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Introduction

Optical imaging is a vast and dynamic field, in which many groups and researchers are
involved and develop brilliant ideas to push the limits of imaging ever further. Optical
imaging systems can be gathered into different categories which helps to classify and un-
derstand them. They can first be separated into transmission and reflection devices1. In
transmission systems, the illumination is on the opposite side of the detection whereas for
reflective systems the illumination and detection are performed on the same side of the
object. While the transmission configuration can be very interesting2 (e.g. to measure
optical absorption with X-rays) it would be invasive for most microscopy applications3
so that usually reflection systems are preferred for diffraction limited imaging. Optical
systems can then be separated into coherent and incoherent detection according to how
the light field is measured. Coherent systems exhibit very interesting properties as they
allow to access the complex nature of the light field, i.e. to measure both amplitude and
phase4 while incoherent system can only measure the squared amplitude of the light field,
losing phase information. Finally, systems can be further separated into direct and indirect
measurements depending on the way signals are probed. Indeed, some imaging systems
such as MRI, X-ray bragg diffraction imaging or Fourier-transform spectroscopy do not
acquire signals in the direct domain (i.e. in space or time) but in the Fourier (frequency)
domain. Although indirect measurements often bring interesting properties, they usually
all share the same drawback: the whole domain needs to be measured before the image
can be retrieved by going from the probed space to the direct space. The common goal of
all these imaging systems is to measure the optical properties of an object with the best
image quality and resolution. Microscopists have many physical enemies5 that deteriorates
imaging performances and are working to overcome these by designing innovative meth-
ods that allows to recover and filter information even when it was supposedly lost. Such
methods include filtering ballistic photons from scattered ones, matrix approaches and
using multimodal systems that combines electromagnetic and acoustic waves. All of these
methods are currently studied and developed in our lab in a very stimulating environment.

In this thesis, I was mostly involved in building and working with optical coherent to-
mography (OCT) systems which fall into reflection, coherent and direct6 systems. Some

1There also exists hybrid systems where the illumination can be orthogonal to the detection such as
light-sheet microscopy [Santi, 2011]

2Or even mandatory, e.g. in astronomy photons from a distant star are probed. Even if we could build a
sufficiently powerful source to illuminate celestial objects, the time required to probe back the light would
be too high to perform such experiments.

3Endoscopy in transmission would be dreadfully invasive because it would require to embed the detector
in the patient tissue

4Phase information is useful e.g. to measure sub-wavelength axial displacements or to propagate the
field to access other planes.

5Diffraction, shot noise, aberrations, scattering, and many more!
6There also exists indirect OCT system which work in the Fourier domain.
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very interesting property of OCT are its ability to reject scattered photons and its op-
tical sectioning capability. OCT is very close to holography, the difference being that
holography uses monochromatic illumination whereas OCT uses broadband sources so
that holography does not have direct optical sectioning capability. However, for weakly
scattering objects, digital holographic microscopy7 can reconstruct the object structure
in 3D using light propagation models which typically fails when the object is a few cells
in width. During my PhD, I also tried to combine OCT with fluorescence imaging in a
reflection configuration. Fluorescence is a direct measurement which always falls into the
incoherent category since fluorescence is a non-coherent process, even if the illumination
used to generate fluorescence is coherent. The incoherent nature of fluorescence led to
numerous attempts8 to bring optical sectioning capability with smart illumination and
detection schemes.

This manuscript is divided into five chapters. The first chapter introduces the concepts
and challenges of imaging in scattering media. To that end, a brief introduction of light
propagation in such media is given. Then, general concepts for filtering scattered photons
are discussed and time gating is introduced with OCT. The first implementation of OCT9

is presented with a physicist point of view before deriving mathematical concepts and
equations that lead to the image formation on the detector. These mathematical models
are applied on both time domain and Fourier domain OCT in order to show that they
both measure the same physical quantity. I wanted to introduce these concepts because I
think they are important for anyone who wants to build an OCT system. Even if the con-
cept looks simple, there are many pitfalls and subtleties with OCT systems10. Also, these
concepts are fundamental for understanding the latest research in OCT with its many
branches, as we shall see at the end of this chapter. Then, with the complete description
of OCT I derive the performances and limitations of scanning OCT before introducing full
field OCT (FFOCT). There, the measurement is parallelized using a camera rather than
a photo-diode, thus discarding the necessity of scanning. Many aspects of FFOCT are
described to provide the reader with an overview of the different parameters and giving a
utility guide for anyone who might want to build such a system. Finally, I compare our
FFOCT approach, which is time domain and spatially incoherent, with the other most
promising full field OCT approaches.

The second chapter introduces dynamic measurements with FFOCT by analyzing tem-
poral fluctuations of the interferometric signal. In this chapter, I support the idea that
dynamic FFOCT (D-FFOCT) is not suited to recover physical properties of local scat-
terers but can be used to generate quantitative images where cells are revealed with an
excellent contrast and where the study of their dynamic profile can give interesting biolog-
ical insights. An application of D-FFOCT is shown on imaging of retina organoids with
an article integrated in this manuscript [Scholler et al., 2020].

The third chapter gathers the post-processing methods and frameworks that I developed
during my PhD in order to improve (D-)FFOCT images. A particularly interesting section
is the removing of motion artifacts from D-FFOCT acquisitions. Because D-FFOCT also

7Sometimes called optical diffraction tomography
8Such as confocal fluorescence microscopy which is based on a spatial filtering of scattered photons by

illuminating and detecting through a pinhole, light-sheet microscopy where only a thin axial slice of the
sample is illuminated and multiphotons fluorescence which is based on non-linear processes.

9Which is referred as scanning OCT
10Which makes them very interesting to work with.
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probes the phase, tiny axial displacements create strong artifacts that masks the signal
of interest and prevented the acquisition of D-FFOCT images in vivo. Removing these
artifacts was a milestone in the development of D-FFOCT and the method is explained
in detail in a paper integrated in this manuscript which was published in 2019 [Scholler,
2019b]. In this paper I also presented a different way to compute the dynamic images
which improved the signal to noise ratio, hence allowing to image deeper inside tissues.

The fourth chapter gathers the hardware modifications and add-ons that I developed for
both in vivo human retina imaging and microscopy. Regarding retina imaging, the pre-
sented work is a common effort with Pedro Mecê to make FFOCT a robust, high-resolution
and consistent device to image the retina. The first step was to combine FFOCT with
an axial tracking device in order to track the retina to automatically match the optical
path length between the imaged retina layer and the reference mirror. The second step
was then to manipulate the wavefront in order to maintain an optical symmetry between
the eye and the reference arm. Without this symmetry, FFOCT images could only be
acquired on a small patch rather than on the whole field of view. Finally the last step was
to correct ocular aberrations with an efficient and low-cost approach, using an adaptive
lens in order to improve the signal to noise ratio. To succeed in this last step, a great
effort on understanding the theory behind the manifestation of aberrations in FFOCT was
made by Victor Barolle during his PhD. Then, I experimentally demonstrated the validity
of this theory during my PhD and presented at the end of this chapter.

Finally the fifth chapter gathers the numerous applications of (D-)FFOCT that were suc-
cessfully carried out during my PhD. Motion tracking was used to monitor wound healing
on D-FFOCT images and presented with an article published in 2019 [Scholler et al.,
2019]. Motion tracking was also applied to compute in vivo angiography maps of blood
flow in a human conjunctiva, in a second article published in 2020 [Mazlin et al., 2020].
Then, strategies to combine (D-)FFOCT with fluorescence imaging are described in order
to gain more insight on the dynamic part of the signals (e.g. differentiate mitochondria
from lysosomes), which will be useful for further developments and biological applications
of D-FFOCT11. Finally, machine learning and deep learning approaches for retinal cell
classification and breast cancer screening using (D-)FFOCT measurements are presented
in appendix D.

This manuscript contains a few articles which I will introduce and where I will point the
reader to the interesting parts. In order to avoid any confusions between the sections
in this manuscript and the sections of the introduced papers I will use a capital S (e.g.
Section 2.1) to refer to an article section whereas I will use a lower s (e.g. section 5.4) to
refer to a section belonging to the present manuscript12.

11These aspects are currently investigated by Kassandra Groux in our team, especially on retinal samples.
12The digital version of this thesis contains hyperlinks to automatically reach the desired thesis section.



Chapter 1

3D optical imaging in scattering
media

Contents
1.1 Imaging in 3D in scattering media . . . . . . . . . . . . . . . . . 4

1.1.1 Scattering mean free path . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Transport mean free path . . . . . . . . . . . . . . . . . . . . . . 6

1.2 3D imaging with scanning OCT . . . . . . . . . . . . . . . . . . . 7
1.2.1 Scanning OCT in a nutshell . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 OCT mathematical model . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Performances and limitations of scanning OCT . . . . . . . . . . 12

1.3 Spatially incoherent time domain FFOCT . . . . . . . . . . . . 13
1.3.1 Basic experimental setup . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Phase shifting interferometry . . . . . . . . . . . . . . . . . . . . 15
1.3.3 Differences that matters with FFOCT . . . . . . . . . . . . . . . 18

1.4 Other FFOCT systems . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.1 Off-axis FFOCT . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.2 Phase decorrelated swept-source FFOCT . . . . . . . . . . . . . 21

1.1 Imaging in 3D in scattering media
For many years, optical imaging has been the most important tool in biomedical research
to observe specimen with a sub-micron resolution with minimum invasiveness [Hajdu,
2002]. However, the conditions required for diffraction limited performances are rarely
gathered as both the resolution and the contrast drop when the imaging depth increases
inside a biological tissue. This phenomenon is a consequence of the spatial variations of
the specimen refractive index which creates wavefront distortions. When these variations
exhibits low spatial frequencies these distortions are referred as aberrations and are usu-
ally described using orthogonal polynomials. On the other hand, when these variations
are of higher frequencies, theses distortions are referred as scattering. Aberrations and
scattering limit the use of conventional microscopy to shallow depths or to almost trans-
parent specimens. Imaging deeper, hence achieving 3D imaging, requires to counteract
these detrimental phenomena so that for deep imaging, a gating mechanism is generally
used to reject scattered photons and capture only the ballistic light. Many methods have

4



CHAPTER 1. 3D OPTICAL IMAGING IN SCATTERING MEDIA 5

been developed in the past years to achieve this goal by allowing a gating for ballistic
photons. This gating can either be spatial as in confocal microscopy [Minsky, 1988] or
temporal as in optical coherence tomography (OCT) [Huang et al., 1991]. Ballistic light
is exponentially attenuated in biological tissues which means that the deeper one wants
to images, the lower the probed signal and the lower the contrast.

In order to quantify how an optical system behave in different imaging conditions, it is use-
ful to introduce two important notions that characterise light propagation: the scattering
and transport mean free path.

1.1.1 Scattering mean free path

Fig. 1.1: Effects of scattering on photography. - 1: Ballistic photons, these photons have
not been scattered even once. 2: Single scattered photons, these photons have been scattered
once (on average). It is still possible to see through because part of the photons have not been
scattered. 3: Multiply scattered photons, these photons have been scattered multiple times
and it is not possible to see through anymore with this conventional imaging technique. Photo:

Yosemite valley (2018), iPhone 8.

The measured intensity I after a scattering layer of thickness L is the sum of ballistic
intensity IB (photons that have not been scattered) and scattered intensity IS (photons
that have been scattered at least once):

I = IB + IS (1.1)

The scattering mean free path ls is the average distance travelled by a photon between
successive scattering events so that the ballistic component IB of the total transmitted
intensity decays exponentially across a scattering layer of thickness L [Akkermans and
Montambaux, 2007]:

IB = Ie−
L
ls (1.2)

Conventional imaging using a microscope typically fails when the depth of imaging exceed
ls. In biological tissue ls is on the order of 100 µm, which is typically the maximum
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thickness of cryosections1 used in histology and the sample thickness on microscope slides.
To better illustrate the effect of scattering, Fig. 1.1 present the effect of light scattering
by clouds on a photography without gating ballistic photons. Conventional imaging tech-
niques will work best in the first case and will be limited in the second case by producing
poorly contrasted images. In this work, my aim is to push the limit of full field optical
coherent tomography (FFOCT) imaging in order to acquire signals in the third case in a
microscopy setting for tissues and 3D cell cultures imaging and for retinal in-vivo imaging.
I hope that the challenges of both these tasks will be clear throughout this manuscript.
Note that the community tends to use the terminology OCT for in-vivo eye imaging while
using optical coherent microscopy (OCM) for ex-vivo application of OCT. I won’t use the
latter and will stick with "OCT" to also refer about microscopy.

1.1.2 Transport mean free path

The second important scale to describe light propagation is the transport mean free path
lt. It represents the average length over which the direction of photon propagation is
randomized. It is related to the scattering mean free path by the following equation:

lt = ls
1− g (1.3)

where g =< cos(θ) > is the asymmetry coefficient. The transport mean free path is useful
to describe light propagation when multiple scattering dominates. The transport mean
free path in biological tissue is on the order of 1 mm2. For systems with gating strategies
(confocal microscopy, OCT), the penetration depth is of the order of the transport mean
free path3. Indeed, if photons have traveled a distance corresponding to the transport
mean free path, then the backscattered field is completely random and it is not possible to
get an image of the object. In this regime one can still obtain an image with a conventional
method but the resolution will be of the order of the depth4 which is tremendously low
compared to the diffraction limit. However in this regime, the light propagation can be de-
scribed by the radiative transfer equation [Yoo et al., 1990]. Some imaging modalities5 rely
on several measurements to solve the back-propagation of the radiative transfer equation.
These modalities allow to image several order of magnitude deeper (several centimeters)
in biological tissues with a maximal theoretical6 resolution of lt which is worse than what
is achievable by a diffraction limited technique but far better than the penetration depth
[Domínguez and Bérubé-Lauzière, 2013]. These techniques are widely used for clinical
imaging for medical applications. Their poor resolution does not allow to resolve cellular
features and are therefore not in the scope of this work which aims at probing cellular
mechanisms and organisation. Finally, recent advances in reflection-matrix approaches
[Badon et al., 2016, Yoon et al., 2020] which record and process multi-scattered photons
enables to image deeper while keeping the diffraction limited resolution. These methods

1Usually cryosection have a thickness of 10 µm to 50 µm.
2The transport mean free path (hence g) value vary greatly for biological tissues, a table is available in

[Ntziachristos, 2010] and [Jacques, 2013].
3Here you might be wondering why OCT is performing better than confocal microscopy. In confocal

microscopy, spatially filtered photons are simply lost. In OCT however, the sample field is correlated
with the reference field (not scattered/attenuated) which act as an amplifier. This will become clear with
Eq. 1.8 in the following and is explained in more detail in [Badon et al., 2016].

4If a source is embedded inside a scattering medium at depth d, then the cone of diffusion on the
medium surface will have a width of around d and depend on the diffusion angle.

5Such as diffuse optical tomography [Yoko and Yukio, 2016] and computed tomography.
6In practice the resolution is of the order of the third of the depth.
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are still proof-of-concepts that are not yet applicable to in-vivo imaging but will surely
pave the way to very interesting results in the near future.

1.2 3D imaging with scanning OCT
As mentioned in the previous section, OCT can distinguish between scattered and ballistic
photons owing to a time gating. In this part I will explain the principle and performances
of scanning OCT, which is essentially declined in two different approaches: time domain
(TD) and spectral domain (SD). Then I will highlights the main drawbacks of both time
domain OCT (TD-OCT) and spectral domain OCT (SD-OCT) design before introducing
the FFOCT approach that we develop in our group [Beaurepaire et al., 1998] (which was
the first full field approach for OCT). Since then, many approaches using full-field rather
than scanning approaches have been developed and I will present two of them which I
think are the most promising, should the hardware becomes faster and cheaper these full
field techniques may completely replace actual clinical and commercial implementations
of scanning OCT.

1.2.1 Scanning OCT in a nutshell

When a light pulse travels in a scattering medium, a fraction of the incoming photons
will be backscattered. Nevertheless, due to the scatterers spatial distribution and to mul-
tiple scattering, the backscattered signal is temporally broadened. Neglecting multiple
scattering, the first photons to impinge the photodetector are photons that have been
backscattered at shallow depth whereas later photons have been scattered inside the bulk.
Indeed, the longer time it takes for the photons to impinge the photodetector, the deeper
they have propagated inside the sample. So by selecting photons by their arrival time it
should be possible to reconstruct the backscattering properties of the sample (note that
this is what is done in ultrasound, the difference being that they typically use several
focusing law for different depth of focalisation to reconstruct the entire sample depth). In
optics, because the celerity of light is so high, there is yet no photodetector which could
electronically differentiate the arrival times of these photons. Indeed, if one wanted to
have a 1 µm axial resolution in a tissue of refractive index n = 1.4 it would require a
time resolution of δt = 2.4 × 10−15 s, i.e. a minimum bandwidth of ∆f = 2.1 × 1014 Hz
which is far from the faster electronic we have nowadays (and which will probably never
be achieved because of quantum effects arising when shrinking transistor size required for
increasing the clock speed of micro-processors). Rather than relying on a very fast photo-
diode, the time arrival of photons can be measured using low coherence interferometry.
Low-coherence interferometry measures the echo time delay and intensity of backscattered
light by comparing it to light that has traveled a known reference pathlength and time
delay. Measurements are performed using an interferometer in a Michelson like configu-
ration, see Fig. 1.2. Light from a source is directed onto a beam splitter (BS), one of the
beams is incident onto the sample to be imaged, while the second beam travels a reference
path with a variable pathlength and time delay and is reflected by a mirror. The backscat-
tered light from the sample interfere with the reflected light from the reference arm on a
photodetector at the output of the interferometer. If low-coherence or short pulse light
(less common because more expensive) is used, then interference of the light reflected from
the sample and reference path can occur only when the two pathlengths match to within
the coherence length. The echo time delay and amplitude of backscattered light from fea-
tures inside the sample can be measured by detecting and demodulating the interference



CHAPTER 1. 3D OPTICAL IMAGING IN SCATTERING MEDIA 8

measured by the photodetector while scanning the reference pathlength. Finally, in order
to make a 3D image of the sample, scanning galvanometer mirrors are used to scan the
beam across the sample surface.

Fig. 1.2: TD-OCT simplified experimental setup. The sample is composed of 3 different
reflective layers with the same reflectance.

At large depth, because of multiple scattering, the time information is not sufficient to
discriminate between deep ballistic photons and shallow depth multiply scattered photons
which in practice will limit the maximal depth of OCT imaging to around 10 scattering
mean free path [Badon et al., 2016], i.e. around 1 mm in biological tissue.

1.2.2 OCT mathematical model

In this section, I derive a simple mathematical model to explain how OCT signals arise
on the photodetector and the steps required to reconstruct the complex features of the
imaged sample. This is greatly inspired from [Fuji et al., 1997] and [Mertz, 2019], which I
recommend to read as the explanations are more thorough with use case examples. Let us
consider the propagation of light in the scalar approximation. In the case of a Michelson
interferometer, such the one presented Fig. 1.2, the light field ED at the detector plane
can be written:

ED(t) = Ei(t−
2
c
zr)︸ ︷︷ ︸

reference mirror

+
∫
z0∈L

ρz(z0)Ei(t−
2
c
z0)dz0︸ ︷︷ ︸

backscattering inside sample

(1.4)

where Ei is the incident field after the beam splitter (assuming a 50/50 beam splitter), zr
is the axial position of the reference mirror, z0 is the axial coordinate scanned along the
sample domain L, ρ(z0) is the sample reflectivity at coordinate z0, c is the average light
celerity in the sample7. The total intensity ID = |ED|2 measured by the photodetector
can therefore be written:

ID = Irr + Iss + Isr(zr) + I∗sr(zr) + Iincoh (1.5)
7For the sake of simplicity I considered an average velocity for the light celerity and I neglected dispersion

effects. However one can write the light field on the detector by explicitly injecting an axial and frequency
dependence on the celerity c but it is not of interest here.
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with:

Irr = |Ei|2 (1.6)

Iss =
∫∫

(z0,z′0)∈L2
ρz(z0)ρ∗z(z′0)Ei

(
t− 2

c
z0

)
E∗i

(
t− 2

c
z′0

)
dz0dz

′
0 (1.7)

Isr(zr) =
∫
z0∈L

ρz(z0)Ei
(
t− 2

c
zr

)
E∗i

(
t− 2

c
z0

)
dz0 (1.8)

where zr is the position of the reference mirror. Irr is a constant term arising from the
reference alone, representing the source power. Iss is a term arising from the sample
alone and is usually small compared to the other terms because the mirror reflectivity is
much higher than the sample reflectivity. Isr(zr) and I∗sr(zr) are the complex conjugate
interference terms. Finally Iincoh corresponds to the light that will not interfer and which
will create a uniform background. We can further take into account the temporal coherence
of the illumination γ(τ) defined as:

γ(τ) = γ̂(τ)e−i2πcκcτ (1.9)

where γ̂ is the coherence function envelop, κc = 1
λc

is the mean wavenumber of the illu-
mination beam. The time delay between Ei

(
t− 2

czr
)
and Ei

(
t− 2

cz0
)
is τ = 2

c (z0 − zr)
therefore Eq. 1.8 can be recast in the equivalent form:

Isr(zr) =
∫
z0∈L

ρz(z0)γ̂
(2
c

(z0 − zr)
)
ei4πκc(z0−zr)dz0 (1.10)

In many applications, the sample reflectivity ρ(z0) is sought, mainly because it gives a
3D representation of the sample structure. In this case the goal is to extract ρ(z0) from
Eq. 1.10. Notice that before extracting ρ(z0) from Eq. 1.10 the interference term Isr(zr)
must be isolated from the other term in Eq. 1.5. To do so, several approaches exist such
as using phase stepping scheme or by using an off-axis configuration to spatially separate
each term as first shown in [Leith and Upatnieks, 1962] and then successfully used in
[Schnars and Jüptner, 2002, Kim, 2010].

Time domain OCT

Time Domain OCT (TD-OCT) is based on low temporal coherence illumination so that
γ(τ) is tightly localized in time around τ = 0. This coherence function therefore serves
as the temporal gate and provides optical sectioning. Let us consider a distribution of N
scatterers along the scanned axis (Fig. 1.2 presents a visual example with 3 scatterers), so
that the axial reflectivity can be written:

ρ(z) =
N∑
i=1

ρiδ(z0 − zi) (1.11)

where ρi is the i-th scatterer reflectance and δ(z − zi) is the Dirac distribution centered
on zi, the axial position of the i-th scatterer. Inserting this in Eq. 1.10 boils to:

Irs(zr) =
N∑
i=1

ρiγ̂

(2
c

(zi − zr)
)
ei4πκc(zi−zr) (1.12)
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In TD-OCT the reference mirror is axially scanned so that the coherence function is peaked
at each zi, then by taking the magnitude of Irs(zr):

|Irs(zr)| =
N∑
i=1
|ρi||γ̂

(2
c

(zi − zr)
)
| (1.13)

one can extract the position zi of the scatterer with a resolution given by half (because of
the round trip) of the coherence function γ width, given for a Gaussian source by Eq. 1.18.
In order to obtain the exact phase of ρi, the phase of the coherence function must be
known, i.e. the frequency spectrum of the source must be characterized beforehand. In
many applications, only phase differences matter and computing the argument of Irs(zr)
will therefore suffice. Such applications include measuring a nanometric distance between
ρi and ρi+1 or track the axial nanometric displacement of ρi(t) over time, which was done
to see the elongation of photorecptors after visual stimulation in [Pfäffle et al., 2019]);
or recovering diffraction limited measurement by performing computational aberration
correction by propagating the complex field ρi and applying phase law to compensate
aberrations effect [Hillmann et al., 2016]. Note that the latter requires phase stability
during the 3D volume acquisition, which is usually not the case with scanning OCT for
in vivo retina imaging.

Fourier domain OCT

Fourier Domain OCT (FD-OCT) rely on the Fourier analysis of the broadband source and
was first introduced in [Fercher et al., 1995]. There are basically two approaches:

• Spectral Domain OCT (SD-OCT) where a broadband spatially coherent source
(laser, SLD) is used as illumination in combination with a spectrometer at the in-
terferometer output (typically a prism or grating which decompose the light onto
a line camera). Each pixel of the spectrometer probing a narrow frequency band,
corresponding to a long temporal coherence.

• Swept Source OCT (SS-OCT) where a tunable laser is used as illumination, the
narrow-band illumination is tuned over a wide spectrum. The photodetector is
synchronised with the source so that each exposure corresponds to a narrow-band
illumination during the sweep.

The experimental setups for both these techniques is depicted Fig. 1.3. In these two
approaches, the axial scan is performed optically, rather than mechanically for TD-OCT,
which is beneficial for both speed and sensitivity [Kishi, 2016]. Because the frequency
band is narrow in FD-OCT the coherence function envelop is very large. Therefore it
is possible to approximate the coherence function to a constant over the probed axial
extension: γ̂(τ) ≈ 1, giving for Eq. 1.10:

Ĩsr(κ, zr) = e−i4πκzr
∫
z0∈L

ρz(z0)ei4πκz0dz0 (1.14)

Note that the wavenumber κ is well defined here since the illumination or detection band-
width is narrow for each measurement Ĩsr(κ, zr). In FD-OCT, this measurement is per-
formed for κ ∈ [κc −∆κ/2, κc + ∆κ/2] so that κ plays the role of a Fourier variable. An
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inverse Fourier transform allows to recover Irs(zr) from Ĩsr(κ, zr):

Irs(zr) = 1
∆κ

∫ κc+∆κ/2

κ=κc−∆κ/2
Ĩsr(κ, zr)ei2πκzκdκ (1.15)

= e−i4πκc(zr−
zk
2 )
∫
z0∈L

ρz(z0)sinc
(

2∆κ
(
z0 − zr + zk

2

))
ei4πκcz0dz0 (1.16)

Eq. 1.16 is similar to Eq. 1.10, the coherence function being replaced by the inverse Fourier
transform of the constant we considered giving a cardinal sinus with a width inversely
proportional to the frequency bandwidth ∆κ. Inserting Eq. 1.11 in Eq. 1.16 yields:

Irs(zr, zκ) =
N∑
i=1

ρisinc

(
2∆κ

(
zi − zr + zk

2

))
ei4πκczi−zr+

zκ
2 (1.17)

where zr is the fixed position of the reference mirror. Irs(zr, zκ) is therefore a function of
zκ only which corresponds to the optical scanning of the sample in the Fourier domain. In
FD-OCT Irs(zr, zκ) is peaked around zk

2 = zr − zi. In the same manner as in TD-OCT,
the reflectances |ρi| can be obtained by computing the magnitude of Irs(zr, zκ). Note that
in practice the computation of the Fourier transform can be done directly on ID to avoid
phase stepping scheme or off-axis configurations (but this requires a particular position
of the reference mirror), but the axial FOV will be reduced by a factor of 2 because of
the mirror image I∗rs(zr, zκ). Not only FD-OCT is faster than TD-OCT because it does
not require any axial mechanical translation of the reference arm but also has greater
sensitivity. Indeed, the noise is spread on each of the N measured wavelengths8 so that
the SNR is increased by

√
N [Mertz, 2019]. Nowadays, SS-OCT are privileged over SD-

OCT because they offer higher scanning speeds with an A-scan rate of up to 6 MHz while
SD-OCT are limited to around 100 kHz (mainly limited by line camera technology). More
details about SD-OCT implementations can be found in [Drexler et al., 2014].

Fig. 1.3: FD-OCT simplified experimental setup. (a) SD-OCT setup: a broadband laser
is used as illumination. The intensity is measured for each wavenumber κ and an inverse Fourier
transform allows to obtain the axial distribution of reflectance R without mechanical scanning.
(b) SS-OCT setup: a tunable laser is swept across the range of wavenumbers ∆κ. The intensity
is recorded for a collection of κ and the axial reflectance of the sample can again be obtained

by an inverse Fourier transform.

8In SD-OCT, the power is divided onto the N pixels of the detector but the exposure time is considered
to be N times longer to reach similar A-scan rates between SD-OCT and TD-OCT. Therefore, the measured
optical power is similar between both configurations but the noise is equally distributed over N pixels in
SD-OCT as opposed to TD-OCT



CHAPTER 1. 3D OPTICAL IMAGING IN SCATTERING MEDIA 12

FD-OCT can also be seen as a manifestation of the Wiener-Khinchin theorem: by scanning
the whole reference pathlength axially, the measured intensity corresponds to the axial
cross-correlation of the sample and the reference fields. Because each axial position z
correspond to a time delay dt, the measured intensity also corresponds to a temporal
cross-correlation between the reference and sample fields. Wiener-Khinchin theorem states
that the cross-correlation of the electric field is proportional to the Fourier transform of
the power spectrum density [Goodman, 1985] so that taking the correctly scaled Fourier
transform of the power spectrum density gives the cross-correlation of the electric-field,
which is precisely what is measured by TD-OCT in Eq. 1.8. So rather than mechanically
scanning the reference pathlength, it is possible to acquire the power spectrum density
either by scanning the wavelength at the interferometer input (SS-OCT) or by using a
broadband source and measure the spectrum at the output using a spectrometer (SD-
OCT).

1.2.3 Performances and limitations of scanning OCT

Axial resolution

Axial resolution depends on the illumination properties and more precisely on the temporal
coherence length lγ . In traditional microscopy techniques, both axial and lateral resolution
are linked to the NA of the optical system. In OCT, the axial resolution is independent of
the NA (except when the depth of focus is smaller than half of the coherence length, which
is rarely the case for scanning OCT). For a source with a Gaussian spectral distribution,
the axial resolution δz can be written [Goodman, 1985]:

δz = lγ
2 = 2ln(2)

π

λ2
c

∆λ (1.18)

where lγ is the coherence length of the illumination, ∆λ is the full width at half maximum
of the source power spectrum and λc is the source center wavelength in the sample. The
axial resolution is inversely proportional to the bandwidth of the light source, and thus high
resolution can be achieved by using broadband optical sources. Note that this equation is
valid for both TD-OCT and FD-OCT.

Transverse resolution

Transverse resolution is determined by the diffraction limited spot size on the focus plane
that is proportional to the center wavelength and inversely proportional to the NA of the
system and can be written:

δx,y = 2
√
ln(2)
π

λc
NA

(1.19)

For fiber-based OCT systems, the thin fiber aperture works as a pinhole in the same
manner as confocal microscopy to reject part of out-of-focus light and scattered photons.
In this case, the lateral resolution is improved by a factor

√
2.

Depth of focus

The depth of focus (DOF) is related to the Rayleigh range, i.e. the distance from the focal
plane to the point where the light beam diameter has increased by a factor

√
2. As in

conventional microscopy, the depth of focus in OCT is linked to the transverse resolution:

DOF = π

4
δ2
x,y

λc
= ln(2)

π

λc
NA2 (1.20)
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Given that the depth of focus decreases when the transverse resolution increases, it is clear
that there is a trade-off in scanning OCT. Indeed, by improving the lateral resolution and
so decreasing δx,y in Eq. 1.19, then the DOF will dramatically decreases. In biological
tissue, OCT can typically acquire signals up to 1 mm deep so that the DOF should be
greater than 0.5 mm which lead to a maximum transverse resolution of δx,y = 20 µm which
corresponds to NA = 0.015. Compared to classical microscopy techniques where the NA
can be as high as 1.5, this result for OCT was limiting its extensive use in microscopy.
Nonetheless, because the axial resolution was decoupled from the NA and could reach
δz = 1 µm OCT found applications in ophthalmology for retina imaging where the retinal
layers are separated by a few microns, hence OCT was able to resolve retinal structures
for diagnostics. To overcome this trade-off limitation, it is possible to translate the sample
in TD-OCT synchronously with the reference mirror so that the probed depth remains in
focus so that it becomes possible to use higher NA systems. This adds another complexity
and leads to very slow scanning that are not used in practice. It is also possible to use
Bessel beams to obtain a larger depth of field with a higher NA [Leitgeb et al., 2006].
This leads to a DOF 10 times greater than with Gaussian beam, leading to a gain of

√
10

in transverse resolution, i.e. δx,y = 6.3 µm (NA = 0.15) for a DOF of 1 mm which is
still low compared to traditional microscopy. Note that this drawback can be mitigated
with FD-OCT by refocusing the complex field in post processing in order to recover the
resolution in out-of-focus planes. Nonetheless, this is only possible for a few depth of
focus distance and it is sensitive to multiple scattering and speckle which will deteriorate
image quality [Hillmann et al., 2016]. This also requires phase stability and is therefore
not always possible in-vivo [Borycki et al., 2019].

In order to mitigate these drawbacks, i.e. improving the resolution and speed, full field
techniques were developed by several groups.

1.3 Spatially incoherent time domain FFOCT
Full-Field OCT (FFOCT) refers to OCT techniques where the whole en face slice of a
sample volume is acquired simultaneously by using a two-dimensional array camera as the
detector in a wide-field interferometer. The expressions derived for lateral resolution and
axial FOV for scanning implementation of OCT are also applicable for FFOCT. FFOCT
has many advantages over scanning OCT, such as improvement in speed, lateral resolution
and aberration compensation for in-vivo acquisitions due to the phase stability. During
my PhD I used a spatially incoherent time domain implementation of FFOCT [Dubois
et al., 2004]. There also exist:

1. A spatially coherent time domain implementation of FFOCT [Považay et al., 2006,
Choi et al., 2012, Hillmann et al., 2016].

2. A spatially coherent off-axis swept-source implementation of FFOCT [Hillmann
et al., 2017].

3. A spatially coherent swept-source implementation of FFOCT [Sarunic et al., 2006,
Auksorius et al., 2019, Stremplewski et al., 2019].

that I will briefly detail in section 1.4. Spectral domain FFOCT has never been demon-
strated since a three-dimensional camera would be necessary to obtain the two spatial and
one spectral dimensions that would be required to reconstruct a 3D volume.
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During my PhD I designed several experimental setups which I will introduce throughout
the following chapters when needed. In this section I want to introduce the original design
and highlight the many subtleties and design choice we face when building a FFOCT setup.
In order to alleviate the cumbersome notation, I will refer to our spatially incoherent time
domain FFOCT as simply FFOCT in the rest of this manuscript.

1.3.1 Basic experimental setup

The basic layout of a FFOCT setup is composed of 4 arms:

1. An illumination arm. We typically use a Köhler illumination with an LED or a ther-
mal source in order to obtain an homogeneous illumination of the sample. In order
to obtain the best performances, LED with higher optical power are used (maximal
power are not used for eye imaging in order to respect eye safety regulation).

2. A reference arm mounted on a translation stage. This translation stage allows to
modify the optical pathlength between both arm in order to match the focal plane
and the coherence plane, see section 1.3.3. The reference mirror is mounted on a
piezoelectric translation (PZT) in order to apply phase-shifts to demodulate the
interference signals. The PZT is controlled by applying a voltage waveform which
depends on the phase shifting algorithm (see section 1.3.2). In order to go as fast
as possible, the PZT can be driven at several hundreds Hz with abrupt changes in
voltage. In order to follow the applied waveform, the current fed to the PZT must
be high enough and often requires a current amplification stage between the digital
to analog converter (which has limited current output) and the PZT.

