
30 cm and are imaged on a screen placed in the image focal plane. When the two focal spots are at the same position, 

the angle between the electrode and the surface was always measured to be less than 0.1°.  

 

Dish soap (Paic Citron) is used to lower the surface tension and change the dispersion relation. This amplifies the 

effect of electric potential on the change of the wave speed, ie on the change of refractive index 𝑛. The latter being 

the relevant parameter, the exact value of the surface tension is not needed but can be deduced from dispersion curve 

fitting.  

 

2. Measurement of the wave amplitude 
 

Water waves are filmed from above at 100 fps using a Basler camera. A checkerboard pattern is placed under the 

water tank in order to reconstruct numerically the waves using FCD Schlieren method (26). For each time, we recover 

the amplitude 𝐴(𝑥, 𝑦, 𝑡) on the area of interest. A 2D high-pass spatial filter is applied to each image 𝐴(𝑥, 𝑦) and a 1D 

high-pass temporal filter is applied in the time domain. The waves are plane waves propagating along the 𝑥 axis 

(horizontal axis on the images and movies). The spatio − temporal diagrams 𝐴(𝑥, 𝑡) is obtained by averaging the 

wave amplitude along the wave front 𝑦-direction (vertical in the images and movies).  

 

In order to compensate for damping along the propagation, the amplitude 𝐴(𝑥, 𝑡) at each 𝑥 is divided by the standard 

deviation 𝜎(𝑥) = √∑ 𝐴(𝑥, 𝑡)2
𝑡  taken at the same 𝑥 in the time direction. 

  

By taking slices along the 𝑥 (resp. 𝑡) direction and performing Fast Fourier Transform, it is possible to determine the 

wave vector (resp. the frequency) at a given time (resp. position). To increase the precision on the determination of 𝜔 

or 𝑘 corresponding to the maximum of the Fourier transform, zero-padding is used so that each sample contains 2048 

points.  

 

This procedure was applied to obtain the data presented Fig. 2 in the main text. The spectra of Fig. 3 in the main text 

were extracted from the diagram presented Fig. S1.  
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For the case of temporal interfaces, changing the voltage of the electrodes generates water waves on the bath. These 

water waves are removed by subtracting a movie containing only the waves emitted by the electrodes. 

 

3. Dispersion relation for water waves under an electrode 
 

We consider a wave of wave vector 𝑘 and pulsation 𝜔 at the surface of water. The gravito-capillary dispersion relation 

is 𝜔0
2 = 𝑔𝑘 + 𝛾𝑘3/𝜌 with 𝑔 = 9.8 m/s² the local gravity, 𝛾 ≈ 20 mJ/m² the surface tension and 𝜌 = 103 kg/m3 the 

density. When a horizontal electrode is placed at distance 𝑑 and potential 𝑉0 over the grounded water, the dispersion 

relation is modified as (25) 

 

𝜔1
2 = 𝜔0

2(𝑘)(1 −
𝜖𝑉0

2𝑘2

𝑑2𝜌𝜔0
2(𝑘) tanh(𝑘𝑑)

)         (S1) 

 

with 𝜖 = 9.10−12F/m the dielectric constant of air. The previous relation has been verified experimentally in the 

frequency range used for our frequency cascade. We cover partially the surface with a horizontal electrode at potential 

𝑉0. A wave at frequency 𝜈 = 10, 14 or 18 Hz is sent on a bath. When the waves goes from the free surface to the area 

covered by the electrode, the wave vector changes from 𝑘0 to 𝑘1 while the frequency 𝜈 remains the same. For each 

frequency, the ratio 𝑛exp = 𝑘1/𝑘0 are measured experimentally for different values of 𝑉0. The results are shown in 

Fig. S2.  

 

The theoretical ratio 𝑛th = 𝑘1/𝑘0 given by eq. for 𝜈 = 10, 14 and 18 Hz is plotted Fig. 1 with 𝛾 = 23 mJ/m² and 𝑑 =
6.7 mm. The surface tension 𝛾 has been obtained by measuring 𝑘0 for 𝜈 = 18 Hz. The distance 𝑑 was measured 

experimentally to be 𝑑 ≈ 6 mm and was adjusted to fit the datas. We see that for our frequency range, the theory 

provides satisfying prediction with absolute difference |𝑛th − 𝑛exp|< 0.1. Note that the value 𝛾 = 23mJ/m² differs 

from the one used in the main text (𝛾 = 45mJ/m²) because experimental condition (in particular the amount of soap 

used) were different in both cases. This variation is however not an issue as only the effective value of 𝑛 is significant 

for our experiments.  