3. A sample arm where only the sample is mounted on a translation stage to shift the
plan of imaging in order to select the depth we want to image and make 3D volume
images. Because there is no trade-off between axial FOV and transverse resolution,
we typically use high NA objectives to obtain resolutions around δx,y = 0.5 µm.
The sample arm is usually built strongly mechanically coupled with the reference
arm, especially for dynamic acquisition. Indeed, mechanical vibration between the
interferometer and the camera would hardly be visible because nanometer displace-
ment remains in the depth of focus of the tube lens. But nanometric displacement
inside the interferometer cause the phase to shift and can be detrimental for dynamic
measurement, see chapter 3.

4. A detection arm where a tube lens focus the light field on a CMOS camera. This is
probably the most important arm because FFOCT sensitivity is strongly dependant
on the camera technology. Indeed, the signal to noise ratio (SNR) is linked to the
full well capacity (FWC) [Scholler et al., 2019], i.e. the number of photo-electron the
camera can probe per pixel. For many applications the number of probed photons
is low (fluorescence, astronomy, etc.) and a good camera must provide a low dark
noise to probe a few photons. In FFOCT it is completely the opposite: we need to
probe a very large amount of photons and we care less about dark noise because we
are always shot noise limited in our experiments, i.e. we are limited by the Poisson
nature of photons arrival and not by the electronic noise of the camera. A great
advance in FFOCT was born with the development of a new camera (Quartz 2A750,
ADIMEC, Netherlands) which made FFOCT a promising approach. The best cam-
era on the market before ADIMEC was a PhotonFocus (MV-D1024E-160-CL-12,
Switzerland) which could probe 2 × 105 photo-electrons at 150 frames per second



CHAPTER 1. 3D OPTICAL IMAGING IN SCATTERING MEDIA 15

(fps) giving a photo-electron throughput of fPF = 3 × 107 photo-electron/s. Com-
pared to ADIMEC camera (which also has more pixels) which can probe 2 × 106

photo-electrons at 720 fps giving a photo-electron throughput of fA = 1.44 × 109

photo-electron/s. This represents a gain of almost 7 in SNR.
This arm is linked to the computer which I had the chance to design (see appendix A)
and built myself for our experiment requirements. At the beginning of my thesis I de-
signed the software used for my experiments which I later published [Scholler, 2019a].
This is the only piece of code written using non-open source programming language
that I coded during my PhD, in the aim that it could benefit for other researcher
in our group (MatLab is still more popular). I developed with versatility, speed
and re-usability in mind and it is the same software that controls our FFOCT se-
tups for ex-vivo experiments (FFOCT, FFOCT combined with fluorescence, FFOCT
combined with adaptive optics) and in-vivo experiments (retinal imaging).

Fig. 1.4: FFOCT simplified experimental setup.

1.3.2 Phase shifting interferometry

The intensity recorded by the FFOCT camera is the sum of the backscattered light from
both the sample and the reference arm, Eq. 1.5 can be recast for FFOCT and taking the
2D detection into account:

ID(r) = η
I0
4

ρ2
s(r) + ρ2

inc + ρ2
ref + 2ρs(r)ρrefcos (∆φ(r))︸ ︷︷ ︸

interference term

 (1.21)

where ID(r) is the intensity recorded at position r = (x, y), η is the camera quantum
efficiency, I0 is the power LED output impinging on the interferometer considering a
50/50 beam-splitter, ρref is the reference mirror reflectivity in amplitude, ρs(r) is the
sample reflectivity in amplitude at position r, ∆φ(r) is the phase difference between the
reference and sample back-scattered signals at position r, Iinc = ρincI0/4 is the incoherent
light back-scattered by the sample on the camera, mainly due to multiple scattering and
reflections out of the coherence volume. From Eq. 1.21 it is clear that processings must
be applied to recover the interference term from the measured intensity. To do so, we use
phase shifting algorithms which are detailed in the following sections.
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2 phases demodulation

To perform 2 phases demodulation, two frames are recorded with a π-shift phase difference.
The intensity recorded on a camera pixel is the coherent sum of the reference and sample
beams and can be written using Eq. 1.21:

IΦ=0 = η
I0
4 (ρ2

s + ρ2
inc + ρ2

ref + 2ρsρrefcos (∆φ(r))) (1.22)

IΦ=π = η
I0
4 (ρ2

s + ρ2
inc + ρ2

ref − 2ρsρrefcos (∆φ(r))) (1.23)

where IΦ=0 is the intensity recorded without phase shift, IΦ=π is the intensity recorded
for a π phase shift. The 2 phases image I2−phases is formed by subtracting IΦ=π from IΦ=0
and taking the modulus:

I2−phases = ηI0ρsρref |cos(∆φ)| (1.24)

As shown by Eq. 1.24, it is not possible to un-mix phase and amplitude by using a 2 phases
scheme. This imaging mode is nonetheless interesting because it is the fastest and when
phases are randomly distributed9 (e.g. in biological tissue), one might be interested to go
faster and average many 2 phases images rather than using more complex phase shifting
techniques.

4 phases demodulation

If we could theoretically isolate the interference term and un-mix phase and amplitude
using only three phases, the 4 phases scheme is preferred as it allows an easier and more
robust computation [Dubois et al., 2002]. This scheme consists of acquiring four images
Ii∈[1,4] with phase difference of [3π/2, π, π/2, 0]. Then amplitude and phase are recon-
structed using the following equations:

A = 1
2

√
(I4 − I2)2 + (I3 − I1)2 (1.25)

φ = tan−1
(
I3 − I1
I4 − I2

)
(1.26)

Note that in practice we compute arg((I4 − I2) + i(I3 − I1)) which is numerically more
stable against noise than computing the tan−1. The main drawback of the 4 phases de-
modulation is that it works only for quasi monochromatic illumination. With a broadband
illumination, the phase shift applied by translating the reference mirror differs for each
wavelength and artifacts arise: amplitude and phase are not correctly demodulated.

5 and 10 triangular phases demodulation

To perform triangular phase demodulation, a triangular modulation is imposed onto the
PZT. During both the increasing and decreasing part 5 images are taken, see Fig. 1.5(a)
for notations. Then amplitude and phase are computed as follows [Larkin, 1996] for the 5
phases image:

A =
√

4(I2 − I4)2 + (−I1 + 2I3 − I5)2 (1.27)

φ = −tan−1
( 2(I2 − I4)
−I1 + 2I3 − I5

)
(1.28)

9If phases are randomly distributed then fringes artifacts are not presents.
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For such triangular demodulation, there are several ways to compute the amplitude and
phase, i.e. different possibilities to choose Ii∈[1,5]. For each triangle it is possible to
construct 2 images, the first by taking Ii∈[1,5],a and the second by taking Ii∈[1,5],b. The
problem with doing so is that it requires a perfect synchronization between the piezo and
the camera, which was nearly impossible to obtain in practice as the calibration depends
on the camera frame-rate10. Another possibility is to average a and b images before
computing the amplitude and phase maps, leading to only one image per triangle and
effectively using 10 phases per FFOCT image. This method is much more stable, see
Fig. 1.5(b-e). When the synchronization is perfect, 5 and 10 phases images are identical.
I acquired a stack of 20 amplitude and phases map on a silicon mirror using 4,5 and 10
phases algorithm. I then computed the phase map RMS error Fig. 1.5(b-d) using the
following expression to avoid phase wrapping:

RMSEphase = RMSE(eiφ) =
√∑

i

|φi − φ̄|2 (1.29)

where φi is the computed phase at time sample i, and φ̄ is the average phase. One can
see on Fig. 1.5(b-g) that there are phase modulations remaining. Indeed, because we are
using polychromatic sources the 4 phases reconstruction algorithm perfectly demodulates
for the central wavelength but artifacts arise for other wavelengths. It has been shown
that triangular 5 phases algorithm allows to cancel first order errors for polychromatic
interference patterns [Larkin, 1996]. Triangular phase shifting algorithm is better at un-
mixing phase and amplitude in FFOCT than 2 and 4 phases, see Fig. 1.5(f,g). The
drawback would be the acquisition speed 10 times slower if we compute amplitude and
phase maps using 10 frames.

Fig. 1.5: 5 and 10 phases demodulation. (a) A triangular phase shift is applied on the
PZT and 5 images are recorded during the rising phase and then 5 images are recorded during
the decreasing phase. (b,c,d) are respectively the phase standard deviation for a 20 frames
acquisition with 4 phases, 5 phases and 10 phases with (e) the profile to compare the phase
stability. (f,g) are respectively the amplitude obtained with a 4 phases and a 10 phases scheme.
10 phases scheme allow to better un-mix the amplitude and phase, resulting in less fringes

artifacts on the amplitude image.

10When the camera is triggered there is a delay before it starts to acquire. This delay varies with the
frame-rate and other parameters so that it was not possible to calibrate it in practice.
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Other demodulation techniques

There are other demodulation schemes that I haven’t used during my PhD. A popular
one is a sinusoidal modulation of the PZT [Dubois et al., 2002] that allows to use the
piezo at very high frame rate which can be useful for elastography imaging [Nahas et al.,
2013a, Nahas et al., 2013b]. I did not need such acquisition frame rate so I never use this
approach which requires a good synchronisation between the camera and the piezo.

1.3.3 Differences that matters with FFOCT

Even if the principles of FFOCT are very close to scanning OCT, in practice there are
slight differences that needs to be tackled in order to obtain good performance for imaging.
These differences are gathered and explained in this section.

High NA: depth of focus lower than coherence length

Fig. 1.6: Axial resolution in FFOCT. For low NA the axial resolution is fixed by the
illumination coherence length. For higher NA, the depth of focus can become smaller than the
coherence length, hence reducing the axial resolution. Figure adapted from [Dubois et al., 2002].

Because the trade-off between the DOF and the transverse resolution does not exist in
FFOCT. High NA objectives are typically used in order to get the best possible transverse
resolution and to resolve the smallest possible features, especially where cellular resolution
is required. While for low NA the axial resolution given by Eq. 1.18 is still valid, for higher
NA the depth of focus will be shorter than the coherence length so that interferences
happening outside of the depth of focus are blurred and therefore damped. For high NA
the axial resolution is given by:

δhigh NA
z = nλc

NA2︸ ︷︷ ︸
diffraction

+ n

NA

lpixel
M︸ ︷︷ ︸

geometry

(1.30)

where n is the imaging medium refractive index, lpixel is the pixel size and M is the
system magnification so that lpixel/M is the size of the pixel imaged onto the imaged
sample. The transition from Eq. 1.18 to Eq. 1.30 is smooth and represented Fig. 1.6.
The geometry effect arises from discrete pixel sampling on the camera and is usually (for
correctly designed systems) not the limiting term as opposed to the diffraction. In practice
the axial resolution in my experiment in microscopy was always set by the aperture, the
exception being in-vivo retinal imaging, where the NA of the eye is lower.
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Mismatch between focal plane and coherence plane

In order to acquire in depth en-face images of a sample, we translate the sample using
a motorised sample stage shown Fig. 1.4 illustrated with water-immersion objectives. In
general, samples have different refractive index than the immersion medium (water or oil),
so that the focus position will shift inside the sample because of the refractive mismatch, see
Fig. 1.7. When the refractive index of the sample is higher than the immersion medium,
then the focus shifts downwards. The reference arm is built with the right immersion
medium in order to lower aberrations and because it is easier in practice. Now, the beam
will travel slower in the sample than in the immersion medium in the reference arm,
this means that the illumination beam will travel less distance in the sample that in the
reference arm, effectively shifting the coherence gate position upwards, in the opposite
direction of the focus. This lead to a mismatch between the coherence plane and the focal
plane, which dampen the interferometric signal. In order to be able to image in-depth
we need to compensate the mismatch by shifting the whole reference arm to shift only
the coherence gate inside the sample, so that it matches back the focal plane. The same
phenomenon happens if the refractive index of the sample is lower than the refractive
index of the immersion medium.

Fig. 1.7: Focus and coherence mismatch. Refractive index changes in the sample arm
due to the sample shifts the focus plane. In addition, the light travels at a different speed and
therefore the coherence plane position also shifts. Because these two shifts happen in opposite
direction, the coherence plane position must be compensated by moving the reference arm.

There exists closed form computation in the paraxial approximation [Labiau et al., 2009,
Binding et al., 2011] of the reference arm translation needed to perfectly compensate for
the refractive mismatch. In practice it requires to know precisely the refractive index
(or refractive index distribution) of the sample and to control the motor with micrometric
precision so that it becomes cumbersome to apply the correction with the analytic formula.
In my experiments, I can automatically move the reference arm to maximize the FFOCT
signal and correct for the mismatch which takes times because it is an optimization process.
Another strategy is possible owing to the linearity of the mismatch with respect to the
depth of imaging. If I want to image up to a depth d, then I optimize the reference arm
at this depth and at the sample surface. Because the mismatch is linear with depth I just
need to interpolate between the two optimal position during the imaging procedure. To
grasp the scale involved in the refractive mismatch we can compute the spatial mismatch
δmismatch between the focal plane and the coherence plane:
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δmismatch(z) = 2nsz


tan

(
sin−1

(
nm
ns
sin

(
cos

(
sin−1

(
NA
nm

)))))
tan

(
sin−1

(
NA
nm

))
︸ ︷︷ ︸

focus shift

− nm
ns︸︷︷︸

coherence shift

 (1.31)

This equation can be simplified when using low NA in the paraxial approximation:

δparaxialmismatch(z) = 2nsz
(
ns
nm
− nm
ns

)
(1.32)

where z is the depth of imaging, ns and nm are the sample and immersion medium
refractive index, respectively. For NA = 0.8 in water (nm = 1.33) with ns = 1.4 we have
δmismatch(z) = 0.52z. In practice this needs to be compared with the coherence length,
when the mismatch is bigger than the coherence length then FFOCT signals start to be
damped.

1.4 Other FFOCT systems
The spatial coherence of the illumination has a strong impact on imaging performances in
full field configurations. Indeed, with spatially coherent illumination, artifacts are present
due to multiple scattering and cross talk [Karamata et al., 2005a, Karamata et al., 2005b].
Cross talk originates in scattering samples when multiply scattered photons with the same
pathlength interfere on the camera. Because there is no spatial filtering, photons from
different transverse position can interfere on the camera. In scanning OCT, the confocal
aperture of the fiber rejects most of the multiply scattered light. However, FFOCT systems
lack this confocal aperture and therefore, multiply scattered photons propagates back to
the camera. Using an incoherent illumination in our TD-FFOCT system we prevent
multiply scattered photons from interfering, effectively creating a spatial coherence gate
that serves the same function as the confocal pinhole in scanning OCT. For spatially
coherent FFOCT there are essentially two strategies:

1. Tilting the reference arm. Indeed, most of the multiple scattering is happening inside
the sample and is therefore contained in Iss in Eq. 1.5. Tilting the reference allow
to spatially separate the self interference of the sample (cross talk) from the cross-
interference between the reference and the sample, which greatly limits artifacts.

2. Breaking the spatial coherence of a swept-source laser by rapidly changing the phase,
i.e. deccorelating the speckle in the sample, during the exposure time of the camera.

These two approaches are briefly discussed in this section.

1.4.1 Off-axis FFOCT

Off-axis spatially coherent time domain FFOCT as been demonstrated for low cost hand-
held retina imaging [Sudkamp et al., 2016], and is currently being engineered for commer-
cial application. The setup is depicted Fig. 1.8(a). Advantages of this approach is that
computational aberrations correction is possible in post-processing [Sudkamp et al., 2018]
owing to the coherent illumination, allowing diffraction limited imaging in the eye without
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the need for costly and cumbersome adaptive optics hardware. Together with the cheap
superluminescent diode (SLD) illumination, this low cost approach is very promising for
medical application (a patient could borrow a device and use it alone to remotely monitor
its retina). The second approach that successfully uses the off-axis configuration is based
on a swept source illumination [Hillmann et al., 2017], depicted Fig. 1.8. This approach
is faster (ultra-fast camera and swept source) but it also a lot more expensive, making it
an interesting approach more suited for research.

Fig. 1.8: Off-axis FFOCT. (a) Time domain implementation where a spatially coherent
superluminescent diode (SLD) is used for illumination. The reference beam is tilted for sup-
pressing the cross-talk inside the sample. (b) Swept source implementation where the reference
beam is also tilted for the same purpose. This figure is adapted from [Sudkamp et al., 2016]

and [Hillmann et al., 2017].

1.4.2 Phase decorrelated swept-source FFOCT

Rather than tilting the reference beam to remove cross-talk, it is possible to rapidly (during
the exposure time of the camera) shuffle the phases to simulate an incoherent acquisition.
First demonstrated using a spatial light modulator (SLM) [Borycki et al., 2019] it has
been applied in-vivo for skin imaging [Stremplewski et al., 2019] and for retinal imaging
[Auksorius et al., 2019] using a deformable membrane which is much faster than an SLM.
The experimental setup is shown Fig. 1.9. With this approach, it is also possible to perform
computational aberration correction [Borycki et al., 2019, Borycki et al., 2020] even if the
coherence of the illumination is broken by the phase shuffling. In term of acquisition time,
this is the fastest FFOCT system for volumetric imaging to this day11 with 15.7×109 voxel
per second leading to 116 volume per second. In comparison our FFOCT approach with
2 phases demodulation gives 0.75× 109 voxel per second leading to 0.7 volume per second
with 512 en-face images. The difference being that our en-face images have 1440 × 1440
pixels compared to 512 × 512 for their ultra-fast camera, so that we can have a greater
field of view.

11Note that the aberration correction is done before averaging so the computing time required for getting
a 3D volume must be very high. Even if the acquisition takes a few milliseconds, the time required before
getting and being able to see the object in 3D is at least a few hours.
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Fig. 1.9: Phase decorrelated SS-FFOCT. L1-L8: achromatic doublet lenses - G: galvo
scanner introducing additional angular compounding; MO1 and MO2: 10x Olympus objectives
with 0.3NA - RM: reference mirror - BS: beam splitter. This figure is adapted from [Stremplewski

et al., 2019]
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2.1 D-FFOCT: new contrast to reveal cells
Dynamic full-field optical coherence tomography (D-FFOCT) was first proposed by Clé-
ment Apelian [Apelian et al., 2016] as a novel technique to image the intra-cellular dynamic
of living cell in fresh ex-vivo tissues. The primary idea was to reveal cells inside scattering
tissue, indeed cells are mostly transparent and homogeneous which make them challenging
to image, especially in tissue where they are mixed with very reflective collagen fibers that
have very reflective properties. Cells are essentially phase object and Zernike originally
proposed in 1942 [Zernike, 1942] a phase contrast to statically enhance cell contrast. Using
the same idea D-FFOCT uses interferometry to probe phase changes in order to enhance
cell contrast and allow to probe intra-cellular motility. The metabolic index was first pro-
posed to be computed as the temporal running standard deviation averaged for several
hundreds frames [Apelian et al., 2016, Thouvenin et al., 2017a]. We will see that several
features can be computed on top of the metabolic index in order to generate colored im-
ages and that these features carry limited physical information about scatterers but allow
to differentiate between cells by looking at their dynamic profile1.

Initially, D-FFOCT phenomenological description was that the display of the amplitude of
fluctuations enhances the signal from cells while reducing the signal from stationary struc-
tures. Moreover, the dynamic contrast is not observed in fixed samples (retina organoids,
cell cultures and mice liver) suggesting that the origin of D-FFOCT signals is linked to
metabolic activity. Previous experiments [Apelian et al., 2016] shown that blocking the

1The distribution of metabolic index and the distribution of fluctuations frequencies.

23
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energy production2 inside cells with 2-deoxy-D-glucose rapidly leads to a decrease in D-
FFOCT signals. This experiment shows that signal fluctuations mostly depend on active
processes inside cells and that confined Brownian diffusion probably does not lead to
enough fluctuations to create a significant D-FFOCT signal.

2.2 D-FFOCT: amplitude or phase fluctuations?
One may wonder what is the origin of the dynamic signals being probed and what phys-
ically leads to these fluctuations. Let us assume that we have a single scatterer in the
coherence volume, which roughly have a transverse size of 0.5 µm and an axial size of
1.5 µm for most of our experiments3. The first thing to note is that a π phase shift
(equivalent to an axial displacement of λ/4) produces a fluctuation twice as big as a scat-
terer going from the center of the voxel to outside of the voxel. The latter is equivalent to a
lateral displacement of λ/NA ≈ λ so that phase sensitivity is around 10 times higher than
amplitude sensitivity. This means that for small displacement D-FFOCT fluctuations are
mainly phase fluctuations. For longer displacement, e.g. for active transport in cells, then
amplitude fluctuations needs to be considered. Let us consider a mitochondria which can
be in two states [Saunter et al., 2009]: Brownian diffusion or motor-driven motion whose
duration are stochastically determined with speeds that can reach 300 nm.s−1. The typ-
ical size of mitochondria (∼ 1 µm) allows to have only one scatterer per voxel so that
we can simply simulate both states of the mitochondria to illustrate phase and amplitude
fluctuations. The interferometric signal is modeled for a mitochondria at position (x, y, z)
(the origin is taken in the center of the voxel) with the following equation:

ID(t) = At(x(t), y(t))Aa(z(t))︸ ︷︷ ︸
amplitude

cos

(4nπ
λ
z(t)

)
︸ ︷︷ ︸

phase

(2.1)

where At(x, y) is the transverse amplitude function4, Aa(z) is the axial amplitude function5
, n is the sample refractive index, λc is the source central wavelength and z(t) is the
mitochondria axial position. I simulated both mitochondrial state with the parameters
measured by [Saunter et al., 2009]. The results are shown Fig. 2.1(a,b) for the Brownian
diffusion where the displacements are small and the fluctuations can mostly be associated
with phase fluctuations. On the contrary, for active transport where the displacements are
much longer Fig. 2.1(c,d) then the dynamic fluctuations are from both amplitude and phase
fluctuations6. From this simple experiment one can already see that even in the strong
hypothesis that there is only one scatterer per voxel the inverse problem of recovering some
physical parameter such as the scatterer speed or diffusion coefficient given the dynamic
signal is impossible. Indeed, we only have one equation but many unknowns (initial
position, direction of motion, etc.). Adding more scatterers create an average effect that

22-deoxy-D-glucose blocks glycolysis inside cells, but glycolysis also produces pyruvate, which is essential
for aerobic ATP production of the cells. Therefore, injecting 2-deoxy-D-glucose without adding pyruvate
provoke a disruption of ATP production and stops most active processes of the cells, including active
transport.

3I only used high NA objectives where the optical sectioning and therefore the axial resolution was set
by the depth of focus rather than the coherence length.

4Approximated as a 2D Gaussian with standard deviation σx,y = λc
NA

.
5Given by the depth of field and approximated as a Gaussian with standard deviation σz = λc

NA2
6Transverse displacements only acts on amplitude fluctuations, whereas axial displacement acts on both.
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tends to increase the phase fluctuations influence over the amplitude fluctuations because
on average the number of scatterer per volume should remain the same. Even if one
scatterer leave the coherence volume, its influence on the dynamic signals is less important
than in the single scatterer case, see Fig. 2.1(e,f) where I simulated 10 scatterers in the
coherence volume with the same backscattering properties. The measured fluctuations
come almost exclusively from phase fluctuations. Note that my simple model considered
that the scatterers orientations were constant, in practice scatterers probably rotate and
this adds another unknown preventing us to extract physical properties. Finally, in this
simulation I neglected the shot noise but even if the inverse problem was tractable, the
uncertainties associated with the computed physical parameters would probably prevent
us from drawing a conclusion on what was in fact giving such fluctuations. Even if we
cannot extract quantitative physical properties, it is possible to compute numerous features
on these dynamic signals to generate dynamic images. These features are usually the
amplitude of the fluctuations, the dynamic mean frequency or the decorrelation time7
which are then associated using the HSV method, see appendix B. The aim being to
create a contrast that can be useful to interpret images and get biological insight on live
cell cultures.

7Interestingly the mean frequency and the decorrelation time computed as the width at half maxima
of the autocorrelation of dynamic signals gives similar contrasts.
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Fig. 2.1: Dynamic simulations of single mitochondria. (a,b) Simulations for Brownian
diffusion state, mitochondria’s position is shown in (a). (c,d) Simulations for active transport
state, mitochondria’s position is shown in (c). (e,f) Simulation with 10 scatterers. Scatter-
ers position are shown in (e). The measured intensity on the detector is depicted in (b,d,f) for
amplitude fluctuations, phase fluctuations and both. For Brownian diffusion of single scatterer
(b) the fluctuations are dominated by phase fluctuation, whereas for active transport greater
displacements lead to both phase and amplitude fluctuations (d). The more scatterers the more

dynamic fluctuations arise from phase fluctuations only (f).

2.3 Interferometric amplification
Signals probed by D-FFOCT are tiny and are close to the detection limit which is approx-
imately 83 dB for our setups [Scholler et al., 2019]. We can therefore detect a sample with
reflectivity ρs ≈ 10−8.3, i.e. when only 1 photon amongst 200 millions is backscattered it is
still possible to probe it. This high sensitivity is due to the interferometric amplification,
indeed by looking at the detected intensity on the detector (Eq. 1.21 given again below
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for convenience):

ID(r) = η
I0
4

ρ2
s(r) + ρ2

inc + ρ2
ref + 2ρs(r)ρrefcos (∆φ(r))︸ ︷︷ ︸

interference term

 (2.2)

one can see that the sample reflectivity ρs is amplified by the reference reflectivity ρref .
We can wonder how ρref must be chosen in order to maximize the SNR when we are
shot noise limited (which is always the case in practice as we work close to the camera
saturation). If we suppose that dynamic signals are created by phase fluctuation alone,
the maximal intensity change when scatterers have time to explore more than half the
central wavelength can be written:

∆Imax(r) = η
I0
2 ρs(r)ρref (2.3)

The maximal SNR can then be computed:

SNRmax(r) = ∆Imax√
ID(r)

(2.4)

=
√
ηI0

ρs(r)ρref√
ρ2
s(r) + ρ2

inc + ρ2
ref + 2ρs(r)ρref

(2.5)

I simulated SNRmax/
√
ηI0 for various ρs and ρref with ρinc = 08, Fig. 2.2(a), where the

black dashed lines correspond to a constant intensity ID on the camera. For a given ID
(ideally close to the camera saturation to maximize the SNR [Scholler et al., 2019]) one
can see that the best SNR is always obtained when ρs = ρref which is what we can ana-
lytically find by maximizing the SNR under the constraint of constant ID using Lagrange
multipliers. Now, if we consider that ρinc is a function of ρs the analytical solution is much
harder to find but the simulation remains tractable. If we consider ρinc proportional to ρs,
then we obtain Fig. 2.2(b) where I considered that ρinc = 1000×ρs. This time one can see
that the reference needs to be stronger (more reflective) than the sample in order to lower
the incoherent part and amplify the sample signals without increasing the incoherent part.
The optimal SNR curve is still a line with the same slope but shifted towards the reference9.

8In this case SNRmax/
√
ηI0 = 0.5 (due to the 50/50 beam splitter half of photons are lost) for

(ρs, ρref ) = (1, 1). The shape of SNRmax/
√
ηI0 would not change by taking ρinc for another constant but

will lower the SNR because some photons will not be backscattered
9There are also settings where the power send inside the sample must be low (e.g. in vivo retina

imaging) and where the reference can be increased to improve the SNR without damaging the sample.
This gives (D-)FFOCT an important degree of liberty regarding SNR and power distribution.
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Fig. 2.2: SNR in FFOCT for various conditions. (a) When the incoherent part ρinc is
set to 0 and (b) when the incoherent part ρinc is proportional to the sample part ρs.

Now if we compare to a conventional system which can filter out out-of-focus photons in
post processing (e.g. [Mecê et al., 2020]) the SNR will be:

SNRconv ∝
ρ2
s√

ρ2
s + ρ2

inc

≈ ρ2
s

ρinc
(2.6)

whereas for D-FFOCT if ρs � ρinc and ρs � ρref the SNR writes:

SNRFFOCT ∝
ρsρref√
ρ2
ref + ρ2

inc

(2.7)

If we consider that ρref ≈ ρinc it yields:

SNRFFOCT
SNRconv

= ρref√
2ρs

(2.8)

Considering typical values ρs = 10−6 and ρref = 0.5 we obtain SNRFFOCT /SNRconv =
3.5 × 105. One can see that owing to the interferometric amplification, D-FFOCT is
tremendously more sensitive to probe tiny variations of sample reflectivity, hence its ability
to probe motility signals from small scatterers inside scattering samples.

2.4 Article: Dynamic full-field optical coherence tomogra-
phy: 3D live-imaging of retinal organoids

In this article, we take advantage of the high sensitivity and high contrast of D-FFOCT
and demonstrate its ability to image non-destructively retina organoids. The method to
generate quantitative colored images and volumes is presented and compared with existing
imaging modalities. In addition to produce high-resolution volumetric data, we show that
D-FFOCT is the only existing method that combines both spatial and temporal high
resolution. Supplementary videos can be found at https://www.nature.com/articles/
s41377-020-00375-8.

https://www.nature.com/articles/s41377-020-00375-8
https://www.nature.com/articles/s41377-020-00375-8
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Dynamic full-field optical coherence tomography:
3D live-imaging of retinal organoids
Jules Scholler 1, Kassandra Groux1, Olivier Goureau2, José-Alain Sahel2,3,4,5, Mathias Fink 1, Sacha Reichman 2,
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Abstract
Optical coherence tomography offers astounding opportunities to image the complex structure of living tissue but
lacks functional information. We present dynamic full-field optical coherence tomography as a technique to
noninvasively image living human induced pluripotent stem cell-derived retinal organoids. Coloured images with an
endogenous contrast linked to organelle motility are generated, with submicrometre spatial resolution and
millisecond temporal resolution, creating a way to identify specific cell types in living tissue via their function.

The comprehension of the human body and its
mechanisms at the subcellular scale is still an open area of
research. During the seventeenth century, the first
examinations of life under the microscope were con-
ducted directly on humans, animals and bacteria1. Then,
at the end of the nineteenth century, cell culture studies
began to replace in vivo studies, as this allows the creation
of in vitro models beneficial for the comprehension of
biological phenomena in different environments2,3.
Because of the two-dimensional nature of early cell cul-
tures, the possibilities of understanding tissues and organs
as a whole were limited. Recently, three-dimensional (3D)
cultures have been developed from stem cells to generate
organoids that mimic a variety of tissues and serve as
models of human development4 and disease studies5–7.
Organoids could also serve as sources of human tissues
for transplantation and as platforms for drug screening8–10.
These self-organizing structures develop cellular compo-
sitions and architectures similar to in vivo tissues, thereby
replicating biologically relevant intercellular phenomena
in vitro11,12.

For each biological trend, optical imaging devices have
been developed and optimized to image tissues, cell cul-
tures and, recently, organoids, which are one of the most
fundamental tools in biology, clinical pathology and
medical diagnosis13. There are many challenges in ima-
ging 3D structures: due to their relatively transparent
nature, it is difficult to obtain contrast on specific struc-
tures without staining. Moreover, 3D samples require
optical sectioning to discriminate the layer in focus from
out-of-focus layers. In this study, we present dynamic full-
field optical coherence tomography (D-FFOCT) as a
technique to image retinal organoids derived from human
induced pluripotent stem cells (hiPSCs)14, which are a
major breakthrough in the study of the retina and retinal
diseases15–17. These hiPSC-derived retinal organoids are
routinely imaged with various techniques (see Supple-
mentary Table 1). However, each of the existing methods
presents major drawbacks, such as the need for fixation or
mechanical sectioning, rendering the study of dynamic
phenomena impossible; the need for labelling, requiring
cumbersome and costly preparation; or a lack of func-
tional contrast, indicating only cell presence and not cell
health or behaviour18–20. Optical coherence tomography
(OCT) is commonly used in biology and medicine to
obtain 3D images of microstructures in tissue. OCT
contrast arises from the local endogenous optical back-
scattering level21. The main drawback of traditional OCT
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is the trade-off between imaging depth and resolution. To
increase the lateral resolution, the numerical aperture of
the system must be increased. As a consequence, the
depth of field decreases, and only a small layer of the
sample can be imaged. Current OCT systems therefore
have a lateral resolution on the order of 10 µm, which is
insufficient to resolve cell structures laterally. Using an
incoherent light source and a camera, time domain full-

field OCT (FFOCT) is an en face variant of OCT with a
higher spatial and temporal resolution than OCT in the
en face plane22. As FFOCT acquires an entire en face
plane rather than a line in the depth dimension, the
numerical aperture can be arbitrarily increased without
any imaging depth trade-off. Using the FFOCT experi-
mental setup shown in Fig. 1(a) and detailed in the
Methods section, a novel contrast mechanism has recently
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Fig. 1 Experimental setup and post-processing schematic. Acquisition of images a, Full-field OCT setup combined with wide-field fluorescence
microscopy (side view). PZT piezoelectric translation, TS translation stage, BPF bandpass filter, HPF high pass filter. As fluorescence is recorded in the
same spectral range as that used for D-FFOCT, D-FFOCT and fluorescence images could not be recorded at the same time; for this purpose, a flip
mirror was added to switch from one modality to another. b 3D cube of data (x, y, t) acquired before processing. Each time evolution of a pixel is
processed independently. c An intensity trace is plotted for a pixel inside a living retinal organoid. Post-processing steps d–f. Dynamic images are
computed in the HSV colour space. d Hue is computed with the mean frequency, from blue (low temporal frequencies) to red (high temporal
frequencies). e Saturation is computed as the inverse of the frequency bandwidth; as a consequence, a signal with a broader bandwidth (e.g., white
noise) appears dull, whereas a signal with narrow bandwidth appears vivid. f The value is computed as the running standard deviation23. Bottom row
is a D29 retinal organoid. g Computation of the mean frequency (hue); h, frequency bandwidth (saturation); and i, dynamic (value) before j,
reconstruction. Scale bar: 50 µm

Scholler et al. Light: Science & Applications           (2020) 9:140 Page 2 of 9



been exploited by measuring temporal fluctuations of
back-scattered light in a technique called dynamic FFOCT
(D-FFOCT)23. By revealing sub-cellular structures that
have very weak back-scattering, these dynamic measure-
ments provide contrast based on local intra-cellular
motility24,25 with sub-micrometre resolution, and can
achieve millisecond temporal resolution to study fast
phenomena.
In FFOCT, light coming back from the sample slice of

interest interferes with light coming back from the
reference mirror and is projected onto the camera (Fig. 1
(a)). To compute a D-FFOCT image, a movie (typically
512 frames) of the interferogram pattern is recorded and
processed (see Methods) to extract local fluctuations and
render them coloured (Fig. 1(b–j)). Using the hue-
saturation-value (HSV) colour space, image brightness is
linked to fluctuation amplitude, whereas colour is linked
to fluctuation speed, from blue (slow) to red (fast) through
green (in between). By translating the sample in the axial
direction to acquire a stack of planes, see Supplementary
Vid. 1, a 3D volume can be reconstructed (see Methods).
Alternatively, a series of dynamic images may be acquired
in the same plane to follow the evolution of activity over
several hours in a time-lapse fashion with a temporal
resolution of up to 20ms (see “Methods”).
A 3D reconstruction of a 28-day-old (D28) retinal

organoid is depicted in Fig. 2(a), corresponding to an
optic vesicle stage during retinogenesis9,10,15,16, along with
a sub-volume in Fig. 2(b), highlighting the layered internal
retinal progenitor cell organization. A cross-section is
shown in Fig. 2(c), in which the elongated shape of cells is
seen. A time-lapse video at 50 µm depth was acquired on
the same organoid to study its temporal evolution over
three hours (see Fig. 2(d) and Supplementary Video 2 for
the full recording). In these acquisitions, different
dynamic profiles of cells can be observed: surface cells
exhibit faster dynamics than those inside the sample
volume. This could be explained by the fact that at the
surface of the organoid, the cells are in contact with the
external environment, making them more vulnerable to
change and often leading to their death. In Fig. 2(d), cells
in the centre of the organoid exhibit fast and intense
activity until their disappearance, possibly indicating that
they are undergoing apoptosis. Evolution of cell dynamics
near a clear boundary between two distinct types of cells
is also visible. On one side of the boundary, cells exhibit
faster and stronger dynamics, suggesting a differentiation
process towards specific retinal lineages15, and on the
other side, small rounded progenitor cells have slower
activity. These two cell types are therefore distinguishable
by their dynamic profile alone. Generated D-FFOCT
images present a consistent colormap in which each fre-
quency is continuously represented by the same colours;
therefore, similar results are obtained for different retinal

organoids at the same developmental stage. Supplemen-
tary Video 3 shows a time-lapse movie of the D28 retinal
organoid shown in Fig. 2(a–c) alongside a D29 retinal
organoid. The same clear boundary between distinct types
of cells is present for both. By processing the data con-
temporaneously on the GPU using a modified version of
Holovibes software26, an enhanced temporal resolution of
20 ms was achieved, which represents a 500-fold
improvement without the need to store the raw data
(up to 4 Go.s−1). The price paid for this improvement is
the use of an alternative version of the dynamic compu-
tation, which is noise-sensitive and non-quantitative (see
“Methods”). Figure 2(f–h) shows high temporal resolution
(20 ms) images of a D147 retinal organoid. The typical
rosette organization of retinal cells, previously descri-
bed14,15, is visible in the centre, i.e., photoreceptors (seen
from the side) in the inner part of the rosette centre with
emerging outer segments (indicated by white lines on Fig.
2(h)), and other surrounding retinal cells are evident.
Photoreceptor nuclei exhibit different dynamic profiles
(Fig. 2(g))—either compact and uniform, inflated, or
absent—which may correspond to the nuclear G0/G1,
dying and M states, respectively. The gain in temporal
resolution allows the study of fast biological processes
such as organelles moving inside the cytoplasm (see
Supplementary Video 4). A series of retinal organoids
imaged by D-FFOCT at consecutive steps of development
showed the gradual differentiation of retinal cell pro-
genitors into neural cells and photoreceptors (Supple-
mentary Fig. 2), as validated by comparison with a similar
organoid series imaged with immunofluorescence on a
confocal microscope14.
To further validate the D-FFOCT signal origin via direct

comparison between D-FFOCT and specific fluorescence
labelling in the same organoids, a multimodal setup was
developed that combines D-FFOCT and fluorescence
channels to allow a pixel-to-pixel overlay of D-FFOCT
and fluorescence images. A D29 retinal organoid was
labelled with a dye targeting the nuclei of dead cells (see
“Methods”). D-FFOCT images overlaid with fluorescence
wide-field images are shown Fig. 3(a–d). Two fluorescent
red spots are clearly visible (Fig. 3(a)) and correspond to
very weak dynamic signals in the D-FFOCT image, con-
firming that dead cells exhibit low activity and that the
contrast revealed by D-FFOCT is metabolic. These two
areas are magnified in Fig. 3(c, d), and dark zones are
encircled by a white dotted line. A retinal organoid was
imaged with the combined D-FFOCT-fluorescence sys-
tem at D126, via which a large number of differentiating
photoreceptors can be detected in rosette-like configura-
tions (Fig. 3(e, f)). A red fluorescent zone corresponding
to photoreceptors is visible in Fig. 3(e), whereas in the D-
FFOCT image (Fig. 3(f)), the different activity level in
photoreceptors compared to surrounding cells is
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sufficient to provide distinction of the cell type through
the dynamic signal alone, across a region that is coin-
cident with the fluorescently labelled zone. Underlying
biological processes responsible for the dynamic contrast,

which has been shown to be linked to cell metabolism23,
could include movement of organelles. Preliminary
experiments suggest mitochondrial contribution, but
other potential contributors, such as Golgi bodies,
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lysosomes, vesicles, and pigments, have not yet been
discarded.
With D-FFOCT, once installed in the culture lab under

controlled environmental conditions, we anticipate being
able to follow retinal organoid developmental processes
that have been documented by traditional methods14,19,
such as the quantification of cells exhibiting the same
dynamic profile at multiple time points. In addition, we
should also gain additional biological insights owing to
the non-invasive nature of our imaging method, as it
provides access to the time course of continuous pro-
cesses such as progenitor cell proliferation and migration,
cell type differentiation including evolution of the
boundary between neural and non-neural retinal cells
(Fig. 2(d)) and evolution of the organoid into layered
retina. Interestingly, combining D-FFOCT and a 3D
organoid-based model of retinal dystrophies due to
patient-specific iPSCs offers the opportunity to under-
stand fundamental subcellular processes leading to dis-
eases in a way that was not previously possible.
Dynamic FFOCT imaging creates a new label-free non-

invasive contrast for imaging retinal organoids. As this
technique does not damage the samples, it complements
and could potentially replace the imaging modalities tra-
ditionally used. D-FFOCT allows imaging of different
layers at multiple depths while preserving the sample
integrity, i.e., using neither exogenous labelling nor
destructive methods, and is therefore suitable to follow the
evolution of the same organoid at different stages of its
development. The high dimensionality of the probed sig-
nals (512 interferograms per pixel) is useful for developing
statistical approaches such as automated classification and
clustering, and we are working towards the identification
of cells via their D-FFOCT contrast alone using machine
learning algorithms, with the ultimate goal of removing
the need for markers entirely. The only missing part, for
now, is the lack of ground truth validation data (e.g.,
segmented cells with labels that could be generated by
fluorescence or by annotating experts), which will be a
milestone in the further development of this technique.

Methods
Human iPSC maintenance and retinal differentiation
Two established human iPSC lines, hiPSC line-5f17 and

fluorescent reporter AAVS1::CrxP H2BmCherry hiPSC
line27, both derived from retinal Müller glial cells, were
cultured as previously described14. Briefly, hiPSC lines
were cultured on truncated recombinant human
vitronectin-coated dishes with Essential 8TM medium
(Thermo Fisher Scientific, Les Ulis, France). For retinal
differentiation, adherent hiPSCs were expanded to
70–80%, and FGF-free (fibroblast growth factor) medium
was added to the cultures for 2 days, followed by a neural
induction period allowing retinal structures to appear.
Identified retinal organoids were manually isolated and
cultured as floating structures for several weeks to follow
retinal cell differentiation as previously described14,28.

Sample preparation for D-FFOCT imaging
Retinal organoids were placed in CO2-independent

medium (GibcoTM, Thermo Fisher Scientific) in a Petri
dish and kept close to 37 °C during imaging. Samples were
mounted on a 3-axis translation stage under the sample
arm objective and imaged directly after mounting. After
imaging, each organoid was either cultured again for
further D-FFOCT imaging or fixed using a solution of
paraformaldehyde (PFA) for 15 min at 4 °C followed by
three rinses and stored in a sucrose solution for further
traditional imaging. For dead cell labelling (LIVE/DEAD
Viability/Cytotoxicity Kit for Mammalian Cells, Thermo
Fisher Scientific), organoids were incubated with 10 µM
EthD-1 at 37 °C for 20 min before imaging and were
mounted immediately after incubation and imaged within
10min.

Immunostaining and imaging of retinal sections
For cryosectioning, retinal organoids were fixed for

15min in 4% PFA at 4 °C and washed in phosphate-
buffered saline (PBS). Structures were incubated at 4 °C in
PBS/30% sucrose (Sigma Aldrich, Saint-Quentin-Fallavier,
France) solution for at least 2 h and embedded in a

(see figure on previous page)
Fig. 2 Imaging hiPSC-derived retinal organoids with D-FFOCT. a 3D reconstruction of the spherical D28 retinal organoid, composed of cells
~5 µm in diameter. Red arrows highlight surface cells exhibiting fast dynamics. b Image represents a sub-volume of a (blue square). c Image
represents a cross-section in (a) (green dashed line) in which one can see the organization of the layers inside the retinal organoid. d High-
magnification images of two different areas of the organoid during a 3h time-lapse acquisition: magnified images in the top row show the change in
dynamic profile that could reflect a differentiation process (the boundary between the two types of cells is represented by a red dotted line); images
in the bottom row show a very active zone composed of cells exhibiting fast and high dynamics, possibly undergoing apoptosis, in the centre of the
organoid. e Colour bar of the D-FFOCT images for the 3D and time-lapse acquisitions with a consistent colormap for (a–d). High-temporal-resolution
imaging performed on a D147 retinal organoid. f Part of the retinal organoid revealing fusiform structures corresponding to emerging photoreceptor
outer segments in the centre of the rosette. g Magnified view of nuclei in three different states around the rosette: (i) a nucleus in a normal state with
a compact, uniform shape and is very bright (i.e., exhibiting a high activity); (ii) an seemingly dying, inflated nucleus, exhibiting almost no activity; and
(iii) a nucleus undergoing division with no defined nuclear membrane in the cytoplasm, and two distinct parts (white arrows) of the content of a
nucleus (suggesting mitosis of the nucleus with chromosomes already divided, with the same subcellular activity level as the “normal” nucleus).
h Magnified image of the photoreceptor outer segment-like structures imaged side-on; three of them are marked with a white line. Scale bar: 20 µm
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solution of PBS, 7.5% gelatine (Sigma Aldrich, Saint-
Quentin-Fallavier, France), and 10% sucrose and frozen in
isopentane at −50 °C. Ten-micrometre-thick cryosections
were collected in two perpendicular planes. Sections were
washed with PBS, nonspecific binding sites were blocked
for 1 h at room temperature with a PBS solution con-
taining 0.2% gelatine and 0.1% Triton X100 (blocking
buffer) and then overnight at 4 °C with the primary anti-
bodies VSX2 (goat, 1:2000, Santa Cruz Biotechnology,
Clinisciences, Nanterre, France), CRX (mouse, 1:5000,
Abnova, Clinisciences) and RHODOPSIN (mouse, 1:500,
Merck, Guyancourt, France) diluted in blocking buffer.
Slides were washed three times in PBS with 0.1% Tween

and then incubated for 1 h at room temperature with
appropriate secondary antibodies conjugated with either
Alexa Fluor 488 or 594 (Jackson ImmunoResearch Lab.,
Interchim, Montluçon, France) diluted at 1:600 in
blocking buffer with 4′,6-diamidino-2-phenylindole dilu-
ted at 1:1000 to counterstain nuclei. Fluorescent staining
signals were captured with an Olympus FV1000 confocal
microscope.

Experimental setup
Time-domain FFOCT22,29 is a variant of scanning

OCT21 in which two-dimensional en face images are
captured using a CMOS camera. Three-dimensional

D29

Dead cells

D126

Photoreceptors

a b c

d

e f

Fig. 3 Fluorescence validation of D-FFOCT imaging. D-FFOCT images are depicted in colour (b–d, f), D-FFOCT images overlaid with wide-field
fluorescence images are depicted in greyscale (D-FFOCT) and red (fluorescence) (a, e). a–d D29 retinal organoid labelled with dye targeting the
nuclei of dead cells. a One can see two dead cells marked by the red spots, corresponding to the two dark zones on (b), the D-FFOCT image, in
which there is no dynamic signal in these zones. c, d Magnified images of the two dark zones (highlighted by a white dashed line, corresponding to
the two red spots of fluorescence). e, f D126 retinal organoid derived from a fluorescent cone rod homeobox (CRX) reporter iPSC line exclusively
labelling photoreceptors in red (mCherry). e Overlaid image on which the photoreceptor fluorescence matches the blue-green cells of (f), the D-
FFOCT image. These areas are highlighted by a white dotted line. These precursors of photoreceptors have their own particular dynamic signature,
which allows them to be distinguished from the surrounding cells by D-FFOCT alone. Scale bar: (a–d) 10 µm, (e, f) 50 µm
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images can be acquired and reconstructed by scanning in
the depth dimension with high precision motors. This
configuration, together with the use of a broad-band LED
source, allows for higher axial and en face resolution than
conventional OCT and can perform micrometre resolu-
tion 3D imaging noninvasively in both fresh and fixed
ex vivo tissue samples. For the D-FFOCT imaging of
retinal organoids, a laboratory setup was designed with a
0.5 µm lateral resolution using high-magnification water-
immersion objectives (Nikon NIR APO 40x 0.8 NA), for a
field of view of ~320 × 320 µm2. Because of the high
numerical aperture, an axial resolution of 1.7 µm was also
obtained by the microscope objectives in this particular
configuration in which the coherence length of the source
is larger than the depth of focus. The light source used for
the FFOCT system was an LED with a central wavelength
of 660 nm (M660L3, Thorlabs, Newton, NJ, USA). The
choice of the light source for an FFOCT system is one of
the most important parameters. First, it needs to be spa-
tially incoherent to avoid cross-talk artefacts due to
multiple scattering. The optical power must be high
enough to image close to camera saturation to maximize
the signal-to-noise ratio. The central wavelength was
chosen to be as close as possible to near-infrared to
maximize the penetration depth while remaining in the
visible spectrum (as fluorescence measurements were
done in the visible spectrum and some optical compo-
nents were coated only for the visible spectrum). Finally,
the LED coherence length (computed as the width at half
maxima of the axial fringe pattern) was 13.28 µm in water,
which allowed a robust 3D alignment between the
coherence plane and the focal plane, therefore allowing a
homogeneous contrast over the whole field of view. The
FFOCT signal was recorded on a custom camera (Quartz
2A750, Adimec). For validation purposes, this FFOCT
setup was combined with a fluorescence microscope using
an LED source centred at 565 nm (M565L3, Thorlabs,
Newton, NJ, USA) for excitation and filtered with a
bandpass filter centred on 562 nm with a bandwidth of
40 nm (Semrock FF01-562/40-25). The emitted fluores-
cence was filtered with another bandpass filter centred on
624 nm (Semrock FF01-624/40-25) and then imaged
using a sCMOS camera (PCO Edge 5.5). The excitation
and fluorescence wavelengths were separated by a
dichroic mirror at 593 nm (Semrock FF593-Di03-25).

Data acquisition and processing
Producing each dynamic image slice required the

acquisition of many (typically 512) direct images without
modulating the piezo position. As opposed to static
FFOCT acquisition, the measured fluctuations in D-
FFOCT arise from subcellular motion. In this study, the
frame rate was set to 100 Hz, which was a good trade-off
between acquisition speed and signal-to-noise ratio (see

the following section). For a given acquisition, we typically
obtain a (1440,1440,512) tensor in which 1440 × 1440 is
the number of sensor pixels and 512 is the number of
recorded frames. After acquiring data, the first step is to
correct for the camera frame-to-frame instability by
normalizing each frame to compensate for exposure time
variations. Previously, we showed colour images that were
constructed by integrating signals in the Fourier domain
for three frequency ranges30. Here, we propose a new
scheme wherein colour images are computed in the HSV
colour space in which, contrary to the red-green-blue
(RGB) colour space, it is possible to assign a physical
property to each of the three channels for quantitative
visual interpretation. The idea is then to attribute a colour
for each pixel depending on the characteristic time period
or frequency of the dynamic signal. Each individual pixel
can be thought of as a sum of subcellular random walks
with a typical covariance function depending on the
motion type (e.g., diffusive, hyperdiffusive). To distinguish
between several dynamic profiles, we performed power
spectrum analysis. Note that a correlation analysis could
also be performed and gives similar results but requires
more computing time. We started by computing the
power spectrum density (PSD) using Welch’s method for
each pixel and then used an L1 normalization on each
PSD as if it were a probability distribution. Then, the hue
channel, was computed as the mean frequency (which is
simply the dot product between the normalized PSD and
the frequency array). The values were then inverted and
rescaled between 0 and 0.66 to go from blue (low fre-
quencies) to red (high frequencies). We observed that two
successive acquisitions could lead to different perceptual
colour maps. We found that the lowest frequencies were
slightly unstable (either due to sensor or mechanical
instabilities as described in31). We removed this artefact
by removing 3% of the lowest frequencies in the PSD.
Then, the value (which corresponds to the perceived pixel
intensity) was computed as the average of the temporal
standard deviation with a window size of 50 samples. We
saturated 0.1% of the highest value pixels to improve the
contrast. For 3D stacks, the saturation threshold value was
kept constant throughout the stack to obtain a consistent
colour map. Finally, saturation was computed as the
inverse of the normalized PSD bandwidth. As a con-
sequence, the saturation channel carries the frequency
bandwidth information. In practice, it is computed as the
standard deviation of the frequencies (i.e., it corresponds
to the frequency histogram width) as:

S ¼ P:f 2 � P:fð Þ2 ð1Þ

where P is the normalized PSD array, f is the frequency
array and “.” is the dot product. The saturation map is
then inverted and rescaled between 0 and 0.8 to obtain a
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visually pleasing output. The broader the spectrum, the
lower the saturation. White noise has a broader
bandwidth and will therefore appear greyish instead of
coloured. Finally, the dynamic image is transformed in the
RGB colour space for display purposes. A (1440, 1440,
512) stack is processed in less than 10 s by the GPU
(Nvidia Titan V) using MATLAB (MathWorks) and our
custom software32, hence limiting temporal resolution by
processing the data after each acquisition. To improve
temporal resolution, we also used a modified version of a
previous method26, which computes real-time dynamic
images on the GPU. In this case, the algorithm used to
generate dynamic images is no longer quantitative and is
subject to more noise. The 3D cube of data is first Fourier
transformed; the Fourier transform magnitude of each
temporal signal is then integrated into three bands to
reconstruct an RGB image in which the band correspond-
ing to lower frequencies is coded in the blue channel, the
band corresponding to medium frequencies is coded in
the green channel and the band corresponding to high
frequencies is coded in the red channel. The processing
power of the GPU allowed us to process a new cube of
data every 2 frames, leading to a D-FFOCT frame rate of
50 Hz in practice and a temporal resolution of 20 ms. For
3D volumes, the temporal resolution depends on the
number of planes per volume. In practice, the final plane
is delayed by several minutes compared with the first
acquired plane. However, as the biological changes being
evaluated are on time scales slower than minutes, this lag
was not an issue (see Supplementary Video 2). For 3D
stacks, each plane is registered during post-processing
using a feature-based method (rigid registration using
SIFT features and RANdom SAmple Consensus algo-
rithms to find correct matches) to compensate for the
sample lateral drift. Stacks are then interpolated in the
depth dimension using bicubic interpolation to obtain a
square voxel edge size of 220 nm. For 3D display
purposes, a nonlocal mean filter33 can be applied to
remove granularity.

Choosing the frame rate for D-FFOCT
The choice of 100 Hz for the camera frame rate is the

result of the optimization between the acquisition speed
and the signal-to-noise ratio. For a given number of
frames, the signal-to-noise ratio increases in D-FFOCT
when the frame rate decreases because scattering struc-
tures have more time to move and a greater volume can
be explored, therefore leading to higher phase shifts and
higher intensity fluctuations on the camera. For 512
frames, the signal-to-noise ratio starts decreasing when
going faster than 100 Hz, so this value was chosen to
maximize both the acquisition speed and signal-to-
noise ratio.

Correcting for sample drift
Due to thermal effects, we observed a slow mechanical

drift (on the order of 5 µm.h−1), which could prevent us
from measuring dynamic images in the same plane over
several hours (axial resolution is 1.7 µm). To compensate
for this drift, we developed a correlation-based method
called the plane locking procedure25. This procedure was
utilized when the cross-correlation between the current
image and the target image was below a threshold (typi-
cally between 0.2 and 0.4). In this case, FFOCT images
were acquired over an axial extent of 10 µm, with 0.5 µm
steps using the sample translation stage and were then
cross-correlated with the target image. The sample was
then axially translated to the position corresponding to
the maximum of the cross-correlation, which was typi-
cally between 0.5 and 0.8. After each plane correction
procedure, a new FFOCT image was chosen as the target
for the next correction to account for evolution in the
sample position.

Combining FFOCT and fluorescence microscope channels
The FFOCT and fluorescence cameras do not share the

same sensor size and resolution, so to construct overlays,
FFOCT images were registered onto fluorescence images
using a projective transformation. The projective trans-
formation was calibrated using a deformation target
(R1DS1N, Thorlabs, Newton, NJ, USA) before experi-
ments. The final overlays were constructed in RGB colour
space, the value channel corresponding to dynamic
amplitude was inserted into every channel (R, G, and B),
and a fluorescence image was added only to the R chan-
nel. In this way, the dynamic image appeared in greyscale
with the fluorescence superimposed in red.
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Table 1: Comparison of the different techniques that can be used to image hiPSC-derived retinal 

organoids. Lateral resolution computed for the same microscope objective (Nikon NIR APO 40x 0.8 

NA) is diffraction-limited for all methods aside from OCT, wherein the need for a large depth of field 

limits the lateral resolution to 10 µm. Axial resolution in (D-)FFOCT is determined by the depth of 

field of the objective rather than the coherence length in the current configuration as high NA 

objectives are used (i.e., as the depth of field is smaller than the coherence length, the axial resolution 

is limited by the numerical aperture). Confocal, multiphoton, and light sheet immunohistochemistry 

methods achieve the same axial resolution at shallow depths as (D-)FFOCT but usually require 

invasive tissue clearing procedures to maintain the resolution at greater depths. The lower 

penetration depth of D-FFOCT than that of FFOCT comes from the low reflectivity of the moving 

organelles [31] that produce the dynamic signals. No method can currently penetrate the full 

organoid depth with submicrometre resolution without sectioning. However, imaging of the entire 

organoid is not always necessary because with an imaging depth of 150 µm, part of the organoid that 

is representative of the entire structure can be successfully imaged even in the largest organoids, 

thanks to their spherical organization. Should 3D imaging of entire organoids prove worthwhile, 

aberration correction methods could be utilized with FFOCT to reach greater penetration depths, 

combined with organoid rotation and additional postprocessing. Immunohistochemistry methods 

rely either on staining, which adds specific colour contrast and in which the sample is mechanically 

sliced to provide sectioning (immunohistology), or with targeted dyes, wherein various techniques 

(confocal illumination/detection, light-sheet illumination, etc.) provide optical sectioning. Relying on 
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exogenous contrasts for imaging at specific time points greatly limits the structures or events that 

can be seen in samples and ultimately leads to the destruction of the sample, as these techniques all 

require sectioning, clearing or fixation steps that preclude live imaging and, therefore, monitoring of 

the development of the same sample over a long period of time. D-FFOCT is not only a unique 

technique that combines high spatial and temporal resolution but also a non-destructive approach 

that provides the possibility of following the development of the same organoids over time 

throughout development. This process could be automated by integrating the D-FFOCT setup directly 

inside a cell culture incubator under a CO2 atmosphere. D-FFOCT can therefore offer new biological 

insights such as cellular motility, tissue development and organization and dynamic profile evolution 
and comparison. 

 

 

Figure 1: Comparison between FFOCT and D-FFOCT images on a D29 organoid. (a) FFOCT image of a 

D29 retinal organoid with (b) the corresponding D-FFOCT image. The FFOCT image was acquired 

using a 2-phase bucket scheme using a piezoelectric actuator to move the reference mirror [25] and 

extract the interferometric signal. 256 FFOCT amplitude images (corresponding to a total of 512 

acquired images with 256 images for each phase) were averaged to obtain the final output. The D-

FFOCT image was acquired with 512 direct images (without using piezoelectric modulation) and 

exhibits much higher contrast on cells. (c) Magnification of the FFOCT image (a) with the 

corresponding magnification of the D-FFOCT image (d). The mean power spectrum density was 

computed using Welch's method on the 3 cells drawn with the dashed line in (d) on graph (e).  Scale-
bar: 20 µm. 
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Figure 2: D-FFOCT imaging (top) and immunohistochemistry images acquired with confocal 

microscopy (bottom) of distinct retinal organoids at four equivalent stages of development. On D29 

and D35, organoids are mainly composed of multipotent retinal progenitor cells expressing the 

Visual System Homeobox 2 (VSX2) transcription factor (green). At D51, rosette formation observed 

by D-FFOCT was confirmed by immunohistochemistry with differentiation of progenitor cells (red 

dotted lines). Photoreceptors can be identified in immunohistochemistry by CRX expression in 

rosette structures at D177 and are seen in DFFOCT as blue-green cells in the rosette centre (white 

arrows). In addition, the D-FFOCT image shows putative inner retinal neurons (identified due to their 

position around the edge of the rosette [15]) in red (yellow arrows). Nuclei are counterstained with 

DAPI (blue). The field of view of D-FFOCT images has been reduced to correspond to the field of view 

of the confocal images. Scale bar: 50 µm. 

 

 
 

Figure 3: Immunohistochemistry image (left) acquired with a confocal microscope of a D177 retinal 

organoid wherein photoreceptor outer segments containing rhodopsin (green fluorescent label) are 

visible inside rosettes (red dotted lines). The magnified image in the top right corner highlights 

photoreceptor outer segments (green filaments, annotated with white dotted lines). Nuclei are 

counterstained with DAPI (blue). D-FFOCT image (right) of a similar retinal organoid at D147 

showing a rosette (red dotted line) containing photoreceptor outer segments (white dotted lines), 

similar to those in the immunohistochemistry image. Rosette sizes can vary greatly and happen to be 

smaller in the organoid on the left than in the organoid on the right. The D-FFOCT field of view has 

been cropped to match the immunohistochemistry image; see Supplementary Vid. 4 for the whole 
field of view. Scale bar: 50 µm. 
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D28 D35 D50 
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Supplementary files information 

 

Video 1: 

 Depth stack of the D28 hiPSC-derived retinal organoid shown in Fig. 2(a-c). Planes from top 0 µm 

to approximate center of the organoid 101 µm, in 1 µm steps are shown revealing the internal 
structure of the organoid.  

 

Video 2: 

 Time-lapse video with 1 min temporal resolution of the evolution of the D28 hiPSC-derived retinal 

organoid shown in Fig. 2(d). Video shows the evolution of the whole organoid over three hours of 
imaging, with three magnifications corresponding to the zones depicted in Fig. 2(d).  

 

Video 3: 

Time-lapse video with 1 min temporal resolution of the evolution of the D29 hiPSC-derived retinal 

organoid shown in Supplementary Fig. 2. Video shows the evolution of the whole organoid over 
three hours of imaging.  

 

Video 4: 

Time-lapse of the D29 hiPSC-derived retinal organoid and of the D28 hiPSC-derived retinal 

organoid. Both organoids exhibit the same consistent colormap and structures demonstrating that 
D-FFOCT can reliably images different samples at different times consistently.  

 

Video 5: 

Time-lapse video with 1 min temporal resolution of the evolution of a D42 hiPSC-derived retinal 

organoid. Video shows the evolution of the whole organoid over three hours of imaging, especially 
the behaviour in a rosette.  

 

Video 6: 

Time-lapse video with 5 seconds temporal resolution of the evolution of a D147 hiPSC-derived 

retinal organoid with zoomed areas. Zoomed areas have a temporal resolution of 1 second and 

highlight the sensitivity of D-FFOCT to dynamic phenomena. The colors are computed like the 
images of Fig. 2(f-h). 



Chapter 3

Post-processing developments for
(D-)FFOCT

Contents
3.1 Article: Motion artifact removal and signal enhancement to

achieve in vivo dynamic full field OCT . . . . . . . . . . . . . . 42
3.2 Locking plane procedure for time-lapse D-FFOCT imaging . . 55
3.3 Real-time D-FFOCT imaging using GPU computing . . . . . . 55
3.4 Dust removal using automatic detection and inpainting . . . . 57

3.1 Article: Motion artifact removal and signal enhance-
ment to achieve in vivo dynamic full field OCT

Dynamic FFOCT has been previously used for ex-vivo cornea and retina imaging [Thou-
venin et al., 2017a, Scholler et al., 2019], ex-vivo liver imaging [Apelian et al., 2016], breast
cancer biopsies [a la Guillaume et al., 2019]. All of these applications are sharing a com-
mon aspect: they have been done ex-vivo in a microscopy setting. The reason behind is
that D-FFOCT is tremendously sensitive to axial motions which are detrimental for the
image reconstruction, as explain in Section 2.1 in the paper where I propose a model for
noise artifacts. Axial motions are not only an issue for in-vivo measurements, but also for
microscopy acquisitions due to mechanical vibration and thermal drift. I measured the
axial drift1 by analyzing the fringe drift on our combined FFOCT and fluorescence setup.
I computed the fringes drift by analyzing the lateral displacement of the fringes2 after
calibrating that a displacement of δ = 44.9 pixels corresponds to an axial displacement of
λc = 660 nm. The results for 3.5 minutes are shown Fig. 3.1. Amplitude of axial motion
was random (pink noise) with a maximal displacement of around 40 nm.

1Axial displacement of the sample causes the fringes to move laterally so that it is possible to measure
the axial drift by putting a mirror in the sample arm and by analyzing the fringes lateral drift.

2Lateral displacement was estimated using [Guizar-Sicairos et al., 2008] after Fourier filtering the direct
images around the fringes spatial frequency.

42
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Fig. 3.1: Axial sample drift measured and computed during 3.5 minutes on our combined
FFOCT and fluorescence setup. Maximal displacements of 40 nm with a pink spectrum were

observed.

The tricky part with removing these artifacts is their random nature preventing traditional
Fourier domain filtering approaches. The idea to separate the motility signals from the
sample axial motion is that the sample axial motion should be highly correlated spatially
and temporally whereas motion of scatterers giving the dynamic signals should be uncor-
related between pixels (or only correlated between neighboring pixel if scatterers happens
to travel from one voxel to an adjacent one during the acquisition). With this in mind,
I proposed to use the singular value decomposition (SVD) Section 2.2 in order to catch
the axial motion on a few singular vectors. Such approach using SVD was already pro-
posed by [Ammari et al., 2017] where they remove the firsts singular vectors, which was
not optimal in practice as motion artifacts were also captured by higher ranked singular
vectors. Rather than studying the decreasing of the singular value energy, I proposed to
detected artifactual singular vectors by analyzing their temporal behavior. Finally this
method allowed us to remove most of the artifacts that could manifest in different forms:

• Bright spots on very reflective structures such as collagen fibers Fig. 3.

• Fringes pattern on flat cells acting as a diopter Fig. 4.

• In vivo liver imaging of a mouse where the breathing and heart beat creates axial
compression Fig. 6.

In this paper, I also propose a new operator Section 3 to compute the motility metric in
order to improve the signal to noise ratio. This operator is based on the cumulative sum
which allows to strengthen biased portion in dynamic signals that correspond to driven
motion of scatterers. A theoretical analysis on Brownian bridges is proposed to explain
the gain in signal to noise ratio when experiments are shot noise limited. Finally I hope
that this advances in signal processing will allow to acquire dynamic images in vivo in the
retina. As explained in the conclusion, I hope that if we can stabilize the acquisition by
doing axial tracking of the retina so that the same retinal layer remains in the coherence
plane width3 we could remove the remaining artifactual fluctuations by using the SVD
denoising approach. The development of the axial tracking system is detailed section 4.1
in this thesis.

3The coherence length is typically 10 µm, so that we would need a tracking accuracy of at least 5 µm.
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Abstract: We present a filtering procedure based on singular value decomposition to remove
artifacts arising from sample motion during dynamic full field OCT acquisitions. The presented
method succeeded in removing artifacts created by environmental noise from data acquired in a
clinical setting, including in vivo data. Moreover, we report on a new method based on using the
cumulative sum to compute dynamic images from raw signals, leading to a higher signal to noise
ratio, and thus enabling dynamic imaging deeper in tissues.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) is routinely used for 3D imaging of microstructures in
tissue and relies on the endogenous backscattering contrast [1, 2]. Full-field optical coherence
tomography (FFOCT) is an en face, high transverse resolution version of OCT [3,4]. Using a
camera and an incoherent light source, FFOCT acquires en face virtual sections of the sample at
a given depth and has been used for biology [5] and medicine [6]. Recently, a novel contrast
mechanism has been exploited by measuring temporal fluctuations of the backscattered light in a
technique called dynamic full field OCT (D-FFOCT) [7]. In ex vivo fresh tissues, these dynamic
measurements reveal subcellular structures that are very weak backscatterers and provide contrast
based on their intracellular motility [8, 9]. A similar technique is used in regular OCT for retinal
angiography called OCTA where speckle variance is analyzed on several B-Scans (typically
8 frames) to produce binary images of the retinal vasculature [10]. Due to the high spatial
resolution (< 1 µm) and the number of frames used in D-FFOCT (typically 512), our method is
not only sensitive to capillaries but also to intracellular motility signals and produces a contrast
that reveals living cells [11]. The penetration depth of D-FFOCT is typically ten times less than
FFOCT due to the small cross-section of the moving scatterers leading to weak signals, limiting
its use in thick samples. Up to now, using D-FFOCT for in vivo imaging has remained elusive as
this technique is sensitive to nanometric axial displacements of the sample. The same problems
arise for OCTA and several approaches have been developed to remove bulk motion of the
eye [12, 13]. In this paper we propose two methods to overcome the aforementioned limitations.

First, we introduce a framework based on the singular value decomposition (SVD) to filter out
the axial displacement of the sample from the local fluctuations linked to intracellular motility,
enabling in vivo use of D-FFOCT. SVD based algorithms have been previously applied to OCT
data, e.g. for smart OCT where the SVD is applied to the reflection matrix in order to extend the
penetration depth [14]. An SVD filtering method for D-FFOCT has been previously proposed
for simulated data [15] but does not work on our experimental data mainly because the image
formation model is different. Here we propose to find eigenvectors associated with axial motion
and filter them out. Similar SVD based algorithms for spatio-temporal filtering have been used
effectively in acoustics for Doppler acquisitions [16, 17]. In each case the goal is to use the
SVD to transform the initial data in a new basis that is more suitable for filtering and identifying
outliers. As opposed to [16, 17], our approach reconstructs the signals in the initial space before
computing the dynamic image rather than constructing the image in the SVD space. The main
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advantage of using the SVD rather than Fourier analysis here is that the filter adapts to the data
set which exhibits different amounts of artifacts with random patterns.