 

4. Reflection/transmission amplitude coefficients for a sharp space and time interfaces 
  

The Fresnel coefficients associated to the amplitude of a monochromatic electromagnetic wave field can be obtained 

writing continuity equation across the interface between media #1 and #2 with impedances 𝜂𝑖 and permittivity 𝜖𝑖 with 

𝑖 = 1 and 2. 

In the case of a sharp interface the equations are (see ref. (8)): 

For a space interface, the transmission and the reflection coefficients are 𝑡12
𝑆 =

2𝜂2

𝜂1+𝜂2
 and 𝑟12

𝑆 =
𝜂2−𝜂1

𝜂1+𝜂2
 respectively. 

 

For a time interface, the transmission and the reflection coefficients are  𝑡12
𝑇 =

𝜖1

𝜖2

𝜂1+𝜂2

2𝜂2
  and 𝑟12

𝑇 =
𝜖1

𝜖2

𝜂2−𝜂1

2𝜂2
 respectively. 

 

5. Transmission yield for an elementary transformation step 
 

An elementary transformation step consists in a succession of a time and a space interfaces which order results in an 

upward or downward frequency shift.   

We consider a quasi-monochromatic wave packet with amplitude 𝐴 at (𝑘, 𝜔) changed into another wave packet with 

amplitude 𝐴′ at (𝑘′, 𝜔′) after an elementary transformation using medium #2 as an intermediary medium. 

We neglect the dispersion in medium #1 so that the impedance refractive index 𝑛1 is the same for 𝜔 and 𝜔′. Since the 

frequency shift of an elementary transformation step is small this is usually satisfied. 

 

In the case of an elementary step with first a space interface followed by a time interface, the change in amplitude 

satisfies 

 
𝐴′

𝐴
= 𝑡21

𝑇 𝑡12
𝑆 =

𝑛1

𝑛2
  

 

Since 
𝑐

𝑛1
=

𝜔

𝑘
=

𝜔′

𝑘′  and 
𝑐

𝑛2
=

𝜔

𝑘′ , it gives 
𝐴′

𝐴
=

𝑘′

𝑘
=

𝜔′

𝜔
 



 

 

14 

 

 

In the case of an elementary step with first a time interface followed by a space interface, the change in amplitude 

satisfies 

   
𝐴′

𝐴
= 𝑡21

𝑆 𝑡12
𝑇 =

𝑛2

𝑛1
  

Since 
𝑐

𝑛1
=

𝜔

𝑘
=

𝜔′

𝑘′  and 
𝑐

𝑛2
=

𝜔′

𝑘
 , it gives 

𝐴′

𝐴
=

𝑘′

𝑘
=

𝜔′

𝜔
 

 

Hence, the change of amplitude of the wave packet is independent of the order of the projections and of the impedances 

of the two media.  

 

The wave packet changes its size as it undergoes a transformation steps due to the change of refractive index when 

crossing the space interface. It is associated to the change in wavelength and satisfies  
𝜆′

𝜆
=

𝑘

𝑘′.  

 

It follows that the yield of the energy density flux 𝛤 for the transformation step is given by  

 

𝛤 =
𝜆′𝐴′2

𝜆𝐴2 =
𝑘′

𝑘
=

𝜔′

𝜔
.  

 

The energy density flux is again independent of the impedance of the two media and of the order of the projections.  

Note that 𝛤 > 1 if 𝜔′ > 𝜔 i.e. in case of a blueshift which is not in contradiction with energy conservation since 

energy can be produced at the time interface. 

 (see figure S4).  

 

6. Experimental observation of transmitted and reflected wave packets 
 

We evaluate experimentally these Fresnel coefficients. We first produce a wave packet that propagates on the free 

surface without crossing any interface. We then produce the same wave packet and measure the wave field as it crosses 

an interface. By comparing the two wave packets, we can deduce the reflection and transmission coefficients for a 

space or a time interface. Experimental results are shown Fig. S3 for the spatial interface and Fig. S4 for the temporal 

interface with Δ𝑛 = 0.5. This corresponds to the largest refractive index variation achievable with our experiment. In 

both cases, we see that the wave amplitude is only marginally changed by the interface (Fig. S3b and S4b). This 

suggests that that the transmission coefficient is 𝑡12
𝑇 ≈ 𝑡12

𝑆 ≈ 1 while the reflexion coefficient is very close to 

zero 𝑟12
𝑇 ≈ 𝑟12

𝑆 ≈ 0. This is confirmed when one looks at the space-time diagrams (Fig. S3c and S4c). The reflection 

coefficient would be associated to waves going in the opposite direction compared to the transmitted one (Fig. S3a 

and S4a). However, these waves are not visible on the diagram. If one take the Fourier transform of the diagram, the 

peak corresponding to the reflected wave is at least one order of magnitude smaller than the peak corresponding to the 

transmitted field. Similar observations have been made for lower values of 𝑛. 