Secondly, we present a new operator to compute the local dynamics based on the cumulative
sum in order to enhance the non-stationary part of the signal, leading to a great increase in the
signal to noise ratio (SNR).

Finally, we report on the first D-FFOCT acquisition in vivo to image the mouse liver at 80 µm
depth where the two proposed algorithms greatly improved the image quality by removing motion
artifacts and increasing the SNR by a factor of 3.

2. Removing artifacts using SVD

In order to construct a D-FFOCT image, a stack of typically 512 direct images (1440 × 1440
pixels) is acquired with a standard FFOCT using our custom software [18]. The FFOCT setup
consists of a Linnik interferometer where both arms contain identical microscope objectives. The
reference arm contains a silicon mirror mounted on a piezoelectric translation (PZT) used for
phase modulation. In a typical FFOCT experiment, at least two images are acquired with different
phase modulations and the FFOCT image is constructed by using appropriate phase-shifting
algorithms [4, 11]. For D-FFOCT experiments the PZT position is not modulated, fluctuations
arise by scatterers motions inside the coherence volume. In this paper we used data acquired
from two different setups. The first one is a laboratory setup shown in Fig. 1 and the second one
is a LightCT commercial setup manufactured by LLTech SAS. The characteristics of both of
these setups are summarized in Table 1. In the first report on D-FFOCT, the level of the dynamic
signal at each pixel was computed using a running standard deviation averaged over the whole
acquisition [7] so that each pixel is processed independently. Calculating the standard deviation
of the signal in time removes highly scattering stationary structures such as collagen or myelin
fibers and reveals cells with a much better contrast. Indeed, strongly backscattering structures
can dominate the signal even outside the coherence volume thereby masking weakly scattering
structures such as cells. In the laboratory, we succeeded in stabilizing the setup by mounting it on
a sturdy optical bench, and carried out ex vivo experiments without motion artifacts. For real life
applications however, D-FFOCT devices are currently being used by clinicians in hospitals for
imaging biopsied tissues [19] and by anatomo-pathologists in busy environments with vibrations
arising from vibrational modes of the building, from people walking around the device and from
air conditioning. Mechanical vibrations can lead to sample arm motion or oscillations, creating
strong signal fluctuations, especially from highly reflective structures such as collagen fibers.

Table 1. Setup Characteristics.

Setup Lab. setup Fig. 1(a) LightCT (LLTech SAS)

Transverse resolution [µm] 0.4 1.5

Axial resolution [µm] 1 1

Field of view [µm × µm] 390 × 390 1260 × 1260

Framerate [Hz] 150 150
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Fig. 1. (a) FFOCT setup in inverted configuration top view. Microscope objectives are
Olympus UPlanSApo 30x 1.05 NA. OCT Camera: ADIMEC Q-2A750-CXP. Light source:
Thorlabs M660L3. - PZT: piezoelectric translation - BS: 50/50 beam splitter. (b) Schematic
of the sample axial oscillations around the coherence volume due to mechanical vibrations,
simulated on a graph in the top right corner. The setup is illustrated with oil immersed
objectives where the probed volume depth is 1 µm.

2.1. Motion artifact model

The intensity recorded by the camera is the sum of the backscattered light from both the sample
and the reference arm [11]:

I(r, t) = η I0
4

(
R(r, t) + Rinc + Rre f + 2

√
R(r, t)Rre f cos (∆φ(r, t)))

)
(1)

where I(r, t) is the intensity recorded at position r = (x, y) and time t, η is the camera quantum
efficiency, I0 is the power LED output impinging on the interferometer considering a 50/50
beam-splitter, Rre f is the reference mirror reflectivity (i.e. the power reflection coefficient),
R(r, t) is the sample reflectivity (i.e. the power reflection coefficient) at position r and time
t, ∆φ(r, t) is the phase difference between the reference and sample back-scattered signals at
position r and time t, Iincoh = Rinc I0/4 is the incoherent light back-scattered by the sample on
the camera, mainly due to multiple scattering and reflections out of the coherence volume. The
dynamic signal is computed as the average of the running temporal standard deviation and the
processed dynamic signal can be written:

Idyn(r) = 1
N

∑
i

SD
(
ηI0
2

√
Rs(r, t[i,i+τ])Rre f cos

(
∆φs(r, t[i,i+τ])

) )
(2)

where SD is the standard deviation operator, N is the total number of sub-windows, τ is the
sub-windows length so that t[i,i+τ] is the time corresponding to one sub-window, Rs and ∆φs are
respectively the reflectivity and phase of the local scatterers that induce the temporal fluctuations
that D-FFOCT aims to measure. In the event of small displacements of the entire sample, on the
order of the depth of field or smaller, the processed signals will be the sum of the actual local
fluctuations and the modulation created by the bulk sample motion creating a global phase shift.
The resulting artifacts are therefore proportional to the sample reflectivity, which is orders of
magnitude higher than the reflectivity of the scatterers probed by D-FFOCT (e.g. mitochondria
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Fig. 2. (a) First few temporal eigenvectors. Top: for an acquisition with motion artifacts
where V1 and V2 were detected as motion artifact and removed. Bottom: for an acquisition
without visible artifacts. (b) Zero crossing rate computed for each temporal eigenvectors.
(c) Absolute value of the derivative of the zero crossing rate computed for each temporal
eigenvector. Artifacts were detected by thresholding the curve above 3 standard deviations.
The baseline was arbitrarily increased for the red curves in (b) and (c) in order to increase
readability.

and vesicles) leading to strong artifacts on the dynamic image, which mask the signal of interest.
In the presence of mechanical noise, the measured fluctuation can be written:

Imes(r) = Idyn(r) + Iart (r) (3)

where the artifactual signal can be expressed as:

Iart (r) = 1
N

∑
i

SD
(
ηI0
2

√
Rs(r, t[i,i+τ])Rre f cos

(
4π
λ

z(t[i,i+τ])
))

(4)

where z(t[i,i+τ]) is the sample axial displacement on the i − th sub-window. Here we neglected
the sample deformation for the sake of clarity. Nonetheless it could be taken into account by
processing the stack in spatial patches where deformations are negligible. For a highly reflective
zone we have Idyn(r) � Iart (r) and the dynamic signal is completely masked by artifacts that
look like the corresponding static FFOCT image that could be obtained by randomly sampling
the path difference instead of using the standard PZT modulation mentioned before. Indeed,
modulating the position of the sample around the coherence volume is equivalent to modulating
the piezo position, which explains why artifacts look like the standard FFOCT image.

2.2. Proposed algorithm

In order to remove motion artifacts we want to use the SVD as an adaptive filter that could
separate motility signals from motion induced signals. The first step is to unfold the 3D M(x, y, t)
cube of data into a 2D matrix Mu(r, t) to perform the decomposition. Higher dimensions of
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SVD do exist but are not required here as the horizontal x and vertical y dimension do not differ
when considering axial motion artifacts. SVD is the generalization of the eigendecomposition of
a positive semidefinite normal matrix, and can be thought of as decomposing a matrix into a
weighted, ordered sum of separable matrices which will become handy when reconstructing the
SVD-denoised signals:

Mu = UΣV? =
∑
i

σiUi ⊗ Vi (5)

where ⊗ is the outer product operator, U contains the spatial eigenvectors,V contains the temporal
eigenvectors and Σ contains the eigenvalues associated with spatial and temporal eigenvectors.
Performing the SVD on an unfolded Mu(1440 × 1440, 512) dynamic stack takes around 30
seconds on a workstation computer (Intel i7-7820X CPU, 128 Gbyte of DDR4 2666 MHz RAM)
and requires 45 GByte of available RAM using LAPACK routine for SVD computation without
computing full matrices. Investigating such decomposition for artifact-free data sets we found that
spatial eigenvectors related to motion artifacts have particular and easily identifiable associated
temporal eigenvectors. Indeed, when looking at the first temporal eigenvectors, we observed
sinusoid-like patterns with increasing frequency, see Fig. 2(a). In presence of motion artifacts,
temporal eigenvectors appeared with random, high-frequency components that are easy to detect
with simple features. Here, the zero crossing rate (the number of times a function crosses y = 0)
is used to detect temporal eigenvectors involved in motion artifacts. In presence of motion
artifacts some of the firsts temporal eigenvectors present a high zero crossing rate, see Fig. 2(b)
and 2(c). In order to detect these outliers we computed the absolute value of the derivative of the
zero crossing rate (D-ZRC = |ZRCi+1 − ZRCi |) and applied a threshold: if the D-ZRC is higher
than three times the D-ZRC standard deviation then the corresponding eigenvalue σi is set to
zero in Σ̂ and the SVD-denoised stack M̂u is reconstructed as:

M̂u =
∑
i

σ̂iUi ⊗ Vi (6)

The SVD-denoised stack M̂u can then be folded back to its original 3D shape M̂ and the
dynamic computation can be performed. Interestingly, the use of an automatic selection of
eigenvectors allows a more reproducible analysis. For example, the SVD can be performed on
spatial sub-regions without visible artifacts, something very hard to obtain with manual selection
of eigenvectors. This can also improve the filtering procedure in the case of sample spatial
deformation or if the computation requires too much RAM.

2.3. Results

We tested the proposed SVD filtering on different acquisitions taken on different setups (the one
presented in Fig. 1(a) and the LightCT system manufactured by LLTech SAS). When motion
artifacts were present, image quality after denoising was greatly improved in each case. In
Fig. 3 we present lung biopsy images taken with the LightCT system in a clinic, where imaged
tissues were waste tissues from biopsy procedures that were destined to be destroyed, and we
imaged them just before destruction. The imaging was carried out according to the tenets of the
Declaration of Helsinki and followed international ethic requirements for human tissues. SVD
filtering effectively removes motion artifacts from collagen fibers and reveals cells in Fig. 3(b)
and 3(e), see Visualization 1 for complete 1260× 1260 µm fields of view. D-FFOCT images were
also higher contrast after SVD denoising, allowing easier interpretation for clinical applications,
e.g. lung tumor detection in the presented images. We imaged fibroblasts with the setup presented
in Fig. 1(a). Cells were very flat leading to fringes pattern created by the specular reflection on
their surface. These fringes were highly visible on the processed D-FFOCT image preventing
the visualization of subcellular structures, see Fig. 4(a). After SVD filtering it is possible to
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Fig. 3. Lung biopsy for cancer detection taken on the LLTech clinical setup. Artifacts arise
mainly from mechanical vibration and air conditioning. (a)(d) Original D-FFOCT images
computed on the raw stack. (b)(e) Denoised images computed with SVD filtering. (c)(f)
Sum of the spatial eigenvectors absolute value removed by the SVD filtering. Red arrows
are highlighting cells that were partially masked by motion artifacts. See Visualization 1 for
complete 1260 × 1260 µm fields of view.

distinguish single subcellular entities and track them, see Fig. 4(b), enabling biological study
without the need of a costly optical bench setup.

3. Extending penetration depth using non-stationarities

In addition to motion artifacts, a drawback of D-FFOCT compared to standard static FFOCT is
the reduced penetration depth. While FFOCT can acquire images as deep as 1 mm, D-FFOCT is
limited to about 100 µm due to the weak signal level produced by the sample fluctuations we wish
to measure. In order to enhance the dynamic signal strength and so improve penetration depth,
we propose computation of the dynamic image from the cumulative sum of the signal, rather than
the raw signal. Indeed, the model for the dynamic image formation is small scatterers moving
in the coherence volume during the acquisition leading to phase and amplitude fluctuations
in the conjugated camera pixel. While a pure Brownian motion is stationary, hyper-diffusive
displacements are not and we therefore propose to use the cumulative sum to enhance these
non-stationarities. Intuitively, summing a centered noise will give a noisy trajectory that stays
close to zero whereas if there is a small bias it will be summed for every sample and the cumulative
sum will therefore have a slope equal to this bias.

3.1. Theoretical considerations

Let us consider an array of random values drawn from a zero centered Gaussian distribution. If
the number of samples is large the mean of the array will be close to zero and equivalently the
sum of all the samples will also be close to zero. Taking the cumulative sum of such an array
gives a so called Brownian bridge (the curve starts and ends close to zero and makes a "bridge"
between these two points). Theoretically, Brownian bridges are expected to be maximal close
to the edges as the probability distribution of the maximum is the third arcsin law which has
a typical U-shape [20]. More importantly, the Brownian bridge maximum follows a Rayleigh
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Fig. 4. Fibroblast image taken on the setup presented Fig. 1. Artifacts arise mainly from
mechanical vibrations leading to fringes pattern. (a) Original D-FFOCT image computed
on the raw stack. (b) SVD-denoised image computed with SVD filtering. Subcellular
features appear with a much better contrast enabling segmentation and tracking. (c) Sum
of the spatial eigenvectors absolute value removed by the SVD filtering. Red arrows are
highlighting subcellular features, only the bottom one was visible on the original image.

distribution. If we consider a Brownian bridge Ws ∀ s ∈ [0, 1]:
WM = sup{Ws : s ∈ [0, 1]} (7)

P[WM ≤ u] = 1 − e−2u2
(8)

where WM is the supremum of the bridge and P[WM ≤ u] is the probability of the supremum
being less than u. According to the Rayleigh distribution, the Brownian bridge maximum must
therefore scale as

√
t with t scaling as the number of frames. Now, if there is a bias in the

distribution, which is the case if a scatterer is moving with constant velocity in the coherence
volume, the cumulative sum will scale as t

2 due to the slope introduced by the bias. It will also
be either always positive or negative and the maximum will be reached around the center of the
bridge. The cumulative sum will therefore exhibit a completely different behavior for centered
noise than for actual motility signals, leading to a better signal to noise ratio on dynamic images.
Note that for Brownian bridges it is often observed that the function changes sign regularly (the
probability of sign changes is also well established [20]), which is not the case when there are
non-stationarities.
We simulated an experiment by introducing a linear bias of σ/3 on a centered Gaussian

distribution which is not perceptible on the signals presented in Fig. 5(a). Looking at the
cumulative sum the bias is much more obvious as the maximum reached by the bridge is three
times higher, hence motility signals are detected with a higher sensitivity using the cumulative
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sum.

3.2. Results

The dynamic image is computed by taking the average of the maxima of the absolute values of
the running cumulative sum:

I ′dyn(r) =
1
N

∑
i

max
(|CumSum

(
I(r, t[i,i+τ]) − Ī(r, t[i,i+τ])

) |) (9)

where CumSum is the cumulative sum operator, N is the total number of sub-windows, τ is the
sub-windows length so that t[i,i+τ] is the time corresponding to one sub-window and Ī(r, t[i,i+τ])
is the signal mean on the sub-window. We tested the proposed method with τ = 50 on the
photoreceptor layer of an explanted macaque retina at 85 µm depth that presents a horizontal
gradient of SNR, see Fig. 5(b) and 5(c). In order to quantify the gain in SNR we segmented
192 single cells using Trainable Weka [21] and computed the SNR for each cell (the SNR was
computed as the mean intensity of the pixels inside the cells divided by the mean intensity of
the background), see Fig. 5(d). In this case the SNR is doubled with the proposed method and
the camera column noise is almost completely removed. We tested the proposed algorithm on
several acquisitions on tissues and cell cultures and the average SNR improvement factor was 1.9,
allowing imaging deeper into tissues with D-FFOCT.

Fig. 5. (a) Simulation of Gaussian noise with and without bias and their cumulative sum.
The maximum reached by the cumulative sum is 3 times higher with the bias. (b) Dynamic
image of a macaque photoreceptor layer using standard deviation. (c) Dynamic image of
a macaque photoreceptor layer using the proposed method based on cumulative sum. (d)
Histogram of SNR for 192 single cells segmented in (b) and (c). Segmentation results are
shown in the top right corner. The gain in SNR for this data set is 1.96 on average for each
cell.

4. Applying both methods for in vivo dynamic imaging

The proposed SVD filtering procedure is of great interest for applying D-FFOCT in vivo for
removing sample motion such as eye motion for retinal imaging. In order to limit lateral drifts
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Fig. 6. In vivo mouse liver dynamic image taken on LLTech clinical setup with custom
mount. Artifacts mainly arise from the breathing and heartbeat. (a) In vivo D-FFOCT
image of a mouse liver computed on the raw stack with the standard deviation. (b) In vivo
D-FFOCT image of a mouse liver computed on the SVD-denoised stack with the standard
deviation. (c) in vivo D-FFOCT image of a mouse liver computed on the SVD-denoised
stack with the cumulative sum. See Visualization 2 for complete 1260 × 1260 µm fields of
view.

and to maintain contact, a custom head was adapted on the sample arm of a LightCT setup
combined with a pump to create a weak suction force. We acquired a stack of images on a living
mouse liver at 80 µm depth. The animal manipulation protocol was approved by our local animal
care committee. The mouse (4 week-old C57BL/6 (Janvier Lab, Le Genest Saint Isle, France)),
was anesthetized by isoflurane, and sacrificed after the imaging procedure by CO2 inhalation.
The standard D-FFOCT images were very noisy mainly due to the heartbeat and breathing of the
mouse, leading to tissue motion that creates artifacts, see Fig. 6(a). On applying the proposed
SVD filtering, we were able to remove motion artifacts Fig. 6(b). Nonetheless signals are still
very low due to the deep imaging in a strongly scattering organ and applying the cumulative
sum algorithm dramatically increased the SNR by a factor of 3 Fig. 6(c), see Visualization 2
for complete 1260 × 1260 µm fields of view. In the end, there are remaining artifacts produced
by the coherence volume axial drift during the acquisition. Indeed, if the coherence volume
shifts more than its axial extension, even if motion artifacts are perfectly removed, the probed
dynamics would be averaged over several depths leading to an axial blur. To overcome this issue,
the position of the coherence gate inside the sample may be compensated by monitoring the
breathing and moving the reference arm with a precision corresponding to the optical sectioning
(1 µm for the in vivo acquisition here) in order to compensate for the axial drift.
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5. Conclusion

We proposed a filtering algorithm based on the SVD to effectively remove motion artifacts
from dynamic images. The proposed method adds ∼ 40 seconds for a (1440, 1440, 512) stack
which will require GPU processing in order to speed up the process for real time applications.
This method was applied on an in vivo data set and is promising as long as axial motion is
smaller than the coherence volume depth. Tracking and compensating methods are currently
being investigated in order to acquire D-FFOCT stacks in a completely artifact-free manner for
cornea [22] and retina [23, 24]. We also proposed a method based on the cumulative sum to
enhance non-stationarities in temporal signals which led to an SNR factor increase of 1.9 on
average for ex vivo samples and 3 on our in vivo data set. These general techniques could be
applied to any other imaging modality with sub-diffraction phase sensitivity.
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3.2 Locking plane procedure for time-lapse D-FFOCT imag-
ing

The locking plane procedure is explained in detail in [Scholler et al., 2019] Section 2.3,
integrated in section 5.1.1. This method was also used section 2.4 for time-lapse imaging.

3.3 Real-time D-FFOCT imaging using GPU computing
When we image samples in the same plane using the locking plane procedure we can study
different cellular mechanisms such as cell migration, cell division, apoptosis which have
been shown in section 2.4. Although it can produce very nice movies, there is always
some degree of uncertainty regarding the motion of cells. Indeed, when we see something
disappearing we cannot tell whether it really vanished or if it went above or below the
imaged plane in the tissue bulk. In order to accelerate acquisitions without saving the
raw data I used Holovibes4. With the help of Michael Atlan, we adapted Holovibes to
render D-FFOCT images. However, computation of D-FFOCT images with Holovibes is
different than the usual algorithm. In our normal pipeline we use the HSV colorspace
to compute dynamic images, see Appendix B. The motility index (computed using the
standard deviation or the cumulative sum) is set as the image brightness by putting it
in the Value channel. The color and saturation are then computed in the Fourier do-
main. The color codes for the average frequency of the fluctuations while the saturation
codes for the frequency bandwidth. With this construction, we obtain a continuous map-
ping between fluctuation frequencies and colors. This method is therefore quantitative
and it is possible to construct a colorbar, see Fig. 3.2. Holovibes was not natively per-
forming running standard deviation nor running cumulative sum. In order to construct
dynamic images with Holovibes I used a simpler construction. First, the intensity trace is
Fourier transformed for each pixel. Then, the Fourier spectrum is integrated to generate 3
channels corresponding to red (highest frequencies), green (medium frequencies) and blue
(lowest frequencies). Doing that, colored dynamic images are directly computed in the
RGB colorspace and there is no continuous visual mapping between frequencies and color
anymore. Also, the spectrum integration exhibits a lower SNR than the running standard
deviation or the cumulative sum. Colored images generated with Holovibes are therefore
less contrasted and not quantitative, see Fig. 3.2.

4A software for hologram rendering using GPU computation which is developed by Michael Atlan
[Atlan, M. et al., 2009]
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Fig. 3.2: Comparison between HSV and RGB methods. Left: dynamic image of a 26
days old organoids computed using HSV method. Right: same dynamic image computed with
the RGB method (compatible with Holovibes, hence enabling faster rendering). Below color
images are displayed the V channel where the comparison is easier to make. The HSV method

present a higher SNR than the RGB method.

Also, there was no easy way to both control the experimental setup for 3D acquisitions
(trigger camera, move motors, etc.) and to control Holovibes. Integrating everything in
Holovibes would have required months of development. The idea was to combine Holovibes
and our custom Python program. Python would control the trigger and motor parts and
Holovibes the computation part with the camera link. The problem was that it requires a
synchronisation between Holovibes and Python. As there was no application programming
interface (API) to use Holovibes from another program I decided to automate the computer
controls using PyAutoGUI. The automation algorithm is described below.
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Algorithm 1 Quick dynamic 3D FFOCT
Require: Trigger camera with Python at the desired frame-rate
Initialization: Number of volume N , number of plane per volume n, step size δ
for i = 0 to N − 1 do
for j = 0 to n− 1 do
Acquire dynamic image Ii−j
if j 6= n− 1 then
Move sample by δ
Wait for motion to end

end if
end for
Move sample by −nδ
Wait for motion to end

end for

Each acquisition consists in moving the mouse, clicking on the image name field, incre-
menting the name and then click on the acquisition button5. The duration of the motion
depends on the step size and motor configuration (speed and acceleration) and must be
carefully chosen in order to optimize the acquisition speed without artifacts. Finally with
this method we can acquire a plane in less than 5 seconds and records volumes of 10 planes
in less than a minute, allowing to track axially the migration of cells.

3.4 Dust removal using automatic detection and inpainting
Most of the systems I built and used during my PhD were using immersion objectives and
therefore immersion mirror in order to maintain a symmetry between both arms. The
slightest scratch or dust on the reference mirror surface would induce very bright spots
on the FFOCT image because of the reference mirror position modulation. I proposed
a method for automatically detecting these bright spots, remove them, and inpaint the
FFOCT image (i.e. reconstruct signals at the bright spot locations). Note that although
this method might also work for D-FFOCT images it was not necessary because we do
not modulate the reference mirror position during the acquisition so we are less sensitive
to dust and scratches. This dust denoising algorithm is detailed below:

1. A local thresholding with a Gaussian kernel (the threshold value is computed locally
as the weighted average of neighbouring values) is applied on the FFOCT image to
detect rapid changes in contrast due to bright spots.

2. The resulting mask is then refined using morphological filters (closings and dilations)
to remove outliers.

3. Finally the bright spots are removed and inpainted by propagating the information
at their edge using Navier-Stokes equation6 [Bertalmio et al., 2001]. This inpainting
procedure therefore makes the assumption that the image behind the bright spot
was smooth and solution of the bi-harmonic equation.

5These steps are instant and take less than 1 ms to perform.
6Other priors could be considered, such as the image sparsity in a typical basis (wavelets or Fourier

domain) rather than the smoothness.
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An example of this procedure applied on a dirty mirror is shown Fig. 3.3. This method
has also been applied successfully on direct image (non-tomographic image as presented
above) for tear film imaging section 5.1.2.

Fig. 3.3: Dust denoising on FFOCT images. (a) Original image. (b) Denoised image.
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This chapter features the hardware developments and implementations that I have been
doing to improve (D)-FFOCT acquisitions, mainly for in vivo retinal imaging. In the first
part, axial tracking of the retina is presented through an article and enabled us to get
more consistent FFOCT images of the retina. Then, another article presents a simple
and cheap, yet effective way to control and compensate the field curvature created by the
optical asymmetry between the eye and the reference arm. This enables us to get images
on complete 1 mm fields of view. Next, I treat the way aberrations affect conventional and
FFOCT images with a theory proposed by Victor Barolle in his thesis [Barolle, 2019] which
I experimentally validated with a dedicated adaptive optics FFOCT system that I built.
This custom system allowed me to add controlled level of aberrations in order to compare
simulations and experiments. Finally, in the last part I use the previous adaptive optics
part for our retinal FFOCT setup in order to compensate ocular aberrationd, allowing
us to image the photoreceptor layer of subjects with dilated pupils with near diffraction
limited resolution and to get, for the first time, FFOCT images of the nerve fiber layer at
different depths.

59
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4.1 Article: High-resolution in-vivo human retinal imaging
using full-field OCT with optical stabilization of axial
motion

The first demonstration of FFOCT’s ability to acquire en face images of the human retina
in vivo was done in [Xiao et al., 2018]. The consistency of images that contains signals
however was very low and experiments were very long and cumbersome for the imaged
subjects. Retinal imaging using FFOCT is challenging because axial motions of the eye1
shifts the coherence plane position with respect to the focal plane which is always on the
retina for an emmetropic2 eye. The first FFOCT retina image was made possible by the
combination of FFOCT and a Fourier domain OCT: through the B-Scans generated by the
SD-OCT both retinal cross-section and the FFOCT reference mirror were visible, so that
a manual match between the reference mirror and the layer of interest had to be done just
before acquisition and remains during the acquisition. As a consequence, a considerable
amount of images had to be acquired to increase the chances of matching the optical path
of both arms for a retinal layer of interest3.

In order to improve image consistency we implemented an automatic axial tracking of the
retina4. The first step was to combine FFOCT and SD-OCT on the same computer for
synchronisations purposes. Then, I spent a great deal of time and effort on integrating
the SD-OCT software development kit (SDK) in my software [Scholler, 2019a] which
was natively not supported by Matlab. Then, SD-OCT cross-sectional images could be
acquired and analyzed to drive a fast voice-coil translation stage in order to maintain
the same optical path difference between the layer of interest and the reference mirror.
The experimental setup and the processing steps are presented in Section 2 in the article
below. Tracking results can be found in Section 3 where the mean deviation on the
coherence plane position was 9.1 µm which represents a 7-fold improvement that allowed
us to image more consistently even close to the fovea. The remaining problem was the
band shaped signals Fig. 4 that was limiting the field of view for some subjects because
of the optical asymmetry between the eye and the reference arm objective, see section 4.2.
Finally, with this work we started to envision the possibility of a multimodal system that
could provide both cross-sections and high-resolution en face images of the retina5.

1Eye axial speed can reach 1 mm/s [Ginner et al., 2017].
2Emmetropia of the eye is achieved when the refractive power of the cornea and the axial length of the

eye balance out, which focuses rays exactly on the retina, resulting in perfect vision
3The only layers that could be imaged was the IS/OS junction and the NFL (only one image) which

precluded the study of the entire retina.
4This work was done in collaboration with Pedro Mecê.
5A startup should be coming up soon with such a device.
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Abstract: Time-domain full-field OCT (FF-OCT) represents an imaging modality capable of
recording high-speed en-face sections of a sample at a given depth. One of the biggest challenges
to transfer this technique to image in-vivo human retina is the presence of continuous involuntary
head and eye axial motion during image acquisition. In this paper, we demonstrate a solution to
this problem by implementing an optical stabilization in an FF-OCT system. This was made
possible by combining an FF-OCT system, an SD-OCT system, and a high-speed voice-coil
translation stage. B-scans generated by the SD-OCT were used to measure the retina axial
position and to drive the position of the high-speed voice coil translation stage, where the FF-OCT
reference arm is mounted. Closed-loop optical stabilization reduced the RMS error by a factor
of 7, significantly increasing the FF-OCT image acquisition efficiency. By these means, we
demonstrate the capacity of the FF-OCT to resolve cone mosaic as close as 1.5o from the fovea
center with high consistency and without using adaptive optics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical Coherence Tomography (OCT) has become a gold standard for living human retinal
imaging in the clinical environment [1,2]. Owing to its unprecedented axial resolution, OCT
enables the diagnosis of retinal disorders at the earliest stages and monitoring of the progression of
retinal diseases. While physicians are capable of interpreting tomographic retinal cross-sections
from OCT, there is nevertheless a demand for en-face views. Although OCT can produce en-face
retinal images from 3-D stacks, it presents a low lateral resolution compared with Adaptive
Optics (AO) ophthalmoscopes [3]. By correcting static and dynamic ocular aberrations [4,5],
AO can explore the full aperture of the eye’s pupil to achieve micrometer lateral resolution. To
be able to combine both high axial resolution from OCT, and the high lateral resolution from
AO, a great effort was made to develop AO-OCT systems [6,7]. However, the commercialization
and the clinical deployment of AO-OCT are still challenging, mainly because of cost, optical
complexity, size and heavy image post-processing linked to the use of AO [6].
Another modality of OCT is the time-domain Full-Field OCT (FF-OCT) [8] (henceforth, we

refer to this imaging modality simply as FF-OCT). Contrary to conventional OCT, which scans
an illumination spot across a tissue surface and records at each spot the depth structure, FF-OCT
uses a spatially incoherent light source, high-speed megapixel camera and time-domain phase
modulation to acquire en-face sections of the sample at a given depth. One attractive point of
this technique for retinal imaging, is the fact that FF-OCT presents a low sensitivity to low-order
ocular aberrations (i.e. defocus and astigmatism), due to the use of the spatially incoherent light
source [9,10]. This interesting feature was highlighted in [11], where cone mosaic at 6o from the
foveal center of a healthy subject (without prescription eyeglasses) was resolved without using
AO. This first image was made possible by the combination of FF-OCT and a Spectral-Domain
OCT (SD-OCT). Through the images generated by the SD-OCT both retinal cross-section and
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the FF-OCT reference mirror were visible, and a manual match, just before the acquisition, was
possible. Nevertheless, this strategy faces significant challenges in providing consistent and
reproducible images, mainly due to involuntary axial head and eye motion, which can achieve a
median maximum axial speed in the order of 1mm/s [12]. As a consequence, a considerable
amount of images has to be acquired to increase the chances of matching the optical path of both
arms for a retinal layer of interest.

Hence, to be able to record efficiently and consistently en-face sections of the retina in-vivo, an
axial optical stabilization strategy is necessary. An optical stabilization of axial motion applied
in time-domain FF-OCT for retinal imaging was first proposed by Miller et al., combining
the FF-OCT with an auxiliary time-domain 1-D OCT and a voice coil translation stage in the
reference arm [13]. However, the time-domain 1-D OCT used for axial motion tracking was too
slow to work in-vivo (20 A-scans per second). Later, Pircher et al. [14] combined a transverse
scanning OCT system (which directly extracts en-face images) with a high-speed Fourier domain
1-D OCT, used to track the cornea apex signal, and a rapid scanning optical delay line montage for
real-time optical stabilization. Although the achieved performance was satisfactory, because of
the scanning illumination/detection scheme of the proposed OCT, en-face images were acquired
with a low frame rate, limited FOV and suffered from motion artifacts and distortion due to
fixational eye movements [15]. Therefore, continuous involuntary head and eye motion remains
one of the biggest challenges in time-domain FF-OCT when imaging the living human retina.

In this paper, we present an FF-OCT retinal imaging system with optical stabilization of axial
motion. This system was made possible by combining the FF-OCT system with an SD-OCT. The
idea is to use B-scans generated by the SD-OCT to measure the retinal axial position and to drive
a high-speed voice-coil translation stage, where the reference arm of the FF-OCT is mounted,
correcting for the eye motion. By these means, we demonstrate the capacity of the FF-OCT to
resolve cone mosaics as close as 1.5o from the fovea center with high consistency and efficiency,
without using adaptive optics.

2. Methods

2.1. Experimental setup

Figure 1 presents the schematic drawing of the custom-built FF-OCT system coupled with a
SD-OCT system. The FF-OCT comprises a light-emitting diode (LED) with λ = 850 nm center
wavelength and 30 nm bandwidth (M850L3, Thorlabs), used as a spatially incoherent illumination
source, giving a theoretical axial resolution of approximately 8 µm in water. The LED is focused
by a condenser 20 mm in front of the eye’s pupil. A physical diaphragm is positioned in front of
the LED, conjugate to the retina and the FF-OCT reference mirror. The illumination beam is split
into the reference and the sample arms by a 50:50 cubic beam splitter (BS). For the reference
arm, an Olympus 10X/0.25 NA Plan Achromat objective is used with a silicon mirror placed
at the focal plane of the objective. The whole reference arm (microscope objective and silicon
mirror) is mounted on a fast voice-coil translation stage (X-DMQ12P-DE52, Zaber Technologies
Inc.), allowing for adjustment of the coherence gate depth position with a maximum speed of
10 mm/s. For the sample arm, optical windows were introduced to compensate for dispersion
effects (not shown in Fig. 1) and the healthy volunteer’s eye was aligned along the optical axis.
The FF-OCT light beam arrives with an 8 mm diameter in the eye’s pupil. The back-scattered
photons from both arms are recombined by the same BS and focused onto a high-speed (up to
720 Hz) CMOS camera (Q-2A750-Hm/CXP-6, Adimec) for FF-OCT imaging.

The use of an SD-OCT system coupled with our custom-built FF-OCT is driven by two
motivations: firstly, to measure the retinal axial position through SD-OCT cross-sectional
images, which is a crucial step to correct for axial motion; secondly, once the axial motion is
stabilized, to display in real-time SD-OCT retinal cross-sections of sufficient quality to guide
the positioning of the FF-OCT coherence gate at the retinal layer of interest. To address these
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Fig. 1. Schematic drawing of the custom-built FF-OCT system coupled with an SD-OCT
for real-time axial motion correction and FF-OCT coherence gate positioning guidance.

motivations, we considered a trade-off between acquisition rate, for fast axial motion tracking,
and enough signal-to-noise ratio (SNR), for retinal layer identification, helping the positioning of
the FF-OCT coherence gate. The SD-OCT system (Thorlabs Ganymede-II) was coupled through
a dichroic mirror positioned between the FF-OCT illumination source and the BS. The SD-OCT
galvanometer scanners were 20-cm away and not conjugate to the eye’s pupil due to three main
factors: mechanical restrictions imposed by the commercial SD-OCT system, to avoid specular
reflections in the FF-OCT detector by introducing optical lens in the sample arm [16], and to
favor a compact optical design.

The SD-OCT system comprises a broadband superluminescent diode with λ = 930 nm center
wavelength and 60 nm bandwidth, giving a theoretical axial resolution of 4.5µm in water. It
presents an A-scan rate up to 36 kHz with a sensitivity of about 96 dB and 1024 axial pixels,
comprising an imaging depth (axial range) of 2.2 mm in water. As the galvanometer scanners
and the eye’s pupil are not conjugated, the SD-OCT light beam arrives in the eye’s pupil with a 4
mm diameter, slightly scanning the pupil plane. Shortpass filters were introduced to block the
SD-OCT signal in the reference and detection arms of the FF-OCT.

2.2. Axial motion correction

Initially, we manually match the optical path of the FF-OCT reference mirror with a fixed model
eye in the sample arm to determine the initial position of the voice-coil translation stage. This
calibration step is necessary only once. B-scans generated by the SD-OCT are used to measure
the retinal axial position by the following means: 1) A-scans composing the B-scan are averaged,
obtaining an axial profile with increased SNR (named from here after "averaged A-scan"); 2) the
averaged A-scan is cross-correlated with a reference A-scan and the relative retinal axial position
is measured, 3) parabolic fitting is used to obtain a subpixel estimation of the axial retinal position
with sub-micrometer precision. The reference A-scan is the first averaged A-scan generated after
activating the axial motion correction. This reference is kept until the axial motion correction
procedure is deactivated. After the measurement, a corresponding voltage is sent to the voice-coil
translation stage, which moves the whole reference arm of the FF-OCT to compensate for the
axial motion, re-matching the reference arm with the retinal layer of interest. A custom-developed
real-time calculator, comprising core libraries written in MATLAB, controls the axial motion
stabilization closed-loop with a 50 Hz loop rate. Control strategy is a PI (proportional-integral)
controller with 0.5 gain and the main steps of the chronogram are: SD-OCT B-scan acquisition
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(7 ms), SD-OCT B-scan processing (2 ms), axial eye motion measurement (1 ms) and voice-coil
translation stage reaction and positioning (10 ms).

2.3. Image acquisition

To obtain statistics on axial motion, we acquired 13 SD-OCT image sequences (7 to 28 s of
duration) from three healthy subjects, for a total of 4700 analyzed A-scans. Simultaneous FF-OCT
and SD-OCT image acquisition was performed on a young healthy subject (aged 25) presenting
a refractive error of 1.5D × 0.5D × 160o (spherical × cylindrical × axis of cylindrical errors).
Research procedures followed the tenets of the Declaration of Helsinki. Informed consent was
obtained from the subject after the nature and possible outcomes of the study were explained.
This study was authorized by the appropriate ethics review boards (CPP and ANSM (IDRCB
number: 2019-A00942-55)). Subjects were seated in front of the system and stabilized with a
chin and forehead rest and asked to fixate a target placed at an infinite focal conjugate. During the
imaging session, subjects were wearing their prescription glasses to increase the signal level of
both SD-OCT and FF-OCT [10]. Image acquisition was realized in a dark room, maximizing the
pupil dilation. Four sets of data were recorded simultaneously during imaging sessions: FF-OCT
images, SD-OCT B-scans, retinal axial position and the position of the voice-coil translation stage
(equivalent to the position of the FF-OCT reference mirror). Phase modulation was performed
by the residual axial motion after optical stabilization (i.e. the residual tracking error). FF-OCT
images were acquired at 300 Hz using custom-built software [17]. The FF-OCT camera worked
close to saturation to use the whole full well capacity, decreasing relative importance of shot
noise [18]. Concerning the SD-OCT, we empirically chose to scan 1o FOV of the retina with
256 A-scans, providing a good trade-off between acquisition speed and SNR. The latter had to
be sufficient to distinguish most of the retinal layers, crucial for guiding the positioning of the
FF-OCT coherence gate to the retinal layer of interest. During image acquisition, the total power
entering the eye from the FF-OCT illumination source and the SD-OCT scanning source were
respectively 1.3 mW (during 0.25s) and 0.25 mW (continuous scanning), which are below the
ocular safety limits established by the ISO standards for group 1 devices.

2.4. Image processing

As detailed in [18], the intensity recorded on a camera pixel is the coherent sum of the reference
and sample beams, containing coherent and incoherent terms, expressed as follows:

Iφ=φN = η
I0
4
(Reye + Rref + Rincoh + 2

√
ReyeRref cos(∆φN)) (1)

where Iφ=φN is the intensity recorded at time point N with a φN phase shift, η is the camera
quantum efficienty, I0 is the LED’s power output (we considered a 50/50 beam-splitter), Reye is the
eye reflectivity (i.e. the power reflection coefficient), Rref is the reference mirror reflectivity (i.e.
the power reflection coefficient), Iincoh = Rincoh

I0
4 is the incoherent light detected by the camera,

mainly induced by multiple scattering and back-scattering from out-of-focus retinal layers, and
∆φ is the phase difference between the reference and the sample back-scattered signals.
From the acquired image sequence, each image was normalized by dividing each image by

its mean value. Since the phase was randomly modulated by the residual tracking error, and to
eliminate the incoherent terms, we adopted a 2-phase demodulation. The 2-phase demodulation
consists of subtracting one image Iφ=φN from the next Iφ=φN+1 and taking the modulus:

I2−phase = |IφN − IφN+1 | = η
I0
2
√

ReyeRref |cos(∆φN) − cos(∆φN+1)| (2)

Note that for a 2-phase demodulation strategy it is not possible to un-mix amplitude and
phase. Next, images with a very low or absent useful signal, mainly due to an insufficient
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phase shift between consecutive images (i.e. low value for |cos(∆φN) − cos(∆φN+1)|), were
automatically detected using an intensity-based threshold algorithm, and then excluded from
the image sequence. Finally, useful images were registered using a custom-built normalized
cross-correlation algorithm, where the image presenting the highest signal level was chosen as
the reference.

3. Results

3.1. Performance of the axial motion stabilization

Figures 2(A) and (B) present two examples of retinal axial position as a function of time. The
black line corresponds to the measured axial position of the retina and the red line corresponds to
the position of the FF-OCT reference mirror. Fast oscillations and slower drifts of the retinal
axial motion are clearly visible. Time points during blink occurrences (black areas) were
automatically excluded from the study after applying an intensity-based algorithm to SD-OCT
images. Figures 2(C) and (D) illustrate again the axial motion as a function of time, but now
applied to the acquired averaged A-scans, where the red rectangle indicates the coherence gate
thickness of the FF-OCT system, i.e. depth positions where interference takes place. The
continuous motion drastically reduces the chances of acquiring an FF-OCT image of a layer of
interest (here the inner/outer segment junction - IS/OS). From the collected data set of retinal
axial position temporal evolution (excluding blink occurrences), we computed a peak-to-valley
amplitude of 244.9 ± 49.2µm, a mean deviation from zero position of 62.5 ± 29.5µm and a
root-mean-square (RMS) error of 61.5 ± 14.2µm. In this condition, the expected efficiency to
acquire FF-OCT images of a layer of interest (absolute error inferior to half of the axial resolution,
here 4µm), supposing a perfect initial manual match between both arms of the FF-OCT, is
7.4 ± 1.8 %.

Figures 2(A) and (B) also show the difference (blue line) between measured retinal position
and FF-OCT reference mirror position. Slower drifts were filtered out and fast oscillations
were reduced. An absolute residual tracking error of 6.7 ± 3.1µm remains mainly because of
the inherent time delay of the control loop and the inertia of the voice-coil translation stage.
However, the residual error is low enough to considerably increase the chances of acquiring
FF-OCT of a retinal layer of interest, as illustrated in Figs. 2(E) and (F). The presented axial
motion stabilization method reduced peak-to-valley amplitude to 48 ± 2µm, mean deviation from
zero position to 0.31 ± 0.13µm, and RMS error to 9.1 ± 0.68µm. In this condition, the expected
efficiency was increased by a factor of 8.5 (62.4 ± 4.1 %). Visualization 1 shows a simulation of
the expected B-scan temporal evolution with optical stabilization compared to the position of
the FF-OCT coherence gate. Table 1 summarizes the achieved performance with the proposed
method to optically stabilize the axial motion.

Table 1. Axial motion statistics with and without the use of the method to optically stabilize retinal
axial motion. Statistics took into account 13 image sequences of 7 to 28s duration from three

subjects, for a total of 4700 analyzed A-scans. PV stands for peak-to-valley amplitude.

PV (µm) Mean deviation (µm) RMS error (µm) Efficiency (%)

Without stabilization 244 ± 49.2 62.5 ± 29.5 61.5 ± 14.2 7.4 ± 1.8
With stabilization 48 ± 2 0.31 ± 0.13 9.1 ± 0.68 62.4 ± 4.1

To evaluate the temporal performance of the control loop, we computed its rejection transfer
function (or sensitivity function) [19], which describes how different axial motion temporal
frequencies are attenuated by the optical stabilization control loop. The rejection transfer function
is the ratio between temporal power spectral densities (PSD) of the residual tracking error and
of the retinal axial position. Figure 3(A) presents an example of the temporal PSD computed
for the retinal position (blue line) and residual tracking error (red line). Note that temporal
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Fig. 2. Performance of the axial eye motion optical stabilization. (A) and (B) are two
examples of the axial position temporal evolution. Black line: measured axial position of
the retina. Red line: position of the FF-OCT reference mirror. Blue line: Residual tracking
error. Black areas represent blink occurrences and were excluded from the study. (C) and
(D) averaged A-scan time series without axial motion correction. (E) and (F) presents the
same averaged A-scan time series as (C) and (D) but now with expected performance after
correcting for axial motion. Red rectangles represent the coherence gate axial position and
volume. See Visualization 1 for a simulation of the expected B-scan temporal evolution with
optical stabilization compared to the position of the FF-OCT coherence gate. Note that all
SD-OCT images are shown in linear scale.

frequencies up to approximately 4 Hz are attenuated. Figure 3(B) shows the rejection transfer
function obtained by averaging the temporal PSD for different acquired sequences (black line)
and the theoretical temporal PSD (red line), assuming a PI controller with 0.5 gain and two-frame
delay [19,20]. The good match between the experimental and theoretical plots demonstrates
that no additional delay or jitter was present during the acquisition, meaning that the temporal
performance of the loop is as expected. Note that, although a loop rate of 50 Hz is adopted, the
loop cut-off frequency, i.e. the highest corrected temporal frequency (associated with 0 dB), is
approximately 4 Hz [3,19].

3.2. FF-OCT imaging of living human retina with axial motion correction

Visualization 2 shows an FF-OCT image sequence where the optical stabilization is activated
during image acquisition. To begin, the voice-coil translation stage was manually positioned
close to the IS/OS junction. A low-signal coming from photoreceptors in the bottom of the
frame for a few frames duration is sometimes seen. When optical stabilization is activated, the
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Fig. 3. Temporal performance of the axial motion correction control loop. (A) examples of
temporal PSD computed for the retinal axial position (blue line) and the residual tracking
error (red line). (B) Experimental (black line) rejection transfer function obtained by
averaging temporal PSD for different acquired sequences, and the theoretical temporal PSD
(red line). Note that, although a loop rate of 50 Hz is adopted, the loop cut-off frequency, i.e.
the highest corrected temporal frequency (associated with 0 dB), is approximately 4 Hz.

photoreceptor mosaic becomes visible and the signal consistency significantly improves. After
activating the axial motion correction, one can observe a temporal fluctuation of the intensity
signal where the cone mosaic is visible. This intensity fluctuation occurs mainly due to two
phenomena: mispositioning of the coherence gate, or an random phase modulation (see Sect.3.3),
both due to the residual tracking error. Figure 4(A) shows the averaged image obtained during
axial motion correction. The lateral retinal motion was corrected by digital registration. Another
interesting retinal feature perceived in the image is the central foveal depression, i.e. an elevation
of the IS/OS junction compared to the cone outer segment tip (COST) in the center of the foveola
(see schematic of Fig. 4(A) at the right upper part). Because of the depression, this region of
the retina is perceived as a dark circled area surrounding the foveal center. This phenomenon
happens because this region is out of the FF-OCT coherence gate, which is about 8µm thick. The
diameter of the dark circled area is around 180µm which corresponds to the typical size of the
foveal umbo of a healthy subject [21].
By translating the FF-OCT reference arm laterally (i.e. not in depth), perpendicularly to the

optical axis, one can generate a tilted coherence gate in the sample arm, producing FF-OCT
images with band-type useful FOV. In the case of imaging photoreceptor layers, we expect
to obtain two bright bands coming from the IS/OS junction and the COST layer. Tilting the
coherence gate allows visualization of the impact of the axial motion correction directly in
FF-OCT images. Visualization 3 shows an FF-OCT image sequence with a tilted coherence gate
without axial motion correction. It is possible to visualize both photoreceptor bands moving
continuously. Band motion is mainly due to axial motion. Lateral retinal motion, caused by
fixational eye movements [15], only induces a shift of the retinal zone observed in the band FOV.
Visualization 4 shows an FF-OCT image sequence with a tilted coherence gate now with axial
motion correction, where band motion is strongly attenuated. In this case, due to the axial motion
correction, one can register and average consecutive FF-OCT images to achieve a final image
with enhanced quality. Figure 4(B) presents the averaged image generated from Visualization 4.
Here, both IS/OS and COST photoreceptor mosaics are visible and could be resolved in a single
image.
Figure 4 also shows zoomed areas from (A) and (B) and their respective spatial PSD. The

estimated eccentricity (distance from the foveal center) of the zoomed areas are respectively 1o,
1.5o, 3o, 2o and 2o. All zoomed areas, except for the first one, presented a clear and well defined
Yellot’s ring, the spectral signature of photoreceptor mosaic image [22]. Although it seems that
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Fig. 4. Images of cone photoreceptor mosaic acquired with the help of the axial motion
correction method. (A) Cone mosaic averaged image from Visualization 2, acquired
at the IS/OS junction at the fovea center. Eccentricities of zoomed areas 1 and 2 are
respectively 1o, 1.5o. (B) Averaged image from Visualization 4. Both cone mosaic
from the IS/OS junction and the COST layer close to the fovea center are visible in a
single image. Eccentricities of zoomed areas 3, 4 and 5 are respectively 3o, 2o and 2o.
For all zoomed areas the equivalent PSDs were computed.

with enhanced quality. Figure 4(B) presents the averaged image generated from Visualization 4.
Here, both IS/OS and COST photoreceptor mosaics are visible and could be resolved in a single
image.
Figure 4 also shows zoomed areas from (A) and (B) and their respective spatial PSD. The

estimated eccentricity (distance from the foveal center) of the zoomed areas are respectively 1o,
1.5o, 3o, 2o and 2o. All zoomed areas, except for the first one, presented a clear and well defined
Yellot’s ring, the spectral signature of photoreceptor mosaic image [22]. Although it seems that
the subject’s pupil diameter was not sufficient to resolve cone mosaic from zoomed area 1, the
majority of individual cones are visible. By using modal spacing method proposed by [22], we
computed cone densities of 45 000 cones/mm2, 20 700 cones/mm2, 29 000 cones/mm2 and 31
700 cones/mm2 for zoomed areas 2, 3, 4 and 5 respectively. These values are in accordance with
the expected cone density for a healthy subject at the eccentricities observed [23].

3.3. 2-phase demodulation and FF-OCT image averaging

Typically, a 3- or 4-phase modulation/demodulation strategy makes it possible to eliminate
incoherent terms and un-mix the amplitude and the phase information [8]. This strategy works fine
for static samples, but it fails for in-vivo retinal imaging due to the continuous three-dimensional

Fig. 4. Images of cone photoreceptor mosaic acquired with the help of the axial motion
correction method. (A) Cone mosaic averaged image from Visualization 2, acquired at the
IS/OS junction at the fovea center. Eccentricities of zoomed areas 1 and 2 are respectively 1o,
1.5o. (B) Averaged image from Visualization 4. Both cone mosaic from the IS/OS junction
and the COST layer close to the fovea center are visible in a single image. Eccentricities of
zoomed areas 3, 4 and 5 are respectively 3o, 2o and 2o. For all zoomed areas the equivalent
PSDs were computed.

the subject’s pupil diameter was not sufficient to resolve cone mosaic from zoomed area 1, the
majority of individual cones are visible. By using modal spacing method proposed by [22], we
computed cone densities of 45 000 cones/mm2, 20 700 cones/mm2, 29 000 cones/mm2 and 31
700 cones/mm2 for zoomed areas 2, 3, 4 and 5 respectively. These values are in accordance with
the expected cone density for a healthy subject at the eccentricities observed [23].

3.3. 2-phase demodulation and FF-OCT image averaging

Typically, a 3- or 4-phase modulation/demodulation strategy makes it possible to eliminate
incoherent terms and un-mix the amplitude and the phase information [8]. This strategy works fine
for static samples, but it fails for in-vivo retinal imaging due to the continuous three-dimensional
(3D) eye motion, which randomly modulates the phase. Therefore, we adopted a 2-phase
modulation/demodulation strategy, where the residual tracking error directly modulates the signal.
Although incoherent terms can still be suppressed, it is not possible to separate amplitude and
phase, meaning that the FF-OCT signal presents spatial intensity fluctuations. This random
fluctuation, along with shot noise, affects the image contrast (see an example for FF-OCT image -
N=1 in Fig. 5(A)).
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(3D) eye motion, which randomly modulates the phase. Therefore, we adopted a 2-phase
modulation/demodulation strategy, where the residual tracking error directly modulates the signal.
Although incoherent terms can still be suppressed, it is not possible to separate amplitude and
phase, meaning that the FF-OCT signal presents spatial intensity fluctuations. This random
fluctuation, along with shot noise, affects the image contrast (see an example for FF-OCT image -
N=1 in Fig.5 (A)).

Fig. 5. Averaging registered FF-OCT images improves the clarity of photoreceptors.
(A),(B),(C) and (D) show images of photoreceptor mosaic at 4o eccentricity for different
amount of averaging (from N = 1, N = 5, N = 10 and N = 25 images). The red dashed
line, highlighted by a red arrow, indicates where a simultaneous SD-OCT acquisition
took place. The increase of image contrast is more visible in the zoomed areas. (E)
Power spectral density radial average from each zoomed area. The green area indicates
the photoreceptor mosaic spatial frequency, which is present for all the cases presented.
(F) Tomographic retinal cross-section image obtained with the SD-OCT after averaging
10 consecutive B-scans.The red dashed line highlights the location where the FF-OCT
images were simultaneously acquired, i.e. at the IS/OS junction. All averaged images
were extracted from Visualization 5.

Since we adopt a random phase modulation, spatial intensity fluctuations vary from one
FF-OCT image to another. Therefore, by averaging consecutive FF-OCT images, both phase
and noise average out; the signal becomes proportional only to the amplitude, and its contrast is
enhanced. This enhancement is highlighted in Fig. 5 for a different number of averaged images
(N), where zoomed areas are also shown. Figure 5(E) introduces the computed PSD for each
case. Note that for N=1, although the cone mosaic image does not present a sharp contrast, its
PSD already indicates a Yellot’s ring (green area highlights the cone mosaic spatial frequency),
and cone density can be easily computed. The cone density of the zoomed area, localized at 4o
eccentricity, was 18 300 cones/mm2, which is in accordance with the expected cone density for a

Fig. 5. Averaging registered FF-OCT images improves the clarity of photoreceptors.
(A),(B),(C) and (D) show images of photoreceptor mosaic at 4o eccentricity for different
amount of averaging (from N = 1, N = 5, N = 10 and N = 25 images). The red dashed line,
highlighted by a red arrow, indicates where a simultaneous SD-OCT acquisition took place.
The increase of image contrast is more visible in the zoomed areas. (E) Power spectral density
radial average from each zoomed area. The green area indicates the photoreceptor mosaic
spatial frequency, which is present for all the cases presented. (F) Tomographic retinal
cross-section image obtained with the SD-OCT after averaging 10 consecutive B-scans.
The red dashed line highlights the location where the FF-OCT images were simultaneously
acquired, i.e. at the IS/OS junction. All averaged images were extracted from Visualization
5.

Since we adopt a random phase modulation, spatial intensity fluctuations vary from one
FF-OCT image to another. Therefore, by averaging consecutive FF-OCT images, both phase
and noise average out; the signal becomes proportional only to the amplitude, and its contrast is
enhanced. This enhancement is highlighted in Fig. 5 for a different number of averaged images
(N), where zoomed areas are also shown. Figure 5(E) introduces the computed PSD for each
case. Note that for N=1, although the cone mosaic image does not present a sharp contrast, its
PSD already indicates a Yellot’s ring (green area highlights the cone mosaic spatial frequency),
and cone density can be easily computed. The cone density of the zoomed area, localized at 4o

eccentricity, was 18 300 cones/mm2, which is in accordance with the expected cone density for a
healthy subject at the eccentricity observed [23]. Although image averaging helps to visualize and
resolve individual photoreceptors, the appearance of the cone mosaic seems different compared
to AO-assisted ophthalmoscopes [3]. This might be explained by the fact that the reflection sites
of the IS/OS junction and COST layer might not be exactly within the coherence gate [24].
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3.4. Simultaneous FF-OCT and SD-OCT imaging of living human retina

Owing to the SD-OCT coupled in our custom-built FF-OCT system, we can access tomographic
retinal cross-section images, from the SD-OCT, at the same time as high-resolution en-face
images from the FF-OCT. Now with the axial motion correction, images from both modalities
can be displayed consistently in real-time during the imaging session, helping to position the
FF-OCT coherence gate at the retinal layer of interest before image acquisition. Visualization
5 shows one example, where the retinal image sequences from both modalities were recorded
simultaneously. We purposely removed the shortpass filter used to block the SD-OCT light
source at the FF-OCT camera to help to visualize the SD-OCT acquisition in parallel to the
FF-OCT acquisition. The averaged en-face image generated by the FF-OCT is shown in Fig. 5(D),
where the red dashed line, highlighted by the red arrow, indicates the location where the SD-OCT
was acquired simultaneously. The averaged retinal cross-section generated by the SD-OCT is
presented in Fig. 5(F). All retinal layers commonly resolved by an SD-OCT were identified and
labeled according to [7]. The red dashed line indicates the retinal layer where the FF-OCT image
was acquired, i.e. the IS/OS junction.

4. Discussion

One of the biggest challenges in applying the FF-OCT technique for living human retinal imaging
is the presence of continuous involuntary head and eye axial motion during image acquisition.
We showed in Sect. 3.1 that axial motion is mainly composed of slow drifts and fast oscillations.
Even though in-vivo retinal imaging was possible under this condition [11], long and tedious
imaging sessions would be necessary to increase the chances of acquiring enough data (the
efficiency would be lower than 7%). Moreover, we saw in Sect. 3.3 that, even if photoreceptors
could be visualized and resolved in a single frame (see Fig. 5(A)), image averaging is an important
process to eliminate the spatial intensity fluctuation imposed by the random phase modulation of
FF-OCT signal.

4.1. Using SD-OCT to guide FF-OCT in-vivo imaging

In this paper, we present a method to overcome this major limitation, based on the combination
of an FF-OCT, an SD-OCT and a high-speed voice-coil translation stage. The SD-OCT is used
to measure the retinal axial position and to drive the position of the voice-coil translation stage,
where the FF-OCT reference arm is mounted. We showed that the proposed method was able
to suppress slow drifts and strongly attenuate fast oscillations, increasing the FF-OCT image
acquisition efficiency to almost a factor of 10, i.e 60% success. This efficiency was highlighted
by Visualization 2, Visualization 4 and Visualization 5, where FF-OCT image sequences with
axial motion correction were presented.
Another essential role of the SD-OCT is to guide the FF-OCT coherence gate positioning.

Indeed, once the axial motion is stabilized, and since the initial position of the FF-OCT coherence
gate in the sample arm is known (calibration step described in Sect. 2.2), one can manually
position the FF-OCT coherence gate assisted by the SD-OCT retinal cross-sections displayed
in real-time. In spite of choices of optical design to favor the FF-OCT system, sometimes to
the detriment of the SD-OCT system, and the mechanical restrictions imposed by the SD-OCT
commercial system, we showed in Fig. 5 and Visualization 5 that retinal cross-section images,
with sufficient contrast to identify all retinal layers, can be generated simultaneously to FF-OCT,
a crucial condition to guide FF-OCT image acquisition.

4.2. High cellular resolution in-vivo retinal imaging with FF-OCT

Throughout this paper, we demonstrated the ability of our FF-OCT imaging system to achieve
high cellular resolution in the living human retina. There has been increased interest in the
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past ten years in associating different retinal imaging modalities to achieve a cellular resolution
in all three dimensions, with most groups combining AO-OCT and AO-SLO [25,26]. The
main difference of our multimodal imaging system compared to previous works is the potential
to achieve cellular resolution in all three dimensions without AO, significantly reducing the
system complexity, size and cost. Figure 4 demonstrated the capacity of the FF-OCT to resolve
in-vivo cone photoreceptors as close as 1.5o from the foveal center without using any optical
aberration compensation other than prescribed eyeglasses. Moreover, the presented FF-OCT
has the capacity to generate en-face retinal images with an enhanced axial resolution compared
to confocal AO-SLO, 8µm for the former against 40µm for the latter [13]. Some studies have
demonstrated that, for healthy subjects with good eye optics, individual cone photoreceptors
could be resolved within SD-OCT or confocal SLO images without optically correcting for
ocular aberrations [14,27]. However, most of these studies used illumination/detection scanning
techniques, which present an inherent low frame rate, limited FOV and high sensitivity to eye
motion, the latter leading to intraframe distortion. All these drawbacks are minimized when
using a full-field technique [3,28].

4.3. Limitations

The presented FF-OCT/SD-OCT imaging system still faces some limitations. Firstly, to favor the
FF-OCT system, the capacity of the SD-OCT imaging was diminished by not-conjugating the
galvanometer scanners to the eye’s pupil, affecting its signal level and increasing its sensitivity
to the subject alignment. Secondly, even if FF-OCT presents a low sensitivity to low-order
ocular aberrations in terms of resolution, the latter still affects the FF-OCT signal level [10].
Ocular aberrations and the variation of the subject pupil diameter might explain the fact that
single-frame images obtained in Visualization 2 (when axial motion correction is activated)
present a higher signal than Fig. 5(A). Finally, because ocular aberrations affect the SNR of the
current FF-OCT, imaging other retinal layers, such as ganglion cells, possible with AO-OCT
systems [29], becomes challenging. As discussed in [10], now that FF-OCT images can be
acquired with high consistency, a compact implementation of AO could be used, consisting of a
wavefront sensorless approach, and a multi-actuator adaptive lens [30] positioned just in front of
the eye, like regular glasses (i.e. without strict conjugation). As ocular aberrations are dominated
by low-order aberrations [4], we expect to significantly improve the FF-OCT SNR, and therefore
hope to be able to image less reflective retinal layers.

4.4. Towards dynamic FF-OCT in the living human eye

One interesting way to obtain a high image contrast using FF-OCT is by exploring temporal
fluctuations of the backscattered light, revealing subcellular structures and transparent tissues
[18,31]. So far, this technique, when applied to retinal imaging, has only been shown for ex-vivo
retinal imaging. To be able to achieve dynamic in-vivo retinal imaging an axial motion correction
better than the axial resolution of the FF-OCT system is necessary [32]. Our proposed method
achieves this performance 60% of the time, and it might be sufficient. Otherwise, a higher
performance would only be possible with a faster reaction of the voice-coil translation stage
or with an SD-OCT with a higher acquisition rate (here we are limited to 36 000 A-scans per
second).

5. Conclusion

One of the biggest challenges of time-domain FF-OCT when applied for in-vivo human retinal
imaging is the presence of continuous involuntary head and eye axial motion. We presented a
method to optically compensate for axial motion in real-time for time-domain FF-OCT. This
was possible by introducing an SD-OCT and a voice-coil translation stage in the system, the
former to generate retinal cross-section images, where retinal axial motion could be measured,
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and the latter to correct the FF-OCT reference arm position. The closed-loop optical stabilization
reduced the RMS error by a factor of 7, significantly increasing the FF-OCT image acquisition
efficiency. By these means, we demonstrated the capacity of the FF-OCT to resolve cone mosaic
as close as 1.5o from the fovea center with high consistency and repeatability, without the need
for AO. The good precision and efficiency achieved in the FF-OCT system, by virtue of the
real-time axial motion optical stabilization, together with its relative simplicity and low-cost
compared to the other high-resolution techniques which use conventional AO, may pave the way
towards the adoption of FF-OCT as a routine clinical imaging system.
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CHAPTER 4. HARDWARE DEVELOPMENTS 74

4.2 Article: Coherence gate shaping for wide field high-
resolution in vivo retinal imaging with full-field OCT

As mentioned in the previous section, band shaped signals limiting the FOV were observed
for most of the subjects. This issue arises because the FFOCT system arms are not
optically symmetric for eye imaging. In microscopy, we are using the same microscope
objectives in both arms, thus limiting the asymmetry to the manufacturing tolerances.
For eye imaging however, a microscope objective is used in the reference arm and the
symmetry is therefore broken even if we use an objective with similar focal length and
numerical aperture as the average human eye. In the Letter below, we experimentally
demonstrate that when this symmetry is broken the coherence gate is no longer a plane
but is rather curved, leading to a mismatch with the retinal curvature, and consequently
limiting the useful FOV. To counteract this asymmetry and recover a quasi-symmetry we
proposed an optical shaping of the coherence gate enabling single-shot, high-resolution,
large FOV images (1mm × 1mm) of the photoreceptor mosaic as close as 0.5◦ from the
foveal center. With this improvement we show that we are able to compute important
photoreceptor-based bio-markers by using the HSV method presented appendix B and
that spatio-temporal monitoring of individual photoreceptors can be achieved [Mecê et al.,
2020a].
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Abstract: Allying high-resolution with a large field-of-view (FOV) is of great importance in
the fields of biology and medicine, but it is particularly challenging when imaging non-flat living
samples such as the human retina. Indeed, high-resolution is normally achieved with adaptive
optics (AO) and scanning methods, which considerably reduce the useful FOV and increase
the system complexity. An alternative technique is time-domain full-field optical coherence
tomography (FF-OCT), which has already shown its potential for in-vivo high-resolution retinal
imaging. Here, we introduce coherence gate shaping for FF-OCT, to optically shape the
coherence gate geometry to match the sample curvature, thus achieving a larger FOV than
previously possible. Using this instrument, we obtained high-resolution images of living human
photoreceptors close to the foveal center without AO and with a 1mm× 1mm FOV in a single
shot. This novel advance enables the extraction of photoreceptor-based biomarkers with ease
and spatiotemporal monitoring of individual photoreceptors. We compare our findings with
AO-assisted ophthalmoscopes, highlighting the potential of FF-OCT, as a compact system, to
become a routine clinical imaging technique.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Owing to the optical properties of the eye, the retina is the only part of the central nervous
system that can be visualized non-invasively in-vivo with micrometer resolution, a crucial aspect
for studying neuronal activity [1,2]. Due to their capacity to correct for static and dynamic
ocular aberrations [3,4], AO ophthalmoscopes have become the primary technique to image
individual retinal neurons such as cone and rod photoreceptors in the living human retina [5–8].
Imaging individual retinal neurons in-vivo with AO ophthalmoscopes has enabled new insights
into retinal function [2] and a better understanding of progression of retinal diseases such as
age-related macular degeneration [9]. However, AO systems require quite complex, expensive
and cumbersome hardware, limiting their clinical and commercial deployment [10,11]. Moreover,
the eye’s isoplanatic patch (around 0.6 mm) limits the useful field-of-view (FOV) where high-
resolution retinal imaging can be achieved when using AO [12]. Although multi-conjugate AO
was demonstrated in order to achieve a larger useful FOV, increasing the eye’s isoplanatic patch,
this solution adds complexity, as two deformable mirrors are necessary [13]. Thus, achieving
cellular resolution in a large portion of the living human retina without using AO is of great
interest.

Recent studies have achieved high-resolution retinal imagingwithout usingAOby implementing
computational ocular aberration correction [11,14–17]. Although promising, these approaches
only presented results in far foveal eccentricities (3o or more), where photoreceptors are most

#400522 https://doi.org/10.1364/BOE.400522
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easily resolved. Moreover, they require heavy post-processing steps hence providing limited
feedback during imaging sessions, and, in some cases, expensive hardware was also necessary (e.g.
a very fast camera and/or swept source laser). The use of a super-resolution optical-reassignment
technique was also proposed as a tool to achieve cellular resolution in in-vivo retina without AO
[18]. Nevertheless, a scanning illumination/detection is used, presenting an inherently low frame
rate, limited FOV (lower than 0.3 mm × 0.3 mm) and high sensitivity to fixational eye motion
[19] leading to intraframe distortion.
An alternative modality to achieve high-cellular resolution without using AO is FF-OCT,

which uses a spatially incoherent light source, a high-speed megapixel camera and time-domain
phase modulation to acquire en-face sections of the sample at a given depth [20]. One attractive
point of this technique for retinal imaging is the fact that the optical resolution of FF-OCT has
a weak sensitivity to predominant ocular aberrations (i.e. defocus and astigmatism) [21–23].
This interesting feature was recently highlighted in [24], where in-vivo human cone mosaic at
eccentricities close to the fovea was resolved. Although FF-OCT’s FOV is theoretically only
limited by the spatial sampling of the imaging camera, retinal curvature causes current images to
have a limited useful FOV of about 0.4 mm × 0.4 mm [24,25].
Typically, FF-OCT uses a Linnik interferometer, where identical microscope objectives are

placed in both reference and sample arms in a symmetric optical path configuration. When
applied to retinal imaging, the FF-OCT symmetry is broken, as the sample arm no longer contains
a microscope objective (Fig. 2), but rather contains the anterior segment optics of the human eye.
Here, we theoretically and experimentally demonstrate that when the symmetry is broken a curved
coherence gate is generated, provoking a mismatch with the retinal curvature, and consequently
limiting the useful FOV. The useful FOV can be defined as the FOV over which a structure from
a given depth of the sample can be visualized. We present novel advances in FF-OCT allowing
for optical shaping of the geometry of the coherence gate, adapting it to the retinal geometry,
enabling the generation of single-shot, high-resolution, wide FOV images (1 mm × 1 mm) of
the photoreceptor mosaic as close as 1o from the foveal center. The 1 mm × 1 mm useful FOV
is 6.25 times larger in this new configuration compared to our previous results [24]. Then, we
show that useful tools to diagnose retinal disorders at the early stage such as photoreceptor-based
biomarkers and spatiotemporal monitoring of individual photoreceptors can be achieved without
the need for AO.