 

The Fresnel coefficients associated with a variation of permittivity only would give 𝑡12
𝑆 = 0.8, 𝑟12

𝑆 = −0.2, 𝑡21
𝑇 = 1.85 

and 𝑟21
𝑇 = 0.375. From the experimental observations, it is clear that the water wave interfaces produced by 

electrostriction have a much better impedance matching. The transmission/reflection coefficients also depend on the 

exact space and time profile of the interface. In our case, it is difficult to find analytical expressions for the wave at 

the interface. This would require the potential at the boundary of the electrode while the water surface height changes 

in space. As the distance between the electrode and the water surface is of the order of the wavelength and the capillary 

length, the problem cannot be simplified easily. For the time interface, the water response to an abrupt change of the 

electric potential is also a complex problem. However, since the yield of an elementary step is independent of the 

impedance mismatch, the detail of the time and space interfaces is not essential. We nevertheless show experimentally 

that in this configuration, the reflected waves can be ignored with a very good approximation and the transmitted wave 

amplitude is close to unity. 
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Supplementary Figures: 

 

 

 

 

 

 

 

 

 

 
 

Figure S1 Upward and downward frequency conversion cascades. Normalized kymographs 

of a wave packet centered at 𝜈 = 16 Hz crossing 3 successive elementary transformation steps 

(a) for a blueshift with steps 𝑇2⟶1𝑆1⟶2 and (b) for a redshift with steps 𝑆2⟶1𝑇1⟶2. These 

kymographs are associated to Fig. 2b-2d in the main text and Video S2 for (a) and Fig. 2e in the 

main text and Video S3 for (b).  
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Figure S2 Refractive index controlled by electrostriction. Experimental measurements of the 

index 𝑛 for wave frequency of 10 Hz (blue circles), 14 Hz (red x-crosses) and 18 Hz (yellow +-

crosses) as a function of the applied voltage under the electrode. The associated curves are 

theoretical predictions from the modified dispersion relation eq. (S1) with 𝑑 =  6.7 mm and 𝛾 =
23 mJ/m². 
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Figure S3 Reflection and transmission on the space interface. a, Schematic of the crossing of 

a space interface in the wave number/angular frequency plane. A plane wave represented as a 

point (𝑘1, 𝜔1) (green circle) on the dispersion curve of medium #1 with refractive index 1 (black 

solid line) produces a transmitted wave in medium #2 with refractive index 𝑛 (grey circle on the 

grey dotted line) and a reflected wave in medium #1 (grey circle on the black solid line). The 

former is at position (𝑘2 = 𝑛𝑘1, 𝜔2 = 𝜔1), the latter is at position (−𝑘1, 𝜔1). b, Experimental 

measurement of the wave amplitude propagating across a space interface (solid blue line) as 

compared with the reference amplitude for the same wave with no space interface (red dashed 

line). The amplitude of the wave at each position is measured by taking the standard deviation in 

time. c, Experimental space-time diagram of the monochromatic wave at 𝜈 = 10 Hz crossing a 

space interface with 𝑛 = 1.5. The reflected wave is not detected and the  
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Figure S1 Reflection and transmission on the time interface. a, Schematic of the crossing of a 

time interface in the wave number/angular frequency plane. A plane wave represented as a point 

(𝑘1, 𝜔1) (green circle) on the dispersion curve of medium #2 with refractive index 𝑛 = 1.5 (grey 

dotted line) produces a transmitted wave (upper grey circle) and a reflected wave (lower grey 

circle) in medium #1 with refractive index 1. The former is at position (𝑘2 = 𝑘1, 𝜔2 = 𝑛𝜔1), the 

latter is at position (𝑘2 = 𝑘1, 𝜔2 = −𝑛𝜔1). b, Experimental measurement of the wave amplitude 

propagating across a time interface (solid blue line) as compared with the reference amplitude for 

the same wave with no time interface (red dashed line). The amplitude of the wave at each time is 

measured by taking the standard deviation in space. c, Experimental space-time diagram of an 

initial monochromatic wave at 𝜈 = 10 Hz crossing a time interface with Δ𝑛 = −0.5.  

 
 