2. Methods

2.1. Theory

The optical path length (OPL) when light propagates in a material x of thickness ex, refractive
index nx for a given angle θx can be expressed as:

OPL(λ) =
N∑

x=1
nx(λ) ex

cosθx
. (1)

Where nx(λ) is given by the Sellmeier equation [26]. The incidence angle in a material x, θx,
can be expressed as a function of the incidence angle in air θ1, as follows:

θx = sin−1
(
sinθ1
nx(λ)

)
. (2)

Through Eqs. (1) and (2), one can notice the dependency of the OPL on the wavelength (λ)
and the incidence angle in air (θ1):

OPL(λ, θ1) =
N∑

x=1
nx(λ) ex

cos
(
sin−1

(
sinθ1
nx(λ)

) ) . (3)



Research Article Vol. 11, No. 9 / 1 September 2020 / Biomedical Optics Express 4930

The depth position of the en-face image generated by the FF-OCT, i.e. the coherence gate, is
given by the the optical path difference (OPD) between the reference and sample arms:

OPD(λ, θ1) = OPLreference(λ, θ1) − OPLsample(λ, θ1). (4)

If the OPL of both arms is symmetric, as is the case when a microscope objective is placed in
each arm, the OPD is null for all values of θ1, i.e. in the FOV. On the other hand, an asymmetry
between the reference and sample OPLs creates a dependency on the the wavelength (λ) and the
incident angle in the air (θ1). In this case, OPD would only be null for a given incident angle, and
it would increase as this angle is increased. This is the origin of the curvature of the coherence
gate.
To shape the coherence gate geometry, we propose the use of optical windows. To better

understand how optical windows can shape the coherence gate geometry, we can consider a
typical FF-OCT set-up composed of identical microscopic objectives positioned in each arm,
with an optical window of thickness eb and refractive index nb positioned in the sample arm
(Fig. 1). For simplicity, we assume that both arms are illuminated with monochromatic light.

Fig. 1. Schematic of the reference and sample arms introducing notations for the OPD
model.

Their respective OPLs will be given as follows (only considering the path between the
microscope objective and the beam splitter):

OPLref (θ) = eair
cos(θ) (5)

OPLsample(θ) = eair − eb
cos(θ) +

ebnb
cos(θb(θ)) (6)

where θb is given as a function of the incident angle in the air θ according to Eq. (2). In this case,
the OPD would be:

OPD(θ) = eb

(
nb

cos(θb(θ)) −
1

cos(θ)

)
. (7)

To image at a depth of interest of the sample, one has to move the reference arm. We can move
the reference arm in order to match both OPLs for a given angle, for example at a central point in
the FOV, i.e. θ = 0, which gives:

OPD(0) = eb(nb − 1). (8)

Now, the OPD for all the other angles θ will be given by:

OPD(θ) = eb

(
nb

cos(θb(θ)) −
1

cos(θ)

)
− eb(nb − 1) (9)

which can be simplified as follows:

OPD(θ) = eb

(
nb

1 − cos(θb(θ))
cos(θb(θ)) −

1 − cos(θ)
cos(θ)

)
. (10)

Note that the introduction of an optical window induces a variation of the OPD as a function
of the FOV, generating a curved coherence gate.
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2.2. Experimental setup

To investigate the impact of the asymmetric Linnik interferometer configuration on coherence
gate curvature, three samples were imaged: 1) a standard USAF resolution target; 2) an OEMI-7
model eye (Ocular Instruments, Inc) which takes into account the eye geometry, optical power
and dispersion properties (henceforth, named model eye); and 3) in-vivo human retina. Figure 2
presents the schematic of the custom-built FF-OCT system coupled through a dichroic mirror
with a Thorlabs Ganymede-II SD-OCT system. The FF-OCT comprises a light-emitting diode
(LED) with λ = 850 nm center wavelength and 30 nm bandwidth (M850L3, Thorlabs), used as a
spatially incoherent illumination source, giving a theoretical axial resolution of approximately
8 µm in water. The LED is focused by a condenser lens 20 mm in front of the eye’s pupil. A
physical diaphragm is positioned in front of the LED, conjugate to the retina and the FF-OCT
reference mirror. The illumination beam is split into reference and sample arms by a 50:50
cubic beam splitter (BS). For the reference arm, an Olympus 10X/0.25 NA Plan Achromat
objective is used with a silicon mirror placed at the focal plane of the objective. The whole
reference arm (microscope objective and silicon mirror) is mounted on a fast voice-coil translation
stage (X-DMQ12P-DE52, Zaber Technologies Inc.), enabling adjustment of the coherence gate
position. For the sample arm, two configurations were used. In the case of the USAF target
imaging, a microscope objective, identical to the one used in the reference arm, is used leading
to a symmetric Linnik configuration (not shown in Fig. 2). In the case of the model eye and
in-vivo retinal imaging, both were aligned along the optical axis, without the use of a microscope
objective, leading to an asymmetric Linnik configuration (shown in Fig. 2). The FF-OCT light
beam arrives with an 8 mm diameter in the eye’s pupil. The back-scattered photons from both
arms are recombined by the same BS and focused onto a high-speed (up to 720 Hz at 1440× 1440
pixel) CMOS camera (Q-2A750-Hm/CXP-6, Adimec) for FF-OCT imaging. The FF-OCT system
aperture was limited by the eye’s pupil. In the case of in-vivo retinal imaging, the SD-OCT
and the voice-coil translation stage were used to measure and correct for involuntary axial eye
movements during the imaging acquisition in a closed-loop fashion [24]. The SD-OCT light
beam was filtered out from the FF-OCT reference and detection arms by using a short-pass filter
(FESH0850 25mm aperture, Thorlabs).

Fig. 2. Schematic drawing of the custom-built FF-OCT system coupled with an SD-OCT
for real-time axial motion correction and FF-OCT coherence gate positioning guidance.
In the case of the USAF target imaging, a microscope objective, identical to the one used
in the reference arm, is used leading to a symmetric Linnik configuration (not shown in
the schematic). In the case of the model eye and in-vivo retinal imaging, no microscope
objective is placed in the sample arm, leading to an asymmetric Linnik configuration (shown
in the schematic).
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2.3. Image acquisition

In the case of the USAF target and the model eye imaging, a total of 200 images from different
depths were acquired at 10 Hz, by moving the voice-coil translation stage of the reference arm at
a constant speed of 5 µm/s. This procedure allowed us to acquire en-face images from different
depths, forming Z-stacks. This procedure was repeated after adding optical windows of N-BK7
of different thicknesses in the reference or sample arms in order to change the geometry of the
coherence gate.
In the case of in vivo retinal imaging, the image acquisition was performed on two healthy

subjects S1 and S2 aged 25 and 30 respectively. S1 presents a refractive error of 1.5D×0.5D×160o

(spherical × cylindrical × axis of cylindrical errors), S2 does not wear prescribed eyeglasses and
had had LASIK refractive surgery several years ago. Research procedures followed the tenets of
the Declaration of Helsinki. Informed consent was obtained from subjects after the nature and
possible outcomes of the study were explained. The study was authorized by the appropriate
ethics review boards (CPP and ANSM (IDRCB number: 2019-A00942-55)). Subjects were
seated in front of the system and stabilized with a chin and forehead rest and asked to fixate
a target placed at an infinite focal conjugate. During the imaging session, the subject S1 was
wearing her prescription glasses to increase the signal level of FF-OCT [23]. Image acquisition
was realized in a dark room, maximizing the pupil dilation. Phase modulation was performed by
the residual axial motion after optical stabilization [24]. Image sequences were composed of 150
frames acquired at 300 Hz using custom-built software. The FF-OCT camera worked close to
saturation to use the whole full well capacity, decreasing relative importance of shot noise [27].
During image acquisition, the total power entering the eye from the FF-OCT illumination source
and the SD-OCT scanning source were respectively 1.3 mW (for the 0.5 s of image acquisition)
and 0.25 mW (continuous scanning), which are below the ocular safety limits established by the
ISO standards for group 1 devices.

2.4. Image processing

In the case of the USAF target and the model eye imaging, each Z-stack was digitally converted
into axial sections, i.e. a cross-sectional view of the sample. This step was possible by taking into
account only the pixels of a central row of each image. Next, image segmentation was applied
using an intensity-based thresholding algorithm and a least square parabola fitting algorithm,
enabling measurement of the degree of curvature of converted cross-sections.
For in-vivo retinal imaging, each image was normalized by dividing itself by its mean value.

Since the phase was randomly modulated by the residual tracking error, and to eliminate the
incoherent terms, we adopted a 2-phase demodulation [24]. The 2-phase demodulation consists
of subtracting one image IN from the next IN+1 and taking the absolute value. Next, images with
a very low or absent useful signal, mainly due to an insufficient phase shift between consecutive
images, were automatically detected using an intensity-based threshold algorithm, and then
excluded from the image sequence. Finally, useful images were registered using a custom-built
normalized cross-correlation algorithm, where the image presenting the highest signal level was
chosen as the reference. Retinal images of subject S1 were also acquired using the rtx-1 adaptive
optics flood-illumination ophthalmoscope (AO-FIO - Imagine Eyes, France) and the MAORI
confocal adaptive optics scanning-laser ophthalmoscope (AO-SLO - Physical Sciences, Inc,
Andover, MA, USA). Retinal fundus images of both subjects were also acquired with Spectralis
scanning-laser ophtalmoscope (SLO) (Heidelberg Engineering, Germany). All images were
acquired in the same conditions as previously described, i.e. in a dark room, maximizing the
pupil dilation and with subject S1 wearing her prescribed eyeglasses. To generate a pointwise
density map, we divided the cone mosaic image into an overlapping grid of 300 × 300 pixels
(corresponding to 200 µm × 200 µm) regions of interest (ROIs), where each ROI was displaced
from the previous by 30 pixels (corresponding to 20µm). These values were chosen empirically
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to provide a good trade-off between pointwise accuracy and map smoothness. Then, cone density
and spacing were computed for each ROI using a fully automated algorithm based on modal
spacing as described in [28]. Bicubic image interpolation was used to increase the size of the
cone density map in order to match the cone mosaic image.

3. Results

3.1. Optical shaping of the coherence gate geometry

Figure 3 shows how the coherence gate geometry can be optically shaped by adding optical
windows in one of the interferometer arms. When imaging the USAF target (Fig. 3(a)) in a
symmetric configuration the cross-section looks completely flat. The addition of an optical
window in one of the arms breaks this symmetry, consequently, the flat sample presents an
apparent curved cross-section. This apparent curvature happens because of a non-constant optical
path difference along the FOV, generating a curved coherence gate.

Fig. 3. a-b, Cross-sections after introducing N-BK7 optical windows with various thick-
nesses (in yellow) in the reference or sample arms when imaging, respectively, the USAF
target and the model eye. c,d,f,g, Measured and theoretical optical path differences as a
function of the FOV for different optical window thicknesses, as well as their respective
degree of curvature, for respectively the USAF target and the model eye. When the optical
window was introduced in the reference arm, the N-BK7 optical window thickness was
represented in negative value. e,h, The effect of the coherence gate geometry over the
FF-OCT useful FOV.

Figure 3(c) presents the measured and the theoretical (see Sect. 2.1) OPDs as a function of the
FOV. Depending on which arm the optical window is introduced in, the coherence gate curvature
can present a concave or a convex shape. One can notice that the curvature increases as a function
of the thickness of the optical window introduced in one of the arms (Fig. 3(d)). The induced
curvature of the coherence gate directly impacts the useful FOV of an FF-OCT system, since it
acquires en-face curved sections of a flat sample at a given depth (Fig. 3(e)).
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The same experiment can be done now using the model eye, which presents similar geometry
and dispersion of the eye, in an asymmetric configuration (Fig. 3(b)). In this case, already
when no optical window is introduced, the coherence gate presents a significant curvature.
Figures 3(f,g) give the measured and theoretical curvature as a function of the FOV and the
optical window thickness. The introduction of an 20 mm thick N-BK7 optical window in the
sample arm enables compensation for the initial apparent curvature, increasing the useful FOV
(Fig. 3(h)). Visualization 1, Visualization 2, Visualization 3, and Visualization 4 show acquired
Z-stacks for curved and flat coherence gate when imaging the USAF target and the model eye.

3.2. Living human retinal cone mosaic imaging

Figures 4(a,b) presents in-vivo retinal images from the inner/outer segment junction (IS/OS)
of subject S1 before and after compensation of the coherence gate curvature respectively. The
yellow square in the retinal fundus image (Fig. 4(c)) indicates the location of acquired images,
i.e. as close as 1o from the foveal center. According to Fig. 3(g), by adding an N-BK7 optical
window with 20mm thickness, the coherence gate curvature would be strongly minimized. With
this configuration, we obtained a high-resolution foveal cone mosaic imaging with a useful FOV
of 1 mm × 1 mm, larger than the previous FOV (0.4 mm × 0.4 mm) [24] by a factor of 6.25, only
correcting ocular aberrations with prescribed eyeglasses. Zoomed areas and their respective
power spectral densities (PSD) are also presented. All PSDs presented Yellot’s ring, the spectral
signature of the photoreceptor mosaic image [29].

Fig. 4. Foveal cone mosaic images of subject S1 as close as 1o from the foveal center
(yellow square of the retinal fundus image). a,b, Respectively, acquired images from the
IS/OS junction before and after correcting for the coherence gate curvature. Zoomed areas,
and their respective eccentricity (in yellow) and PSD are also presented. All PSDs present
the Yellot’s ring [29]. Scale bar, 100µm.

Figure 5 presents cone mosaic images obtained for subject S2 at 3o eccentricity temporal to the
fovea after correcting the coherence gate curvature. Cone photoreceptors can also be resolved in
the whole 1 mm × 1 mm FOV. Note that the same 20 mm thick N-BK7 optical window used for
S1 is also suitable to correct the coherence gate curvature for S2.
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Fig. 5. Foveal cone images of subject S2 after correcting the coherence gate curvature.
Zoomed areas, and their respective eccentricity (in yellow) and PSD are also presented.
Scale bar, 100µm.

3.3. Photoreceptor-based biomarkers and 4D monitoring of individual photoreceptors

The compensation of the coherence gate curvature enables the visualization of photoreceptors
in the whole FOV. Consequently, we can obtain important information on photoreceptor-based
biomarkers such as distribution, density, and spacing within a few seconds in a single-shot (no
image montaging is necessary) with ease (Fig. 6). All measurements are consistent with histology
and AO-assisted cone density measurement [30,31].

Fig. 6. a, Cone density distribution color coded for the image acquired from subject S1.
b-c, Respectively, mean (green squares) and standard deviation (blue lines) of the measured
cone density and spacing as a function of the retinal eccentricity. The red line is the mean
computed density and the shaded region is 95% prediction interval obtained from a dataset
of a 20-eye healthy population using an AO scanning-laser ophthalmoscope [31].

Minimizing the effect of the coherence gate curvature also helps to increase the repeatability of
the imaging, allowing for spatiotemporal monitoring of individual photoreceptors. Visualization
5 presents four image sequences acquired in the same region with a 10 min interval between
acquisitions. Note in zoomed areas that individual photoreceptors can be tracked frame-by-frame
(3 ms interval) and video-by-video (10 min interval). Green boxes highlight cones that are
visible in all four videos, while yellow boxes highlight those visible for only some of the videos,
which might indicate a long-term change of reflectivity [32]. Red hexagons highlight the typical
pattern found in cone mosaic close to the fovea [30]. Figure 7(a-d) presents the averaged
image obtained from zoomed areas of Visualization 5. Figures 7(e-h) and Visualization 6 and
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Visualization 7 show a cone-to-cone comparison of FF-OCT image with images generated by two
AO ophthalmoscope modalities for subject S1 at same location. FF-OCT allows visualization of
most, if not all, photoreceptors identified in AO-assisted images. Note in Fig. 7(i) that PSDs from
all FF-OCT images present a clear and well-defined cone mosaic spatial frequency (vertical pale
red bar) at 120 cycles/mm, as is the case for both AO-assisted imaging modalities. On the other
hand, when using a scanning laser ophthalmoscope without closing the AO-loop, an erroneous
spatial frequency is measured, leading to an error in cone density computation.

Fig. 7. a-d, Cone mosaic images acquired at the same region (4.5o eccentricity) for
different time points T1,2,3,4, with 10 minutes interval between acquisitions, for subject
S1, highlighting the capacity of FF-OCT with coherence gate shaping to track individual
cones in space and time. Green boxes: cones visible for all four acquisitions. Yellow boxes:
cones changing reflectivity. Red hexagons: pattern found in cone mosaic close to the fovea
[30]. e, Cone mosaic image obtained after averaging images from a-d. f-h, Cone mosaic
image at the same region acquired using AO-ophthalmoscopes. f, FIO: Flood-illumination
ophthalmoscope. g, SLO: confocal scanning-laser ophthalmoscope. h, Acquisition made
without closing the AO-loop. i, PSD radial average for images a-h, where the vertical pale
red bar outlines the expected cone mosaic spatial frequency. PSDs were vertically displaced
for better visualization. Scale bar, 20 µm.

4. Discussion

In this paper, we saw that the Linnik symmetry plays an important role in obtaining a flat
coherence gate. Although this symmetry is broken in the case of retinal imaging, inducing
an intrinsically curved coherence gate, we showed that the coherence gate geometry can be
corrected by introducing a simple optical element such as an optical window into one of the
interferometer arms. We used this technique to compensate the intrinsic curved coherence gate
in the asymmetric configuration of FF-OCT for retinal imaging, obtaining an useful FOV of



Research Article Vol. 11, No. 9 / 1 September 2020 / Biomedical Optics Express 4937

1 mm × 1 mm, limited only by the size and the spatial sampling of the imaging camera. To the
best of our knowledge, this is the first OCT system allying a FOV as large as 1 mm × 1 mm, high
spatial resolution in all three dimensions and high acquisition rate of a given retinal plane (up
to 300 Hz), without using any optical or digital aberration compensation other than prescribed
eyeglasses, considerably simplifying the hardware and software complexity. The coherence gate
curvature was previously reported for scanning-like OCT, mainly linked to the scanning-induced
path length variation in non telecentric optical systems [33]. Therefore, the described method to
optically shape the coherence gate can also be applied in OCT and Optical Coherence Microscopy
imaging techniques to avoid curvature artefacts and to compensate for optical components that
are only positioned in one of the arms, inducing an asymmetry.

Another expected effect brought by the asymmetry of the Linnik interferometry is dispersion,
affecting the axial resolution of the FF-OCT (i.e. axial sectioning capacity). This phenomenon
can be noted in cross-sections of Figs. 3(a,b) as an increase of the coherence gate thickness
(distance between the blue and red curves). Figure 8 shows the FWHM of the coherence gate
thickness (FF-OCT axial resolution) as a function of the optical window thickness in the case
of the USAF target imaging (in red) and the model eye imaging (in blue). Note that for the
USAF target imaging, a flat coherence gate coincides with the best axial sectioning capability,
both happening when no optical window is added (symmetric configuration). In the case of the
model eye imaging, not surprisingly, the optimum correction of dispersion does not coincide with
the optimum correction of coherence gate curvature, since these two phenomena have different
physical origins.

Fig. 8. Experimental data from Fig. 3 showing how dispersion evolves for different
thicknesses of optical windows. The FWHM of the coherence gate thickness (FF-OCT axial
resolution) as a function of the optical window thickness in the case of the USAF target (red
points) and model eye (blue points) imaging respectively.

An optimum compensation of the coherence gate curvature would be possible with a 22 mm
N-BK7 optical window (Fig. 3(g)). Figure 8 shows, for the model eye imaging, that an optimum
dispersion compensation would be possible with a 15 mm of N-BK7 optical window. In this
study, in order to compromise and minimize the effects of both curvature of the coherence
gate and dispersion for in-vivo retinal imaging, we used a N-BK7 optical window with 20 mm
thickness. According to Fig. 3(g) and Fig. 8, a good trade-off could be found in this case: the
axial resolution would be around 9µm, instead of 8µm, and the degree of curvature would be
lower than 5, meaning an edge-center difference of 1µm.
We presented results in two different subjects presenting different refractive errors at two

different retinal eccentricities. In both cases, a 20-mm thick N-BK7 optical window was suitable
to achieve a 1 mm × 1 mm FOV. Indeed, since the axial resolution is around 9µm, a mismatch
between the coherence gate geometry and the retina curvature inferior to the optical sectioning
(given by the FF-OCT axial resolution) would not be seen (Fig. 9(a-c)). Figure 9(d) shows
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theoretical degree of curvature values, validated by our previous model (Sect. 2.1 and Fig. 3(c,f)),
for different eye lengths. One can see that a 20-mm thick N-BK7 optical window would be
suitable (edge-center distance inferior to 1µm) to achieve a 1 mm × 1 mm FOV for eye lengths
varying from 20 mm to 28 mm, which covers the majority of cases in the population [34]. It is
therefore not necessary to swap optical window for each subject: the 20mm thick window covers
the whole range of eye lengths that one would typically see in the clinic.

Fig. 9. (a-c) Schematic showing different degrees of curvature for the coherence gate
and their consequence on the FOV of the FF-OCT image. Although the coherence gate
curvature does not perfectly match the retinal curvature in the case of (c), a full FOV is still
generated, as the coherence gate has a given thickness defined by the axial resolution. (d)
Expected theoretical value of degree of curvature (computed using Eq. (1)) as a function
of the thickness of the N-BK7 introduced to compensate for coherence gate curvature for
different eye lengths. Green shaded area highlights that a N-BK7 of 20 mm thickness covers
the majority of eye lengths in the population (from 20 mm to 28 mm) [34].

In this study, we only considered N-BK7 optical windows to minimize effects of both coherence
gate curvature and dispersion. Another solution to optically shape the geometry of the coherence
gate is the introduction of a deformable reference mirror in the reference arm. This solution would
decouple the correction of the coherence gate curvature and dispersion, since a suitable optical
window in the sample arm could compensate for dispersion effect and the deformable reference
arm would correct the residual curvature of the coherence gate, without affecting dispersion,
improving signal level, axial resolution and possibly achieving even larger FOV. Moreover, this
solution might extend the coherence gate shaping to samples with an irregular surface, more
complex than a curvature, such as deformed retina due to degeneration, detachment, etc. In the
case of imaging a deformed retina, a deformable reference would enable imaging an irregular
retinal layer over a large FOV in a single shot instead of acquiring en-face images for different
coherent plane positions. Nevertheless, the main drawback of this solution is the considerable
increase of the system complexity and cost, making clinical transfer challenging. A solution
considering only a 20 mm thick N-BK7 optical window, as presented in this paper, seems suitable
to minimize both curvature of the coherence gate and dispersion for a large population.
The direct visualization of individual photoreceptors together with photoreceptor-based

biomarkers, such as distribution, density and spacing, could be useful tools to diagnose retinal
disorders at the early stages, in order to monitor retinal disease progression as well as the effect
of potential therapeutic interventions [32]. The presented FF-OCT system with coherence gate
shaping enables 4D monitoring of individual photoreceptors and photoreceptor-based biomarkers
with good accuracy and repeatability in a wide FOV, without image distortion (due to eye motion)
and long, fastidious acquisition sessions to cover the retinal area of interest, as is the case with
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lab-built scanning systems with limited FOV such as AO-SLO and AO-OCT. While AO-FIO
can achieve 1 mm × 1 mm FOV at a high-frame rate [8], high-resolution brought by ocular
aberration correction using AO is limited by the eye’s field aberrations, commonly known as the
isoplanatic patch [12], affecting the accuracy of the resultant photoreceptor-based biomarkers.
This issue can be tackle by limiting the system aperture (around 5 mm in the eye’s pupil plane),
provoking a decrease of resolution and signal-to-noise ratio (SNR), as rtx-1 (Imagine Eyes,
France) and [8]; or by using multi-conjugated AO, with an increased system complexity as a
second deformable mirror is necessary [13]. The present FF-OCT with coherence gate shaping
can resolve photoreceptor and extract photoreceptor-based biomarkers in the whole FOV without
AO, considerably decreasing the system complexity and footprint, which may help clinical
deployment. Additionally, FF-OCT has the capacity to generate en-face retinal images with
an enhanced axial resolution (9 µm) compared to confocal AO-SLO (around 40 µm [35]) and
AO-FIO (no inherent optical sectioning). This advantage can be observed in Fig. 7, especially in
comparison with AO-FIO, where a structured background can be observed in the latter, probably
coming from the choroid positioned beneath the photoreceptor layer, which is completely filtered
out by the FF-OCT thanks to its high axial resolution. Although FF-OCT axial resolution may be
slightly poorer than AO-OCT [10], it has advantages of larger FOV, higher-frame rate and lower
complexity and size, and is still able to resolve the photoreceptor interfaces such as IS/OS junction
and cone outer segment tips. Moreover, the high temporal resolution of FF-OCT may play an
important role to characterize the temporal behavior of retinal capillaries from different plexus
[36,37] and the temporal dynamics of subcellular structures [27]. Finally, although FF-OCT is
only weakly sensitive to low-order ocular aberrations in terms of resolution, aberrations still
reduce the FF-OCT signal level [38]. Ocular aberrations may explain why the SNR of FF-OCT
images varies across the FOV (Figs. 4 and 5) and why the AO-SLO image has higher contrast
than the FF-OCT image (Fig. 7). Although the presented imaging technique presents lower SNR
compared to AO-SLO, photoreceptors can still be visualized in single unaveraged frames, as it
was demonstrated in Visualization 5, and photoreceptor-based biomarkers can still be extracted
with accuracy (Fig. 6).

5. Conclusion

In conclusion, we have developed coherence gate shaping for FF-OCT to adapt coherence gate
geometry to the curvature of the sample being imaged, making large FOV imaging possible while
keeping high-resolution in samples under constant motion, such as the living human eye. We
applied this method to achieve, in a single shot, and without the use of AO, 1 mm × 1 mm FOV
image of the living human cone mosaic as close as 1o from the foveal center. We showed that
a large FOV allied with a high resolution in all three dimensions, brings a significant benefit
for retinal imaging: the large FOV facilitates the localization of the region of interest, allows a
global interpretation of the retinal condition over this area, such as cone density distribution, and
drastically reduces the image session duration; the high resolution allows tracking of individual
cones and computation of cellular information, such as cell density and spacing, that could
be used as biomarkers to diagnose retinal disorders at early stages. FF-OCT with improved
performance thanks to coherence gate shaping may pave the way towards its adoption as a routine
clinical imaging system, helping to understand retinal structure and disease.
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4.3 Aberrations: signal and contrast loss
In the first chapter I mentioned that low spatial frequency distortions of the wavefront are
called aberrations. For a well designed system, these aberrations are induced by the sample
(and not by the system itself) by low spatial frequency variations of the refractive index.
Without aberrations, the transverse resolution of an optical system due to diffraction is6
δx,y = λc

2NA where NA is the numerical aperture of the optical system and λc is the central
wavelength of the detected light. When the wavefront is distorted by aberrations, the
resolution is degraded. The way aberrations affect the optical transfer function7 depends
on how images are formed on the detector. Consider a fluorescence microscope where
the detection is incoherent, aberrations for the in-going illumination does not create any
distortion as long as the illumination remains homogeneous in the sample plane in order to
excite the fluorophores. The collected fluorescence however will be affected by aberrations
in the way out before being collected on the detector. For a coherent system such as OCT,
the transport of the coherence for the illumination beams also matters and aberrations will
affect images differently. In this section I will derive and explain the well known influence
of aberrations on a conventional system, then I will present the influence of aberrations
for a (D-)FFOCT system, which was derived by Victor Barolle in his thesis [Barolle, 2019]
and finally I will present how we experimentally validated Barolle’s theory. Aberrations
that are treated in this section are supposed to act the same for each wavelength in the
illumination. In practice, aberrations can be wavelength dependent because of dispersion;
this chromatic dependence of geometrical aberration could be neglected here because of
the narrow spectral bandwidth.

4.3.1 Aberrations theory in conventional optical systems

Before deriving the effect of aberrations on a conventional imaging system we must un-
derstand how images forms in such systems. Due to the diffraction, geometric light prop-
agation is not satisfactory close to the focal plane and light propagation must be treated
with care to understand how an optical system behave. Under the hypothesis of linearity,
spatial invariance and without absorption in the optical system the light propagation of
a complex light field Ei in the imaged plane will give a complex field Eo at the output of
the optical system which is the superposition of each punctual fields propagated from the
imaged plane to the detector plane:

Eo(x′, y′) =
∫ ∞
−∞

∫ ∞
−∞

h(x′ − x, y′ − y)Ei(x, y)dxdy (4.1)

where h(x′−x, y′− y) is the point spread function8 in amplitude, (x, y) are coordinates of
the imaged plane, (x′, y′) are coordinates of the detector plane. The coordinates (x′, y′) =
(Mx,My) where M is the magnification of the imaging system. The above expression is
the 2D convolution of the input light field Ui with the point spread function and can be
written using the convolution operator:

Eo = h ∗ Ei (4.2)
6Depending on the nature of the measurement (confocality, filtering, etc.) some pre-factor can arise

but for far field measurements the transverse resolution is always proportional to λc
2NA7For coherent systems the term amplitude transfer function is usually used.

8In digital signal processing the point spread function is referred as impulse response.
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where ∗ is the 2D convolution. The amplitude response of a point source object at position
(x, y) is given by the exit pupil Fraunhofer diffraction [Goodman, 2005]:

h(x′ − x, y′ − y) = − A

λzi

∫ ∞
−∞

∫ ∞
−∞

t(u, v) e−
i2π
λzi

((x′−x)u+(y′−y)v)
dudv (4.3)

where A is the light field amplitude, zi is the distance from the exit pupil to the image
plane, (u, v) are coordinates of the exit pupil, (x, y) are coordinates of the imaged plane, t is
the pupil function and is constant across the aperture and zero outside. Finally we obtain
that for a diffraction-limited system we can regard the image as being a convolution of
the image predicted by geometrical optics with an impulse response that is the Fraunhofer
diffraction pattern of the exit pupil. Introducing reduced coordinates u′ = −u

λzi
and v′ = −v

λzi
,

we have du = −λziu′ and Eq. 4.3 boils down to a Fourier transform of the scaled exit
pupil:

h(x, y) ∝
∫ ∞
−∞

∫ ∞
−∞

t
(
−λziu′,−λziv′

)
ei2π(xu′+yv′)du′dv′ (4.4)

∝ F−1 {t(−λziu′,−λziv′)} (4.5)
∝ F−1 {t(u′′, v′′)} (4.6)

(4.7)

For incoherent systems, the propagation is linear in intensity, therefore the point spread
function in intensity H(x, y) is given by:

H(x, y) = |h(x, y)|2 (4.8)
= h(x, y)h∗(x, y) (4.9)
∝ F−1 {t(u′′, v′′)}F−1 {t∗(u′′, v′′)} (4.10)

(4.11)

where ∗ denotes the complex conjugate. The optical transfer function can be computed
by taking the Fourier transform of the above expression:

Ĥ(νx, νy) ∝ F
{
F−1 {t(u′′, v′′)}F−1 {t∗(u′′, v′′)}} (4.12)

and then by using the Fourier convolution theorem we can write:

Ĥ(νx, νy) ∝ F
{
F−1 {t(u′′, v′′)}} ∗ F {F−1 {t∗(u′′, v′′)}} (4.13)

∝ t(u′′, v′′) ∗ t∗(−u′′,−v′′) (4.14)
∝ t(u′′, v′′)⊗ t(u′′, v′′) (4.15)

where ⊗ denotes the correlation operator. The optical transfer function Ĥ(νu, νv) is there-
fore proportional to the scaled auto-correlation of the pupil function t(u′′, v′′). For a circu-
lar pupil this equation yields the Fourier transform of the Airy function9. This formalism
is very convenient because optical systems can be described by transfer functions and it is
therefore easy to simulate optical performances. I simulated the PSF without aberration
for a conventional microscope with similar objectives as our FFOCT setup, see Fig. 4.1.

9The Airy function is the PSF of an optical system with circular pupil.
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The lateral resolution is given by the PSF width δx,y = λc
2NA

10 and the axial resolution is
given by the depth of focus δz = nλc

NA2 . Without aberrations the wavefront is not distorted
during the propagation in Eq. 4.3 and the pupil function is flat. With aberrations however,
the pupil function t(u, v) adds local phase distortions and can therefore be represented by
a complex function with unit amplitude t(u, v) = eiφ(u,v), where φ(u, v) are the phase
distortions in the pupil plane. The previous formalism remains valid and it is possible to
compute the optical transfer function by taking the auto-correlation of t(u′′, v′′). Because
of energy conservation, the optical transfer function must be equal to 111 at the origin and
the cutoff frequency is νmax = 2NA

λc
. Finally, the intensity measured by the camera in a

conventional microscope under homogeneous illumination can be written:

Iconv(x, y) ∝
∫ ∫

S
|h(x− x′, y − y′)|2|ρ(x′, y′)|2dx′dy′ (4.16)

∝ H(x, y) ∗ |ρ(x, y)|2 (4.17)

where ρ(x, y) is the object reflectivity in amplitude and S is the imaged sample domain12.
The above equation is the well known result that the imaged object through the optical
system is the convolution between the intensity PSF and the object power reflectivity
coefficient. By injecting Eq. 4.15 in Eq. 4.17 we can see that it is possible to simulate the
effect of aberrations on the image of a given object:

F {Iconv(x, y)} = Ĥ(νx, νy)F
{
|ρ(x, y)|2

}
(4.18)

The auto-correlation of the pupil function acts as a linear filter on the object spatial
frequencies. Aberrations affect the size of the optical transfer function Ĥ(νx, νy) support
hence damping part of the object spatial frequencies.

10For the sake of clarity, I neglected the pre-factor that can arise depending on the resolution crite-
rion. Rayleigh criterion relies on the separability of two Airy disks when the maximum of one Airy disk
corresponds to the first zero of the seconds yields δx,y = 1.22 λc

2NA .11This is a consequence of Wiener–Khinchin theorem.
12I considered a flat sample here but the 3D nature can be explicitly taken into account by integrating

over z.
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Fig. 4.1: 3D point spread function. (a) Lateral point spread function simulated for NA =
0.8 and λc = 660 nm in linear scale and (b) logarithmic scale. (c) Axial point spread function
simulated with the same parameters in linear scale and (d) logarithmic scale. The 3D PSF was

simulated using Richards and Wolf model [Richards et al., 1959].

For circular pupils it is convenient to decompose aberrations on a basis of orthogonal
polynomials described by polar coordinates. Zernike polynomials are traditionally used to
decompose aberrations where the firsts polynomials are typically the type of aberrations
that are found in optical systems. Zernike polynomials are either odd or even depending
on their spatial symmetry. Even Zernike polynomials are defined as:

Zmn = Rmn (ρ)cos(mΦ) (4.19)

while odd Zernike polynomials are defined as:

Z−mn = R−mn (ρ)sin(mΦ) (4.20)

where m and n are non-negative integers with n ≥ m, Φ is the azimuthal angle, ρ ∈ [0, 1]
is the radial distance, and Rmn are the radial polynomials defined below:

Rmn (ρ) =
n−m

2∑
k=0

(−1)k(n− k)!
k!
(
n+m

2 − k
)
!
(
n−m

2 − k
)
!
ρn−2k (4.21)

The firsts fifth orders polynomials are depicted Fig. 4.2.
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Fig. 4.2: Zernike polynomials classified by order from top to bottom.

I simulated the most common aberrations Fig. 4.3 and Fig. 4.4 for an optical system with
similar objectives as the one used in our FFOCT setup (0.8 NA 40x). Without aberrations
the PSF is diffraction limited and the modulation transfer function13 (MTF) shape is given
by the auto-correlation of a disk. With defocus, which corresponds to a parabolic phase
error14, the MTF support decreases uniformly and the PSF remains isotropic. This inter-
esting property comes from the radial symmetry of the pupil function which is preserved
by the Fourier transform, hence it is also valid for the spherical aberration15. Coma is
typically observed when lenses are not correctly centered and is an odd function, leading
to an asymmetry in the PSF and OTF. Finally I want to point out that for a conventional
system, the auto-correlation of the pupil function leads to several properties that are not
found in FFOCT:

1. The auto-correlation is always an even function. The Fourier transform of an even
function is real, meaning that the PSF is real for a conventional system. Therefore,
the resolution can be measured by the width of the PSF or by the cutoff frequency of
the OTF. This is only because the convolution with a real function can be performed
in the spatial domain, we will see in the next section that the PSF is no longer real
for FFOCT and that reasoning with PSF is therefore not advised and can lead to
confusions.

2. The auto-correlation is maximum at the origin and from energy conservation in
13The MTF is the amplitude of the OTF.
14Defocus can be approximated by translating the sample axially for small displacements.
15Spherical aberration is the type of aberration that is generated by a planar index mismatch (microscope

coverslip) in samples. Typically, microscope objectives are corrected to counteract this aberration for a
given coverslip thickness.
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conventional system we have Ĥ(νx = 0, νy = 0) = 1. For FFOCT however, part of
the light can lose coherence and be rejected, so that the system can’t be considered
energy conserving anymore (Ĥ(νx = 0, νy = 0) < 1).

Fig. 4.3: Aberrations simulation in a conventional imaging system. Pupil functions
without aberration and for 3 common aberrations (defocus, coma and spherical aberration) are
depicted on the first row. On the second row the corresponding intensity PSF and on the third
row the corresponding MTF. Panels have been generated using the open source python library

Prysm [Dube, 2019].

0 500 1000 1500 2000 2500 3000
Spatial frequency [mm 1]

0

0.2

0.4

0.6

0.8

1

M
TF

 ra
di

al
 a

ve
ra

gi
ng

Diffraction limited
Defocus
Coma
Spherical

Fig. 4.4: MTF radial averaging simulation in a conventional imaging system. These curves
represent the radial averaging of the 2D MTF depicted Fig. 4.3 on the bottom row. I scaled

them with the square root in order to increase visual differences between the curves.

4.3.2 Aberrations theory in FFOCT

Spatially incoherent FFOCT was found to behave differently with aberrations. A primary
experiment [Xiao et al., 2016] showed that applying defocus on FFOCT does not drastically
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reduce the support of the MTF, therefore the resolution was robust against this aberration,
see Fig. 4.5 where I reproduced this experiment on an USAF resolution target. The signal
to noise ratio (SNR) for FFOCT however dramatically decreases even if the resolution does
not suffer much. In order to provide a satisfactory explanation16 two groups worked on
developing a physical model for aberrations in FFOCT. The first group proposed a model
in [Tricoli and Carminati, 2019] which focused on modeling FFOCT in scattering media
and the second a model [Barolle, 2019] which is consistent with the first with particular
emphasis on aberrations.

Fig. 4.5: Conventional vs FFOCT and defocus. (a) Conventional image observed on the
camera with a strong defocus. (b) Corresponding FFOCT amplitude image acquired with a 4

phases demodulation.

The following is dedicated to derive aberrations manifestation in FFOCT and is greatly
inspired from [Barolle, 2019]. Multiple scattering is neglected (this should remain valid at
shallow depth due to time gating). The model is derived in the paraxial approximation
where the light field is considered as a scalar function. The incident light field E0 in
the source plane17 is a complex random variable whose phase is randomly distributed in
[0, 2π[. Moreover, we will assume that the source is completely spatially incoherent:

〈E0(r)E∗0(r’)〉 = I0δ(r− r’) (4.22)

where r and r’ are the position vectors18 of two points in the source plane, I0 is the mean
intensity of the source, which is supposed to be spatially homogeneous, and the symbol 〈.〉
accounts for an ensemble average over different realizations of the field E0. We will then
assume that the light field is monochromatic19. The propagation between the source plane
Σsource and the sample plane Σsample is described by the impulse response h(r’, r”) between
a point in the source plane at coordinate r” and a point in the sample plane at coordinate
r’. Because of spatial invariance20, the impulse response satisfies h(r’, r”) = h(r’ + r”)
where h is the PSF in amplitude of the optical system. Magnification has been set to 1

16The explanations in [Xiao et al., 2016] and in [Ilina et al., 2020] do not take into account the effect of
aberrations in the illumination but only in the detection.

17In practice it is not the source plane because we use a Köhler illumination but the plane where the
field diaphragm is located. The spatial incoherence is still valid in this configuration.

18I replaced the coordinates by a position vector to alleviate notations.
19Monochromaticity is defined here as ∆λ/λ� 1.
20In practice spatial invariance is not always achieved. Aberrations can vary in the field of view and

lead to an isoplanetic patch where aberrations are the same. When the isoplanetic patch is very small, it
is therefore not optimal to reason in the pupil plane [Mertz et al., 2015].
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for the sake of clarity. The incident light field in the sample plane can be written:

Ei(r’) =
∫

ΣSource
h(r’ + r”)E0(r”)dr” (4.23)

where the integral is over the whole source plane Σsource. Let us consider an object whose
reflectivity is given by the complex function ρ(r’). The reflected field in the sample plane
can be written:

Er(r’) = ρ(r’)Ei(r’) = R(r’)
∫

Σsource
h(r’ + r”)E0(r”)dr” (4.24)

The propagation between the focal and camera planes is described by the same impulse
response as the propagation from the source plane to the focal plane. The light field
propagated in the sample arm, reflected by the object and propagated back to the camera
can be written:

Esample(r) =
∫

Σsample
h(r + r’)Er(r’)dr’ (4.25)

where the integral is over the sample plane Σsample. By re-injecting Eq. 4.24 into Eq.
4.25, it yields:

Esample(r) =
∫

Σsource

∫
Σsample

h(r + r’)ρ(r’)h(r’ + r”)E0(r”)dr’dr” (4.26)

The light field transmitted by the sample arm Esample(r) is given by the double convolution
of the object reflectivity ρ with the sample arm impulse response h on the way in and out
of the microscope objective. Then, the FFOCT image is obtained from the interference
between the sample and the reference field 〈Esample(r)E∗ref (r)〉 where Eref (r) is the light
field transmitted by the reference arm and measured on the camera:

Eref (r) =
∫
href (r− r”)E0(r”)dr” (4.27)

The en face image is then obtained by combining Eqs. 4.22, 4.26 and 4.27:

〈Esample(r)E∗ref (r)〉 = I0

∫∫
h(r + r’)ρ(r’)h(r’ + r”)h∗ref (r− r”)dr’dr” (4.28)

Integrations over r” and r’ are convolutions and Eq. 4.28 can be recast using the convo-
lution operator:

〈Esample(r)E∗ref (r)〉 = I0 (h× [h⊗ href ]) ∗ ρ−(r) (4.29)

where ρ−(r) = ρ(-r) is the spatially reversed amplitude due to the reflection. Taking the
Fourier transform and using the convolution theorem, Eq. 4.29 becomes:

F−1
(
〈Esample(r)E∗ref (r)〉

)
= I0

(
ĥ ∗

(
ĥ× ĥref

))
× R̂ (4.30)

Without aberrations in the reference arm we have ĥref = 1 on the whole pupil so that
ĥ× ĥref = A and Eq. 4.30 becomes:

F−1
(
〈Esample(r)E∗ref (r)〉

)
= I0

(
ĥ ∗ ĥ

)
× R̂ (4.31)
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where R̂ is the Fourier transform of the object reflectivity. Taking the Fourier transform
of the above expression and going back to the spatial domain, the FFOCT image finally
writes:

〈Esample(r)E∗ref (r)〉 = I0
(
h2 ∗ ρ−(r)

)
(4.32)

Aberrations in FFOCT also affect the object image like a frequency filter. As opposed to
conventional systems, the transfer function ĥ ∗ ĥ is not always even, hence the PSF h is
not real anymore. For even aberrations, the support of the auto-convolution is wider than
the auto-correlation so that FFOCT is less sensitive to even aberrations than conventional
imaging. I simulated the effect of defocus Fig. 4.6 and one can see that the FFOCT
image is less affected in terms of resolution than the conventional image, which is what we
experimentally observed Fig. 4.5. On the contrary, when ĥ is odd, then ĥ satisfies ĥ(−u) =
ĥ∗(u) and the auto-convolution is equal to the auto-correlation: ĥ ∗ ĥ(u) = ĥ⊗ ĥ(u). For
binary objects like a resolution target, the reflectivity in amplitude or in intensity are equal.
Therefore, when ĥ is an odd function, FFOCT and conventional images should suffer the
same way from aberrations. I simulated the effect of coma Fig. 4.7 where the OTF is the
same for both systems. Finally FFOCT behaves the same as a confocal microscope linear
in amplitude rather than intensity [Sheppard and Wilson, 1981]:

Iconfocal = I0
∣∣∣h2 ∗ ρ−(r)

∣∣∣2 (4.33)

The confocal gating being created by the time gating combined with the spatial incoherence
of the illumination for FFOCT rather than the confocal pinhole in the case of confocal
microscopy21.

21At this step the advantage of FFOCT is that it does not require scanning because the gating is
multiplexed on all camera pixels. Also, FFOCT can access the complex nature of the field and therefore
retrieve phase information.
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Fig. 4.6: Defocus simulation: FFOCT and conventional comparison. (a) Pupil
function with 0.5Z0

2 . (b) MTF for FFOCT which maintains a large support. (c) MTF
for conventional imaging which has a shrinked support due to the defocus. (d) Difference
MTFF F OCT −MTFConv. (e) Simulation on a Siemens star target of FFOCT image with the
given aberration. (e) Simulation on a Siemens star target of conventional image with the given

aberration.

Fig. 4.7: Coma simulation: FFOCT and conventional comparison. (a) Pupil function
with 0.5Z−1

3 . (b) MTF for FFOCT and conventional imaging are the same and exhibits a
shrinked support. (c) Simulation on a Siemens star target of FFOCT and conventional image
with the given aberration. Coma being an odd aberrations, aberrated image of a binary object

is the same for both technique.

In order to quantify the resolution gain in FFOCT, I defocused a resolution target from
−20 µm to 20 µm with 1 µm steps22, see Fig. 4.8(a-c). By re-slicing the 3D stacks on a
circle Fig. 4.8(d) it is possible to see the effect of defocus on conventional imaging: the
contrast decreases with an opening angle corresponding to the NA Fig. 4.8(e) whereas
the boundary remains sharp for FFOCT. A few oscillation artifacts can be observed with
the same angle whose origin is explained later. I computed the 2D Fourier transform of

22I compensated the defocus on the reference arm by adjusting the optical path length in order to match
the target.
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each image23 and performed a radial averaging. Doing that I obtain an approximation of
the MTF, see Fig. 4.8(f,g). From these curves it is clear that FFOCT exhibits a MTF
which does not change much when adding defocus. Nonetheless the signals are lower and
the phase does not remain unaffected: contrast inversion can be seen for a given spatial
frequency, which corresponds to the dark ring in the MTF Fig. 4.6(b).

Fig. 4.8: Defocus experiment (a) A Siemens star target was imaged from −20 µm to 20 µm
around the focal plane with 1 µm steps in (b) conventional images and (c) FFOCT. A radial
reslice for constant spatial frequency (d) allow to see the difference in behavior for conventional
systems compared to FFOCT (e). The MTF is approximated using a radial averaging of
the Fourier transform magnitude for conventional images (f) and FFOCT (g). Each curve

correspond to different amount of defocus adimensionned in NA/λc µm.

In order to quantify phase artifacts I computed the phase difference for each spatial fre-
quency between a defocused image and the focused one Fig 4.9 with the following equation:

φ(ν) = arg
(

ˆRfoc ˆR∗def
)

(4.34)

23I used the period plus smooth decomposition [Moisan, 2011] to avoid the cross artifact when taking
the Fourier transform. Replicating the image in order to introduce symmetry can also work but images
gets bigger and the computation heavier.
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where ˆRfoc is the 2D Fourier transform of the focused image and ˆPdef is the 2D Fourier
transform of the defocused image. By computing the radial averaging on the positive
frequencies, phases inversion are more visible. One can see that with defocus, the phase
difference for conventional imaging is random for high frequencies. Indeed, these frequen-
cies cannot reach the camera, they are filtered out by the MTF, so the phase difference is
just noise.

Fig. 4.9: Phase inversion in FFOCT and conventional images for (a) a moderate and (b)
a strong defocus. Contrast inversions are seen for FFOCT even for higher spatial frequencies,
meaning that these frequencies can propagate through the optical system but their phases can

be modified, leading to artifacts on FFOCT images.

4.3.3 Experimental validation of the theory in FFOCT

In the aim of further validating the aforementioned simulations and results, I built a system
that combines a standard FFOCT setup with an adaptive optics (AO) closed loop24. To do
so, I used a Shack-Hartmann wavefront sensor (SH-WFS) and an adaptive lens (AL) both
from Dynamic Optics that recently shown great performances for retinal imaging [Bonora
et al., 2015, Verstraete et al., 2017]. The setup is depicted on Fig. 4.10, the FFOCT
part shown in blue consists of a Linnik interferometer (with Olympus UCPLFLN20X
objectives) with an LED source (M850L3, Thorlabs), the sample arm is mounted on a
translation stage (T-LSR150B, Zaber Technologies) and the reference mirror is mounted
on a piezoelectric translation stage (STr-25, Piezomechanik) for phase-shifting. The beam
from a He:Ne laser (633 nm) is expanded and collimated using a 4x microscope objective
and a f1 = 100mm lens and used as a plane wave reference for the AO part. This beam
is combined with FFOCT illumination using a dichroic mirror (FM02R, Thorlabs) before
the 45:55 beam splitter (BP145B2, Thorlabs) and blocked from entering the reference
arm using a high pass filter as I wish to image the aberrated PSF in the sample arm
only. The AL is set a few centimeters back from the pupil plane of the sample arm

24At first I tried with SLM (Meadowlarks). Unfortunately these SLM are limited in the maximal phase-
shift that they can induce (around 0.5 λ) which is not sufficient to distinguish the advantage of FFOCT
over traditional imaging techniques.
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objective. The field curvature is compensated by a 2 mm thick NBK7 glass plate in the
reference arm [Mecê et al., 2020a]. In the sample arm, the beam is split by the same
dichroic mirror as in the illumination arm. The AL plane is relayed using a 4f telescope
with a diaphragm (to filter out parasite reflections) onto the SH-WFS lenslet array. The
remaining LED infrared photons are filtered out using a laser line filter centered at 633nm.
In this configuration, I do not block the laser photons from impinging the FFOCT camera
so I can image the sample arm PSF. This setup allows to jointly acquire the FFOCT image
and the associated pupil function (after numerically propagating the measured wavefront
in the AL plane [Mertz, 2019]). Note that the SH-WFS arm could be put at the exit of the
interferometer to perform AO correction but the measured wavefront would correspond to
the round trip25 and could therefore not be used in this study to extract the pupil function
ĥ.

Fig. 4.10: Experimental setup: combining FFOCT with adaptive optics. Blue parts
correspond to FFOCT arms and red parts correspond to AO arms. WFS: wavefront sensor -
AL: adaptive lens - GP: 2 mm glass plate used for field curvature compensation - DHP: dichroic
high pass mirror - HPF: high pass filter - BS: beam splitter - LLF: laser line filter - f1 = 150mm
- f2 = 150mm - f3 = 60mm - f4 = 350mm. An example of FFOCT image acquired after
correcting aberrations is shown next to the camera with an inset of the conventional PSF. The
associated image measured on the Shack-Hartmann wavefront sensor is shown on the right,

together with the reconstructed wavefront with an RMS error below 0.04 λ.

The AL was calibrated following the procedure described Appendix C. The wavefront
was controlled in closed loop after the acquisition of the influence functions of each single
actuator. The first step for operating the system is to correct for the AL initial aberra-
tions. Correcting these aberrations leads to a wavefront distortion of 0.04 λ RMS and
required 55% RMS26 of the lens dynamic thus leaving room for introducing deterministic
wavefront errors. I imaged a Siemens star target, which is the recommended practice for
coherent microscopy [Horstmeyer et al., 2016] in order to gather the maximum number

25Consequently, the wavefront seen by the WFS is not a true representation of the AL shape. This is akin
to the double pass effect whereby odd aberrations cancel out between the two paths and even aberrations
are doubled in amplitude.

26Note that this value can greatly vary depending on the lens. The second lens I ordered was 22% RMS.
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of spatial frequency on the same image. Aberrations were computed on the 15 firsts27
(ANSI/OSA index) Zernike polynomials on 363 centroids (corresponding to 20 centroids
on the pupil diameter). The pupil function ĥ was then constructed without the piston
(non-measureable with a SH-WFS) and simulations were conducted on a reference Siemens
star target image without aberrations. Direct images were taken by blocking the reference
arm in order to remove unwanted light and fringes. FFOCT images were taken with a
linear 4 phase buckets scheme in order to extract the amplitude term [Creath, 1988]. Using
this setup, it is therefore possible to jointly acquire conventional images, FFOCT images
and associated pupil functions ĥ (after numerically propagating the AL wavefront in the
pupil plane). For the first experiment I introduced a simple defocus in order to compare
with the manual defocusing and validate that the AL and numerical pupil propagation
were working correctly. Results are shown Fig. 4.11 for a wavefront error of 0.62 λ RMS.
The reconstructed wavefront measured by the Shack-Hartmann wavefront sensor is de-
picted on the left. Next to the wavefront, the simulated MTF for conventional (Eq. 4.18)
and FFOCT (Eq. 4.31) are shown, where one can see that FFOCT MTF exhibits a much
larger support, suggesting that the resolution is better with such aberrations in FFOCT
than in conventional imaging. Next to the MTF are shown simulated and experimental
data for conventional imaging (with simulated and experimental PSF in inset) and for
FFOCT. Simulations and experimental data match perfectly, and this could already be
observed for a manual defocusing applied by translating the target axially. I reproduced
the same experiment for astigmatism (Fig. 4.12) and coma (Fig. 4.13), which also contains
defocus due to the AL being set a few centimeters back the pupil plane. The experimental
results again closely match the simulations, validating Barolle’s theory [Barolle, 2019].

Fig. 4.11: Results for defocus. Left: wavefront applied with the AL. MTF for conventional
imaging and FFOCT are simulated according to the proposed model. Simulated and experi-
mental data on a Siemens star target are shown for conventional images (with simulated and

experimental PSF in inset) and FFOCT.

27AL can correct only up to 15 Zernike modes [Bonora et al., 2015].



CHAPTER 4. HARDWARE DEVELOPMENTS 103

Fig. 4.12: Results for defocus + astigmatism. Left: wavefront applied with the AL.
MTF for conventional imaging and FFOCT are simulated according to the proposed model.
Simulated and experimental data on a Siemens star target are shown for conventional images

(with simulated and experimental PSF in inset) and FFOCT.

Fig. 4.13: Results for defocus + coma. Left: wavefront applied with the AL. MTF for con-
ventional imaging and FFOCT are simulated according to the proposed model. Simulated and
experimental data on a Siemens star target are shown for conventional images (with simulated

and experimental PSF in inset) and FFOCT.

Discussion

These results were very hard to obtain because the alignment of the system is critical. If
the AL or the WFS is off centered, even by a few hundreds micrometers, then the simu-
lated MTF dramatically changes (parity is lost by translation). Also, the target needs to
be perfectly orthogonal to the optical axis otherwise a varying amount of defocus will be
present in the field of view. This alignment is especially difficult to obtain for the high
numerical aperture used here (NA = 0.8) hence the small depth of focus. The field cur-
vature also needs to be precisely corrected for the simulations to match the experimental
data. If the field curvature is not perfectly corrected, then the SNR is not homogeneous on
FFOCT images (visible in Fig. 4.13) and it seems that we can observe a smaller isoplanetic
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patch on FFOCT images in this case. Correcting the wavefront however is much easier
than introducing controlled amount of aberrations, especially for higher order aberrations.
Indeed, when the AL corrects the wavefront, it doesn’t matter if it is centered as long as
the wavefront is compensated (with or without using a wavefront sensor). The drawback
would be that the reconstructed aberrations would be biased and that the system could
not be used to perform precise aberrometry but it could nonetheless correct for aberrations
(even for higher order ones on dilated pupils), see next section where I used the AO part
to correct for ocular aberrations and obtained near diffraction limited images of the retina.

In addition to the previous experiments I also studied the evolution of the PSF for various
amount of defocus. The point spread function for FFOCT in amplitude is:

F−1(ĥ ∗ ĥ) = h2 (4.35)

while the point spread function for conventional imaging is:

F−1(ĥ⊗ ĥ) = |h|2 (4.36)

Notice that the amplitude of the PSF in FFOCT should be the same as the conventional
PSF: |h2| = |h|2. In order to compare both PSF, I imaged a 3D phantom sample containing
0.05% (w/v) TiO2 nanobeads with 2% (w/v) agarose. At this concentration the nanobeads
were isolated in 3D which makes it possible to measure individual PSF. In order to measure
FFOCT PSF, I started by aligning the coherence plane with the focal plane where I could
measure the PSF on a single nanobead in focus. I then shifted the coherence plane by
translating the sample arm (by doing so, I avoid the backlash effect from the motor
and perform very precise shifts) and measured the PSF with various amount of defocus
expressed in micrometer in the air, see Fig. 4.14. For each experimental FFOCT PSF
I simulated the theoretical PSF given by Eq. 4.32. I made the same measurement for
conventional images by blocking the reference arm and by applying the previous amount
of defocus on a single bead. According to the presented model, the width of the PSF
modulus should be the same for conventional and FFOCT. One can see Fig. 4.14(b) that
the width is higher than expected for conventional images, especially close to the focus
position. This is due to the agarose sample being weakly scattering. This also explains
that the shape of the simulated FFOCT PSF are also different from the experimental ones
which exhibits a speckle pattern (small scatterers composed of air bubbles are present in
the coherence volume leading to random patterns). However the width of the amplitude
of the experimental PSF for FFOCT is consistent with the model.
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Fig. 4.14: PSF experiment. (a) Scheme of the FFOCT experiment measuring PSF for
various amount of defocus. The focal plane is kept the same but the coherence plane is shifted
by translating the sample arm. PSF are measured with different amount of defocus on different
nanobeads. (b) PSF for different amount of defocus. The first row is the theoretical PSF
according to Eq. 4.32. The second row is the experimental FFOCT PSF. The third row is the
conventional PSF for the same amount of defocus, acquired by blocking the reference arm.

These results seems to contradict the ones found in [Xiao et al., 2016] where the authors
conclude that PSF width in FFOCT is robust against defocus (and other aberrations)
whereas I found that the magnitude of the PSF width is behaving the same for FFOCT and
for a conventional system: it will be broadened by the presence of aberrations. Their model
neglects the propagation from the source to the object and therefore fail at completely
describing the image formation process on the detector. Regarding the experimental part,
several flaws in their experiment could explain that they measured the same PSF width
for various amount of defocus:

• Their PSF images are interpolated with an unknown kernel which could modify
the PSF width (spline kernels can introduce oscillations that are not present in the
original image) and original PSF are not shown.28 The PSF width measurements
are not performed in 2D but along a cross section. It is not stated if the cross-section
is the same for each defocus position but the PSF asymmetry could potentially lead
to wrong conclusions.

• It seems that the authors did not measure the magnitude of the PSF because one
can clearly see the negative side-lobes on the PSF, see Fig. 4.15(A). These side-lobes
should be positive and included in the PSF width computation using an envelop.
Also, the photons backscattered by the bead can interfere with the photons backscat-
tered by the coverslip and give non-interpretable results. The fact that the FFOCT
PSF is complex is also adding ambiguities in this experiment.

• The signal to noise ratio of the background (coverslip) is not following the signal
to noise ratio of the bead with respect to the applied defocus, see Fig. 4.15(B,C).
Their claimed correct focus position was probably wrong, or the reference arm was

28The optimal interpolation (in the L2 norm) when signals are correctly sampled is Shannon interpolation
(interpolation by sinc) by zero padding the image Fourier transform [Pianykh, 2011].
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not correctly compensated during the experiment because the signal to noise ratio
of the background should follow the signal to noise ratio of the bead. In either case,
combined with the unknown interpolation, it seems that the PSF width could not
be reliably determined in this experiment.

Fig. 4.15: Previous experiment suggesting that PSF width is robust against defocus
in FFOCT. (A) Figure taken from [Xiao et al., 2016]. (B) PSF maximum and background
level computed from (A). (C) Ratio of the PSF maximum and background level. This should
remain constant and the pic for 10 µm suggests that something was wrong for the acquisition

at this defocus position.

In this section I demonstrated the theory proposed by Victor Barolle [Barolle, 2019], which
mitigates the previous claims that FFOCT is almost insensitive to aberrations [Xiao et al.,
2016]. FFOCT is in fact to some extent less sensitive to aberrations than a conventional
system but several artefacts such as contrast inversion and ringing can prevent to obtain
clear images e.g. for retinal imaging with ocular aberrations. A mechanism to counteract
these aberrations is therefore needed to perform near diffraction limited imaging of the
retina in order to improve both the resoltution and the signal to noise ratio. Such approach
is discussed in the following section.
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4.4 Development of wavefront sensorless AO-FFOCT using
an adaptive lens

In this section, I investigate various optimisation strategies in order to correct for wavefront
distortion in FFOCT. Adaptive optics approaches were first demonstrated for conventional
microscopy using a wavefront sensor in a closed loop fashion [Neil et al., 2000]. This
technique was then applied for confocal microscopy [Booth et al., 2002] and OCT [Hermann
et al., 2004]29. In order to correct the wavefront I used the same adaptive lens as previously
used to validate the model of how aberrations affects FFOCT. The wavefront correction
is performed without measuring the wavefront but by measuring a quality criterion on the
images, called a merit function. This merit function is sequentially optimized to correct
for aberrations. Wavefront sensorless approaches were first developed for conventional
microscopy [Débarre et al., 2007], two-photon microscopy [Débarre et al., 2009], OCT [Jian
et al., 2014] and super-resolution microscopy [Booth et al., 2015]. Wavefront sensorless
approaches present the advantage of being simpler and cheaper to implement, making
them good candidates for clinical applications. The AL is quasi-conjugated in the pupil
plane of the FFOCT sample arm for imaging a USAF target or in front of the eye for
retinal imaging. I did not use a strict conjugation, even for microscopy testing because in
the end the retinal setup for in vivo imaging would not have a strict conjugation. This is
done to avoid relaying the AL in the pupil plane, which would need to be compensated
in the reference arm, leading to a bigger and more complicated system. Our approach
mimics prescription glasses where the correction is done ahead of the pupil plane without
strict conjugation. This should work for correcting low spatial frequency modes such the
ones corrected by the AL [Bonora et al., 2015].

4.4.1 Strategies for optimizing the wavefront

The general strategy to perform an optimization is to choose a basis and then explore the
states space in this basis. In our case valid basis can be the set of actuators or the set
of AL singular modes determined in the calibration step, see Appendix C. This basis will
be explored and at each step an evaluation of the performance will be done using a merit
function, typically corresponding to a criteria on the FFOCT image quality. There are
several approaches that are used to perform such optimizations which can be classified in
two classes depending on whether it computes the gradient of the merit function with re-
spect to the basis coordinates. In our case, computing the gradient is both time consuming
and cumbersome. Indeed, the AL is suffering from strong hysteresis, which means that
evaluating the gradient shifts the current position and the optimization becomes very com-
plicated. Our goal is to find an optimization scheme that is both fast (meaning minimal
number of function evaluations) and reliable (meaning it finds an acceptable minimum).
Several approaches are compared in the following sections.

Coordinate descent in actuator space

The first naive algorithm we can think of is optimizing each actuators individually one after
each other. By sweeping each actuator across their admissible voltage range and keeping
the best position before repeating the procedure to the next actuator we can reach an
optimum. In order to find a good optimum, this procedure needs to be repeated several
times. Such optimization strategies are commonly called coordinate descent algorithms.

29Historical developments of AO for microscopy can be found in [Booth, 2007]
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An example of an optimization is shown Fig. 4.16 for a two steps optimization (each
actuator is optimized sequentially twice). The signal to noise ratio is improved by 3 orders
of magnitude. The number of iterations was quite high with around 600 function calls.
In the following, this experiment will represent our gold standard in term of performance
because this algorithm was able to converge even when starting with minimal signals, i.e.
very far from the optimum. Note that at the end of the optimization procedure the merit
function is decreasing even if the optimal voltages are kept. This could be due to the
actuator hysteresis which prevent us to come back exactly to the optimally determined
position. Also, by deforming the AL shape, its thickness can vary, hence the coherence
plane can shift from the focal plane leading to FFOCT signal damping. This phenomenon
makes it hard to find the optimal correction without any feedback on the reference arm
position.
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Fig. 4.16: Coordinate descent in actuator space results. Left: Optimization of the lens
shape. Each actuator is optimized sequentially with 2 passes. - Right: Merit function (mean of
4 phases FFOCT image) evolution for each optimization step, corresponding to the left panel.

Same colors represent same actuators.

Coordinate descent in AL singular space

Replacing the set of actuators by the set of singular modes (which look like Zernike poly-
nomials, see Fig. C.4) we can follow the same procedure as the coordinate search but in
the singular basis. The set of constraints must be adapted in order to stay in the allowed
range of voltage for each actuator. This approach leads to poor performances well below
the coordinate descent in actuator space. I think the reason behind is the actuator hys-
teresis which prevent to come back to the optimal position for each modes. Because the
derivative of the merit function is greater for each step (see Fig. 4.17, especially for the
blue modes), the hysteresis is more detrimental when using modes.
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Fig. 4.17: Coordinate descent in AL singular space results. Left: Optimization of the
lens shape. Each AL modes is optimized sequentially with 2 passes. - Right: Merit function
(mean of 4 phases FFOCT image) evolution for each optimization step, corresponding to the

left panel. Same colors represent same modes.

DONE algorithm

Instead of coordinate search, one can use more advanced strategies to reach the optimum.
The Data-based Online Nonlinear Extremum seeker (DONE) models the unknown merit
function and attempts to find an optimum of the underlying function [Verstraete et al.,
2015, Verstraete et al., 2017, Bliek et al., 2018]. The DONE algorithm was developed for
noisy functions such as experimental measurements and does not require derivatives. One
of the advantages of DONE over similar algorithms, such as Bayesian optimization, is that
the computational cost per iteration is independent of the number of function evaluations.
The DONE algorithm is used to iteratively find a minimum of a merit function f (rep-
resenting the FFOCT image quality) on a compact set X ⊆ [Vmin, Vmax]d (representing
each actuator voltage, where d is the number of actuators) by updating a Random Fourier
Expansion (RFE) g(x) =

∑D
k=1 ckcos(ωTk x + bk) at each new measurement (the compu-

tational limiting factor being the number of functions D that serves as surogate for the
unknown function, the complexity scaling as O(D2)), and using this RFE as a surrogate
of the merit function f for optimization. It is assumed that the function f is unknown and
only measurements perturbed by noise can be obtained: yn = f(xn) + ηn. The algorithm
consists of four steps that are repeated for each new measurement:

1. At the start of iteration n, a new measurement yn = f(xn) + ηn is taken at the
point xn. f representing a metric of the FFOCT image quality given the voltage xn
applied to the AL actuators.

2. Update the RFE model g(x) =
∑D
k=1 ckcos(ωTk x+bk) based on the new measurement

from Step 1. Only the weights ck are updated. The parameters ωk and bk stay
fixed throughout the whole optimisation. ωk are drawn from a zero-mean Gaussian
probability distribution with variance σ2

ω, whereas bk are drawn from a uniform
probability distribution in [0, 2π[.

3. After updating the RFE, an iterative optimization algorithm is used to find a (pos-
sibly local) minimum x̄n of the RFE. All derivatives of the RFE can easily be calcu-
lated while not requiring extra measurements of f as in the finite difference method
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which is faster than taking a new measurement. The initial guess for the optimiza-
tion is the projection of the current measurement point plus a random perturbation
xinit = PX(xn + ζn) where PX is the projection onto the actuator voltage space X.
The random perturbation prevents the optimization algorithm from starting exactly
in the point where the model was trained. Increasing its value will increase the
exploration capabilities of the DONE algorithm but might slow down convergence.
ζn is chosen to be white Gaussian noise.

4. The minimum found in the previous step is used to update the RFE again. A
perturbation is added to the current minimum to avoid the algorithm getting trapped
unnecessarily in insignificant local minima or saddle points xn+1 = PX(x̄n + ξn).
The random perturbations can be seen as an exploration strategy and are again
chosen to be white Gaussian noise. Increasing their variance increases the exploration
capabilities of the DONE algorithm but might slow down convergence. In practice, I
use the same distribution for ξ and ζ. Finally, the algorithm increases n and returns
to Step 1.

The performance of DONE depends on the following hyperparameters:

• Number of basis functions D. The influence of D is simple: increasing D will lead to
a better RFE fit at the cost of more computation time. Hence, D should be set high
enough in order to get a good approximation, but not too high to avoid unnecessarily
long computation times (especially since the complexity is O(D2)). D does not need
to be very precise and overfitting should not be a concern for this parameter, since
there is regularization.

• Regularization parameter λ used in the least square fit for finding the RFE coeffi-
cients ck. It is used to prevent underfitting or overfitting of the RFE under noisy
conditions or when dealing with few measurements.

• The probability density function of frequencies ω for the RFE model.

• The variance σ2
ζ of ζ and σ2

ξ of ξ. These parameters influences the exploration of
both the RFE surrogate in Step 3 and of the original function in Step 4.

The DONE algorithm showed similar performances (same improvement in signal to noise
ratio) as the coordinate search in actuator space. The convergence however was much
faster with around 80 steps compared to 600 with our golden standard experiment. As
long as the DONE parameters have been fine tuned by tries and errors, the convergence
was satisfactory for microscopy and retinal imaging, as shown in the next section where
using the DONE algorithm allowed us to optimize the wavefront for ocular aberrations
in less than 1 second (8 seconds for coordinate descent). It is easier for subjects to keep
still during 1 second than 8 seconds and therefore improved the quality and probability of
convergence.
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Fig. 4.18: DONE optimisation results. Left: actuators voltages during the optimisation
process. - Right: Merit function (mean of 4 phases FFOCT image) evolution for each optimiza-

tion step, corresponding to the left panel.

Other approaches

I also tested several optimization algorithms including interior-point [Mehrotra, 1992],
sequential quadratic programming [Bonnans et al., 2006] (which is basically Newton’s
method with constraints) and active-set methods but the noisy nature of the measurements
were leading to poor results with slow convergence.

4.4.2 Practical application for retinal imaging

Aberrations of the human eye

Ocular aberrations can be divided into static30 and dynamic aberrations31. Static aber-
rations are routinely corrected using glasses and contact lens prescribed to correct mainly
defocus and astigmatism32 but rarely for higher order aberrations which need to be cor-
rected for diffraction limited imaging of the retina, especially when the pupil is dilated33.
The distribution of such static and dynamic aberrations are shown Fig 4.19 for a popu-
lation of 50 healthy patients with a temporal resolution of 236 Hz [Jarosz et al., 2017].
Dynamic aberrations are mainly caused by tear film dynamics and micro-fluctuation of
accommodation rather than fixational eye movement [Mecê et al., 2018]. Most of ocular
aberrations are composed of low order aberrations, defocus and astigmatisms accounting
for more than 92% of the total wavefront variance [Porter et al., 2001].

30Corresponding to the temporal average of ocular aberrations.
31Corresponding to the time variation of ocular aberrations.
32However prescribed correction have a precision of ±0.125D [Thibos et al., 2002] which is not sufficient

for diffraction limited imaging.
33Dilated pupils allow for a higher NA, hence a better theoretical resolution. It is known however that

aberrations strength increase with the pupil size [Maguen et al., 2004] so that adaptive optics approaches
are mandatory to resolve cellular features on the retina.
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Fig. 4.19: Eye aberrations distribution on 50 healthy patients. (a) Mean static aber-
rations for each Zernike mode with error-bars computed as the standard deviation of each mode
on the 50 patients. (b) Mean dynamic aberrations for each Zernike mode with error-bars com-
puted as the standard deviation of each mode on the 50 patients. Data obtained from authors

of [Jarosz et al., 2017].

Using the models presented in section 4.3 we can simulate retinal images that would be
acquired using a conventional system (flood illumination opthtalmoscope) or an FFOCT
system given the static and dynamic aberrations from one of the 50 patients. Simulation
for static aberrations are shown Fig. 4.20 for conventional and FFOCT imaging. I plotted
a radial averaging of the MTFs Fig. 4.20(d) in order to compare the different curves. At
this step one can point out the following properties:

1. The diffraction limited MTF is above both curves: aberrations are only detrimental
to an optical system.

2. The energy contained in both conventional and FFOCT MTF are equal34 and be-
cause the MTF for FFOCT is less than 1 at the origin, higher frequencies have a
better gain with respect to lower frequencies hence the resolution is usually better
with FFOCT at the price of a signal loss.

3. The resolution defined as the frequency radius where 50% of the MTF energy is
contained can be higher for FFOCT with aberrations because the MTF slope is
lower. This does not mean that FFOCT probes more information but rather than
the ratio of information from higher spatial frequencies over lower frequencies is
higher, hence FFOCT provides better images as long as the SNR is sufficient.

34Indeed we have |h2| = |h2| and then by applying Perseval equality we obtain
∫
|ĥ ∗ ĥ|2 =

∫
|ĥ⊗ ĥ|2.
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Fig. 4.20: Static ocular aberration simulation. (a) Diffraction limited image (acquired
with an AO-SLO) which is used as reference image for the simulation. (b) Aberrated image
simulated for a conventional imaging system. (c) Aberrated FFOCT image simulated with the
presented model. (d) MTF radial averaging. ν is defined as the frequency radius where 50%
of the MTF energy is contained normalized by the diffraction limited radius (ν = 1 without
aberration). In this case FFOCT performs twice better in terms of cutoff frequency. (e) Bar

plots of Zernike polynomials coefficients and (f) associated wavefront.

These interesting properties are making FFOCT quite robust against ocular dynamic
aberrations so that a slow adaptive correction is sufficient to maintain a diffraction limited
resolution with sufficient signals. I simulated the dynamic aberrations35 after correcting
the 15 firsts Zernike polynomials below Maréchal criterion Fig. 4.21. After a few hundred
milliseconds, photoreceptors are blurred on the conventional image while they are still
distinguished with FFOCT after 3 seconds.

35Aberrations where measured at 236 Hz for 808 data points [Jarosz et al., 2017].
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Fig. 4.21: Dynamic ocular aberration simulation. Top row are the simulated FFOCT
images after initial correction of the 15 firsts Zernike modes. Bottom row are the corresponding

simulation for conventional imaging.

Experimental setup and algorithms

Methods and experimental setup are presented in section 4.1 and [Mecê et al., 2020b].
Briefly, in the case of in vivo human retinal imaging, the subject is seated in front of
the system depicted Fig. 4.22 and stabilized with a chin and forehead rest and asked to
fixate a target placed at an infinite focal conjugate. Image acquisition is realized in a dark
room in order to maximize natural pupil dilation. Phase modulation was performed by
the residual axial motion after optical stabilization so that we don’t need to modulate the
PZT position. Image sequences were composed of 150 images acquired at 300 Hz. Images
without signals are automatically removed from the acquired stack before registration and
averaging. The FFOCT camera worked close to saturation to use the whole full well
capacity, decreasing relative importance of shot noise. During image acquisition, the total
power entering the eye from the FFOCT illumination source and the SD-OCT scanning
source were respectively 1.3 mW (for 0.5 s) and 0.25 mW (continuous scanning), which
are below the ocular safety limits established by the ISO standards for group 1 devices.
Fig. 4.22 presents the schematic of the custom-built FFOCT system coupled through a
dichroic mirror with a Thorlabs Ganymede-II SD-OCT system. The FFOCT comprises
a LED with λc = 850 nm center wavelength and 30 nm bandwidth (M850L3, Thorlabs),
used as a spatially incoherent illumination source, giving a theoretical axial resolution of
approximately 8 µm in water. The LED is focused by a condenser f = 20 mm in front
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of the eye’s pupil. A physical diaphragm is positioned in front of the LED, conjugated
to the retina and the FFOCT reference mirror. The illumination beam is split into the
reference and the sample arms by a 50:50 cubic beam splitter (BS). For the reference arm,
an Olympus 10X/0.25 NA Plan Achromat objective is used with a silicon mirror placed
at the focal plane of the objective. The whole reference arm (microscope objective and
silicon mirror) is mounted on a fast voice-coil translation stage (X-DMQ12P-DE52, Zaber
Technologies Inc.), allowing for adjustment of the coherence gate position. The FFOCT
light beam arrives with an 8 mm diameter in the eye’s pupil. The back-scattered photons
from both arms are recombined by the same BS and focused onto a high-speed (up to 720
Hz at full-frame) CMOS camera (Q-2A750-Hm/CXP-6, Adimec) for FFOCT imaging.
In the case of in vivo retinal imaging, the SD-OCT and the voice-coil translation stage
were used to measure and correct for involuntary axial eye movements during the imaging
acquisition in a closed-loop fashion.

SD-OCT

930 nm
Detector

D
M

FF-OCT

850 nm

SPF

SPF

VCTS

Axial motion optical stabilization control loop

VCTS = Voice-coil translation stage

DM = Dichroic mirror

GS = Galvanometer scanners

SPF = Shortpass filter

FS = Field-stop

FS

Fig. 4.22: Schematic drawing of the custom-built FFOCT system coupled with an
SD-OCT for real-time axial tracking and FFOCT coherence gate positioning guidance.

In order to perform the correction for retinal imaging, consistent images must be acquired.
The issue is that in order to get consistent images, the adaptive correction is needed to
increase the signal to noise ratio. FFOCT images can therefore not be used to perform the
correction because the signal to noise ratio is too low to reliably initialize the correction.
Also, FFOCT images contains several megapixels and are therefore slower to process,
which would reduce the speed of the adaptive correction. To overcome this issue, the idea
is to use the axial tracking device, an SD-OCT, as a surrogate of the FFOCT. Indeed,
SD-OCT can be consistently acquired and the optimisation can be performed for a given
layer, increasing the chances of getting more signals in the imaged layer. One of the tricky
part is to design a metric to be optimized on the SD-OCT signals that will also jointly
optimize the FFOCT signals. Wavelength of both modalities are 50 nm apart, which only
represents 5.9% of the central wavelength. The difference in wavelength should therefore
have little to no effects on the correction performance. Then, because the image formation
is different for both imaging modalities [Tricoli and Carminati, 2019, Barolle, 2019], the
merit function must be wisely chosen to satisfy both imaging condition. First, we tested
two naive approaches. We considered the total energy in the SD-OCT B-Scan (which was
primarily averaged over the lateral dimension, so that we obtained a spatially averaged
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A-Scan) and the maximum of the SD-OCT signals (which often corresponds to the IS/OS
junction). The results we obtained with these were acceptable (good convergence and gain)
for the USAF target and the model eye, but for in-vivo the convergence was more random,
often leading to an increase of the the SD-OCT signals, but losing on the resolution, which
indicates that we found a local minimum with good SNR but aberrations remained. These
aberrations were probably more detrimental on the FFOCT which led to difficulties in
acquiring images. In order to overcome this issue I designed a hybrid metric L with a
penalization on the peak width, see Fig. 4.23(c):

L = max(SD-OCT)×
(

1 + α

width(SD-OCT)

)
(4.37)

where α is a regularization parameter that was set close to 1. This hybrid metric L can be
applied for any layer of interest to automatically adjust the lens shape to focus the beam
on said layer.

Fig. 4.23: Different metrics used for optimizing FFOCT signals and correcting aberrations.
(a) Peak height. (b) Total energy. (c) Hybrid metric combining peak height and peak width

I compared the aberration correction performance using the FFOCT and the SD-OCT as
a surrogate for the sensorless optimisation, see Fig. 4.24. To do so, I induced a strong
aberration and then corrected it with coordinate descent in actuator space using either
the hybrid metric function on the SD-OCT signals shown Fig. 4.23(c) or the average am-
plitude in the FFOCT amplitude image. Both optimisation methods performed similarly
(approximately the same number of steps and same gain on FFOCT amplitude image),
however it was around 1000 times faster using the SD-OCT signals as it is faster to acquire
and process.
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Fig. 4.24: Comparison of wavefront optimisation using FFOCT or SD-OCT signals.
The top row shows the conventional images before and after optimisation using B-Scans from the
SD-OCT or en face amplitude images from FFOCT. The bottom row shows the corresponding
amplitude FFOCT images. Both optimisation approaches show similar quality improvement on
FFOCT amplitude images, as highlighted by the PSD insets for each image and the PSD radial

averaging on the right.

4.4.3 Results: better SNR and images of nerve fiber layer

I started by imaging a 30 years old subject with a dilated pupil (7.5 mm) who had LASIK
surgery, resulting in important amount of high order aberrations, especially at full pupil
size. Without correcting the wavefront and even-though this subject had a good sight with
regular sized pupil, there are almost no signals on the FFOCT image Fig. 4.25(a) with the
AL resting in its flattened state. One can only guess the vessel in the middle of the frame.
After optimizing the wavefront36 we observed a 10-fold improvement in signal strength37
Fig. 4.25(b). Even without strict pupil conjugation, the adaptive correction was valid for
the whole FOV, see Fig. 4.25(c) where one can see the cone mosaic on the 1×1 mm2 FOV.
This is, to the best of my knowledge, the largest FOV of the retina acquired on a single
frame with cellular resolution. Other adaptive optics techniques are currently limited by
the eye isoplanetic patch to around 0.5×0.5 mm2 FOV [Bedggood et al., 2008, Han et al.,
2018]. The adaptive correction is usually done using a guiding star on the retina and the
resolution will degrade in the field of view farther from the guiding star. In order to over-
come this limitation, multi-conjugate AO was proposed [Thaung et al., 2009, Laslandes
et al., 2017] using several guiding stars and two optical adaptive elements. At the expense
of an increased complexity, these systems can obtain near diffraction limited images of
the retina on 1.5 × 1.5 mm2. Another possibility is to reduce the pupil size in order to
lower aberrations effects. By limiting the pupil size to 5 mm the commercial device RTX1
(flood illumination camera) achieve near diffraction limited resolution on 1× 1 mm FOV.
Finally, computational aberrations correction can be performed sequentially for different
spatial patch on the FOV and achieve near diffraction limited imaging on arbitrary sized

36It took 0.8 s using DONE algorithm on the hybrid metric L
37I can’t compute the signal to noise ratio improvement as it would require dividing by 0 in this case.
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FOV [Sudkamp et al., 2018].

We imaged a second subject (25 years old) with (1.5D x 0.5D x 160◦) prescribed correction
with dilated pupil (7 mm). In order to compare the AL approach with regular prescription
glasses we imaged this subject without any correction, with her prescription glasses and
with the AL approach. For each acquisition we plotted the radial averaging of the spatial
frequency PSD where the spatial frequency linked to the photoreceptor mosaic is clearly
visible after optimization Fig. 4.25(d). Without correction no signals could be acquired
and with her regular glasses, signals were very low. This experiment suggests that the
AL approach can effectively correct for higher orders modes not corrected by prescription
glasses, hence improving image SNR and acquisition consistency. We obtained consistent
images of the photoreceptor layer on this subject from 0◦ temporal to 8◦ temporal, allow-
ing us to explore a large area of the retina with diffraction limited resolution in only 3
acquisitions to cover approximately 3 mm2, see Fig. 4.25(e-g).

Fig. 4.25: AO-FFOCT acquisition of the photoreceptors. (a) FFOCT image with the
AL resting flat and (b) after optimization. The correction is valid for a large FOV of 1×1 mm2

(c). A second subject with (1.5D x 0.5D x 160◦) prescribed correction was imaged without
correction, with her prescription glasses and with the AL approach and the radial averaging
of the PSD was computed (d) and show the superior results using the AL. The white arrow
indicates the spatial frequency linked with the photoreceptor mosaic. Finally we imaged this

subject from 0◦temporal to 8◦temporal (e-g) in only 3 acquisitions.

Owing to the AL capability to optimize the signal for any given layer visible on the SD-
OCT, we could obtain FFOCT images for the first time on the nerve fiber layer (NFL) at
multiple depths in vivo. The SD-OCT B-Scan acquired with the lens resting in its flat state
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is shown Fig. 4.26(a). After optimizing on the NFL layer, signals from this layer became
much stronger on the SD-OCT B-Scan Fig. 4.26(b) and we could acquire FFOCT images
for 3 different depths Fig. 4.26(d-f). In these images one can see a capillary plunging from
the top of the NFL to the bottom. This capillary is nowhere visible on the SD-OCT B-Scan
because of its small thickness. The blood flow in the capillary was visible but automatic
computation of the blood flow velocity failed because signals were too low in each frame
to perform such analysis. Optimizing the AL for the photoreceptor layer Fig. 4.26(c) we
could acquire the photoreceptor mosaic Fig. 4.26(g) during the same acquisition session
paving the way for 3D high resolution imaging with FFOCT.

Fig. 4.26: AO-FFOCT acquisition of the NFL. (a) SD-OCT B-Scan before optimization
and after optimization on the NFL (b) and photoreceptor layer (c). (d-f) FFOCT images of
the NFL were acquired at 3 different depths. Fibers orientations on the top layer are highlighted
with yellow dashed lines. (g) FFOCT image of the photoreceptor layer was acquired during the

same imaging session.
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5.1 Motion tracking using FFOCT
Part of the work presented in this thesis was aiming at measuring fluctuations and con-
struct images based on fluctuations properties. For some applications it was even of great
interest to measure the fluctuation of fluctuations. Such applications can be the study
of wound healing or the imaging of blood flow. In each case, these applications felt into
motion tracking where the aim is essentially to locate and follow a particle or cell between
several images. Quantitative measurements such as velocity maps can then be constructed
by analyzing many particles.

5.1.1 Article: Probing dynamic processes in the eye at multiple spatial
and temporal scales with multimodal full field OCT

In this paper, motion tracking was first applied to measure corneal wound healing ex
vivo on a macaque retina on D-FFOCT images. In Section 3.2, I scraped the cornea
with metallic tweezers and imaged the wound during nearly two hours and observed the
healing with epithelial cell migrating towards the center of the wound to close it. In order
to measure the migration velocities, I computed the optical flow1 [Horn and Schunck,
1981] which is an ill-posed problem because it has more unknowns than equations2. In
order to be able to compute the optical flow I used the Horn-Shunck method which is
explained in detail in Section 2.5. Finally, migration velocities matching with existing

1The optical flow computation results in a dense association of a pixel between two images so that each
pixel in an image is associated with another pixel in a second image, giving the displacement for each pixel.

2This is known as the aperture problem.
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studies were found. In this article we also measured blood flow velocity in the conjunctiva
on a FFOCT movie acquired by my fellow colleague Viacheslav Mazlin on his experimental
setup dedicated to in vivo human corneal imaging. We were able to measure red blood cell
velocity by constructing a Kymograph plot which was cumbersome and not automatable.
Later I found a way to make it automatically and generated angiography images, see
section 5.1.2.
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Abstract: We describe recent technological progress in multimodal en face full-field optical
coherence tomography that has allowed detection of slow and fast dynamic processes in the eye.
We show that by combining static, dynamic and fluorescence contrasts we can achieve label-free
high-resolution imaging of the retina and anterior eye with temporal resolution from milliseconds
to several hours, allowing us to probe biological activity at subcellular scales inside 3D bulk
tissue. Our setups combine high lateral resolution over a large field of view with acquisition at
several hundreds of frames per second which make it a promising tool for clinical applications
and biomedical studies. Its contactless and non-destructive nature is shown to be effective for
both following in vitro sample evolution over long periods of time and for imaging of the human
eye in vivo.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) is used in the biomedical field to image microstructures in
tissue using mostly the endogenous backscattering contrast [1, 2]. Full-field optical coherence
tomography (FFOCT) is an en face, high transverse resolution version of OCT [3, 4]. Using
incoherent light sources, two-dimensional detectors and a time-domain phase stepping scheme,
FFOCT acquires en face oriented virtual sections of the sample at a given depth and has been
used for biology [5], and medicine [6]. Recently, new multimodal techniques, based either on
OCT or FFOCT, have enabled the study not only of the static 3D morphology of a sample but also
of the dynamics of its scatterers [7, 8] by measuring phase-sensitive temporal fluctuations of the
backscattered light. In ex-vivo fresh unfixed tissues, these dynamic techniques reveal subcellular
structures that are very weak backscatterers and provide additional contrast based on their
intracellular motility [9,10]. FFOCT multimodal techniques can also detect collective subcellular
motion of scatterers resulting from either static deformations or propagating elastic waves for
mapping elastic properties or flow of cells in capillaries [11, 12]. Complementary contrast
from dynamic and static properties coupled in a multimodal setup with high resolution FFOCT
thus enables noninvasive visualization of biological tissue, microstructural, morphological and
dynamic properties at the cellular level without the use of exogenous markers. Nevertheless, in
order to achieve identification of specific molecular structures, OCT images often need to be
compared with fluorescence images or stained histology slides to understand and identify the
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observed microstructures. Indeed, fluorescence microscopy reveals molecular contrast using
dyes or genetically encoded proteins that can be attached to a specific structure of interest and/or
monitor changes of the biochemical properties of the tissue. Structured illumination microscopy
(SIM) [13–15], a full-field version of confocal microscopy, can perform micrometer scale optical
sections in a tissue and has been coupled to static and dynamic FFOCT (D-FFOCT) [16, 17] to
allow simultaneous coincident multimodal fluorescence and FFOCT acquisitions.
OCT and FFOCT are often used in tissue to overcome the difficulties linked to scattering induced
by small scale refractive index discontinuities, but large-scale discontinuities are also present and
induce aberrations that could affect the resolution [18]. Recently, we have demonstrated that low
order geometrical aberrations do not affect the point spread function (PSF) but mostly reduce the
signal to noise ratio (SNR) when using interferometry with a spatially incoherent source [18, 19].
This allows us to achieve resolution of cone photoreceptors in vivo in the human retina without
adaptive optics [19].
In vivo imaging, and detection of in vitro subcellular dynamics, would not have been possible
using FFOCT without recent technological advances in detector technology that we will evaluate
for static and dynamic FFOCT cases. Although we have developed different multimodal
FFOCT-based biomedical imaging applications in oncology [20], embryology, cardiology and
ophthalmology [21–23], we will restrict the field of the present paper to new results obtained in
ophthalmology. We will discuss the technical issues of sample immobilization for in vitro and
ex vivo imaging, along with processing methods that were applied for the first time in FFOCT
leading to the first dynamic 3D reconstruction with sub-micron resolution of a macaque retinal
explant. An axial sub-micron plane locking procedure is presented to image the same sample
plane over several hours in a time-lapse fashion, and applied to image slow wound healing on a
macaque cornea. Quantitative methods derived from computer vision were adapted to produce a
cell migration map with micrometer resolution. We also introduce a combined posterior/anterior
eye imaging setup which in addition to traditional FFOCT imaging offers the possibility to
measure the blood flow in the anterior eye that compares favorably to existing techniques [24–26].
Finally, an approach that combines fluorescence labeling for live cells with static and dynamic
FFOCT is presented.

2. Methods

Although the principle of OCT is mature and well established, it is still an active area of research
where improvements mainly rely on hardware performance. In the case of FFOCT, the camera
performance is critical to achieve sufficient single shot sensitivity for imaging 3D biological
samples with low reflectivity such as cornea and retina in depth. Recently, a new sensor with an
improved full well capacity (FWC) combined with faster electronics allowed faster acquisition
with better SNR. The gain in speed is of critical importance when it comes to imaging moving
samples, whereas the improvement in SNR is particularly important to image weakly reflective
samples in-depth. With the recent development of D-FFOCT, the need for a high FWC camera is
even greater as the dynamic fluctuations probed are weaker than the static signals, due to the
small size of the moving scatterers. Also the setup stability needs to be studied to ensure that the
measured dynamics are in the sample and are not caused by artifactual mechanical vibrations.

2.1. Signal to noise ratio in FFOCT

Two FFOCT modalities were used throughout this work - static images were acquired using a
two phase scheme and dynamic images are processed using a stack of direct images - and in both
cases the camera is used close to saturation in order to use the whole FWC. For a two phase
acquisition, two frames are recorded with a π-shift phase difference. The intensity recorded on a
camera pixel is the coherent sum of the reference and sample beams (which contains coherent
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and incoherent terms) and can be written:

IΦ=0 = η
I0
4
(R + Rincoh + α + 2

√
Rαcos(∆φ)) (1)

IΦ=π = η
I0
4
(R + Rincoh + α − 2

√
Rαcos(∆φ)) (2)

where IΦ=0 is the intensity recorded without phase shift, IΦ=π is the intensity recorded for a π
phase shift, η is the camera quantum efficiency, I0 is the power LED output (we considered a
50/50 beam-splitter), α is the reference mirror reflectivity (i.e. the power reflection coefficient),
R is the sample reflectivity (i.e. the power reflection coefficient), ∆φ is the phase difference
between the reference and sample back-scattered signals, Iincoh = Rincoh I0/4 is the incoherent
light back-scattered by the sample on the camera, mainly due to multiple scattering and specular
reflection on the sample surface. The static image is formed by subtracting IΦ=π from IΦ=0 and
taking the modulus:

I2−phase = ηI0
√

Rα |cos(∆φ)| (3)

For a 2-phase scheme it is not possible to un-mix amplitude and phase. To get rid of the cosine
term we consider that the phase is uniformly distributed (both in time and space) in biological
samples and we can average I2−phase with respect to the phase distribution:

< IFFOCT > = ηI0
√

Rα
1

2π

∫ 2π

0
|cos(∆φ)|d∆φ = 2ηI0

√
Rα

π
(4)

Returning to the recorded intensity IΦ, the terms related to sample arm reflectivity are negligible
compared to the incoherent and reference terms so the intensity corresponding to pixel saturation
Isat can be written:

Isat ≈ ηI0
4
(α + Rincoh) (5)

Combining Eq. 4 and Eq. 5 we obtain:

< IFFOCT >=
8Isat
√

Rα
π (α + Rincoh) (6)

If we consider an ideal case when the experiment is shot noise limited, the noise is proportional
to
√

Isat , which gives the following signal to noise ratio:

SNR2−phase ∼ 8
√

RαIsat
π (α + Rincoh) ∝

√
Isat (7)

The SNR is proportional to
√

Isat and is therefore proportional to the maximal number of
photoelectrons that a pixel can generate before saturation, which is the definition of the FWC.
Thus the SNR is proportional to the FWC for a 2-phase FFOCT image. D-FFOCT images are
computed by taking the temporal standard deviation of the signal, see Section 2.4. We consider
that both the local reflectivity and phase can fluctuate. The noise term remains the same, as we
also work close to saturation during dynamic acquisitions. The measured intensity can then be
written:

Idynamic = SD
(
ηI0
2

√
R(t)αcos(∆φ(t))

)
(8)

=
2Isat

α + Rincoh
SD

(√
R(t)αcos(∆φ(t))

)
(9)
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Where SD is the standard deviation operator. The dynamic SNR can therefore be written:

SNRdynamic ∼ 2
√

Isat
α + Rincoh

SD
(√

R(t)αcos(∆φ(t))
)
∝

√
Isat (10)

Eq. 10 shows that the camera FWC also limits the SNR in D-FFOCT experiments. One can argue
that averaging several FFOCT images could be a workaround for 2-phase images. Considering
the case of a weakly reflective sample (e.g. cornea and retina) and a moving sample (e.g. the eye)
then one needs to have sufficient signal to perform registration before averaging, therefore SNR
on single frames is of great importance and thus all experiments are conducted with the camera
working close to saturation.

2.2. Improving signal to noise ratio and speed

The most widely used camera for FFOCT (MV-D1024E-160-CL-12, PhotonFocus, Switzerland)
has a 2× 105 electrons FWC with a maximum framerate of 150 f rame.s−1 at 1024× 1024 pixels.
With α = 0.08 (as we typically use 4% to 18% reflectivity mirrors) it leads to a 70 dB sensitivity
for a 2-phase image reconstruction with 75 processed images.s−1. Averaging 100 images with
this camera takes just over 1 second and leads to a 90 dB sensitivity. A major recent change in our
setups has been the introduction of a new camera, specifically designed for FFOCT requirements
(Quartz 2A750, ADIMEC, Netherlands) that has a maximum framerate of 720 f rame.s−1 at
1440 × 1440 pixels and a 2 × 106 FWC. With the new camera characteristics, it is possible to
achieve 83 dB sensitivity for a 2-phase image reconstruction. Acquiring and averaging 100
images takes under 0.2 second and leads to 103 dB sensitivity. This result brings the SNR of
FFOCT and the speed per voxel in en-face views up to the typical range of conventional OCT
systems, but with a better transverse resolution given by the NA of the objective. Aside from
SNR improvement, the second major advantage of this new camera is its acquisition speed. Speed
is an important issue for detection of in vitro subcellular dynamics, and crucial to in vivo eye
examination. Indeed, in contrast to scanning OCT setups, FFOCT requires the acquisition of a
full megapixel image in a single shot, and the signal can be lost if a lateral displacement occurs
between two successive images. This typically imposes a minimum acquisition speed higher
than 200 f rames.s−1 as eye motions are mainly below 100 Hz [27, 28], a condition that is easily
met by the new camera which offers 720 f rames.s−1.

2.3. Improving sample stability

Previously described in vitro imaging setups [10,16] were mounted vertically with the sample
placed under the objective and imaged from above, see Fig. 1(a). This setup consists of a Linnik
interferometer with an excitation source (M405L3, Thorlabs) for fluorescence imaging and an
FFOCT source (M660L3, Thorlabs). Illumination paths are combined and separated using
dichroic filters. Both sample and reference arms are mounted on translation stages (X-NA08A25,
Zaber Technologies). In addition, the reference mirror is mounted on a piezoelectric translation
stage (STr-25, Piezomechanik) for phase-shifting. In this configuration, in order to image fresh
ex-vivo samples in immersion, we had to fix them in place using a 3D printed mounting system
with transparent membrane covering and gently restraining the sample in order to prevent any
movement during imaging. To facilitate imaging of cell cultures that are directly adhered to
the base of a dish, and to use gravity to assist immobilization for other tissue samples, we
have built a new system in an inverted configuration where the sample is directly placed on a
coverslip and imaged from beneath with high-numerical-aperture oil-immersed objectives, see
Fig. 1(b). This setup is mounted with the same parts as the previous one, except that it does not
feature fluorescence measurement capabilities and is mounted horizontally, with the sample arm
mounted vertically. The main advantage is that the sample is held motionless by gravity and
is naturally as flattened as possible (thus providing a flat imaging plane) against the coverslip
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surface without applying compression. Despite these efforts to immobilize the sample, axial drift
on the micrometer scale over long periods of time can occur in either configuration. In order to
compensate for the axial drift we introduced an automated plane locking procedure based on
static FFOCT image correlation around the current position, see Fig. 1(d). FFOCT images are
acquired over an axial extent of 10 µm, taking 0.5 µm steps with the sample translation stage,
and are then cross-correlated with the target image. The sample is then axially translated to the
position corresponding to the maximum of the cross-correlation, which was typically between
0.5-0.8. After each plane correction procedure, a new FFOCT image is taken as target for the
next correction in order to account for evolution in the sample position. This procedure was
performed every 10 minutes. We observed that for long acquisitions of several hours, the time
between autofocus procedures could be increased as we reached a quasi-equilibrium state. Using
this procedure we are able to image the same plane in biological samples over a day. The in
vivo imaging was performed according to procedures already described in [23] which essentially
acquire images in a plane chosen by visual inspection of the live image, and did not include
active plane locking.

                                                                      Vol. 10, No. 2 | 1 Feb 2019 | BIOMEDICAL OPTICS EXPRESS 735 



Fig. 1. PZT: piezoelectric translation - TS: translation stage - LPM: low pass dichroic filter -
HPM: high pass dichroic filter - (a) Multimodal static and dynamic FFOCT combined with
fluorescence side view. The camera used for FFOCT in all setups is an ADIMEC Quartz
2A750. The camera used for fluorescence is a PCO Edge 5.5. Microscope objectives are
Nikon NIR APO 40x 0.8 NA. (b) Multimodal static and dynamic FFOCT inverted system
top view. Microscope objectives are Olympus UPlanSApo 30x 1.05 NA. (c) In vivo FFOCT
setup for anterior eye imaging (with Olympus 10x 0.3 NA objectives in place) and retinal
imaging top view (with sample objective removed, at the location indicated by the dashed
line box), which is capable of imaging both anterior and posterior eye, in both static mode to
image morphology or time-lapse mode to image blood flow. (d) Locking plane procedure.
FFOCT images are acquired over an axial extension of 10 µm with 0.5 µm steps and are
then cross-correlated with the target image. The sample is then axially translated to the
position corresponding to the maximum of the cross-correlation. This example is illustrated
with retinal cells.

Table 1. Setup characteristics.

Setup Transverse resolution [µm] Axial resolution [µm] Field of view [µm × µm]
Fig. 1(a) 0.5 1.7 320 × 320

Fig. 1(b) 0.4 1 390 × 390

Fig. 1(c) 1.7 7.7 1260 × 1260
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2.4. Image computation

FFOCT images presented here are constructed using the 2-phase stepping algorithm. FFOCT
images, as well as OCT images, exhibit speckle that is due to the random positions of the back
scatterers. In this situation a 2-phase stepping algorithm is enough to recover the FFOCT signal,
and moreover 2-phase acquisitions are faster. The method to compute the D-FFOCT images
(Fig. 2) is explained in [10] for both grayscale and colored dynamic images. Briefly, grayscale
images are constructed from a (Nx, Ny, Nt ) tensor, where (Nx, Ny) is the camera sensor dimension
and Nt is the number of frames recorded, by using a standard deviation sliding window on the
time dimension and then averaged to obtain an image. Colored images are computed in the
Fourier domain. The temporal variation of each pixel is Fourier transformed and then integrated
between [0, 0.5] Hz to form the blue channel, between [0.5, 5] Hz to for the green channel and
integrated over 5Hz for the red channel. The arbitrary selection of which frequencies to assign to
which color bands aims to subjectively optimize the visualization in RGB, meaning that color
scales are non quantitative. Note that the maximal detectable frequency of the phase fluctuations
depends on the acquisition speed and is typically 50 Hz for biological samples (corresponding to
the Shannon sampling theorem for an acquisition framerate of 100 f rames.s−1).

2.5. Computing and displaying temporal variations in time-lapse sequences

Due to its non-invasive nature, FFOCT can be used to acquire time-lapse sequences at a fixed
plane and position over long periods to assess slow dynamics on in-vitro samples, or over short
periods in-vivo to assess fast dynamics such as blood flow. This data can be displayed in movie
format to visualize movement (Visualization 1, Visualization 2), or can be processed to quantify
the movement speed and directionality of target features (Figs 3, 4). There are two main methods
to extract quantitative information on motion in image sequences. The first method is solving the
optical flow equations. Optical flow is the pattern of apparent motion of objects, surfaces, and
edges in a visual scene. The second type of method is to use block-matching algorithms where
the underlying supposition behind motion estimation is that the patterns corresponding to objects
and background in a frame of video sequence move within the frame to form corresponding
objects on the subsequent frame. The former technique is a differential method where a partial
differential equation is solved with typical constraints whereas the latter looks to maximize
the correlation between blocks of given size between each frame. We tested block-matching
methods with phase correlation and normal correlation, as well as differential methods with
different regularizers. The one that gave the best result for our corneal wound healing data-set
was the Horn–Schunck method [29] which solves the optical flow equations by optimizing a
functional with a regularization term expressing the expected smoothness of the flow field. This
algorithm is particularly suitable to extract motion on diffeomorphisms which are differentiable
maps (i.e. smooth, without crossing displacement fields). Block-matching methods, in addition
to being slow for high-resolution images, were failing due to the apparent homogeneity of the
intracellular signals requiring blocks of great size, decreasing the accuracy and leading to very
long computations. On the contrary, Horn-Shunck regularization considers the image as a whole
and provides a regularizing term that controls the expected velocity map smoothness. The optical
flow problem consists of solving the following equation:

Ixu + Iyv + It = 0 (11)

where Ix , Iy and It are the spatiotemporal image brightness derivatives, and u and v are the
horizontal and vertical optical flow, respectively. This is an equation in two unknowns that cannot
be solved as such. This is known as the aperture problem. To find the optical flow another set of
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equations is needed and Horn-Shunck regularization introduces the following functional:

L =
∬ (

Ixu + Iyv + It
)2 dxdy + α

∬ {(
∂u
∂x

)2
+

(
∂u
∂y

)2
+

(
∂v

∂x

)2
+

(
∂v

∂y

)2
}

dxdy (12)

where ∂v
∂x and ∂v

∂y are the spatial derivatives of the optical velocity v, and the regularizer α scales
the global smoothness term. The idea is to minimize the optical flow problem by penalizing flow
distortions, where the amount of penalization is controlled by the constant α. This constant gives
weight to the right integral term which corresponds to the optical flow Laplacian summed over
the whole image, thus containing information on the total flow unsmoothness. The functional is
then easily optimized because of its convex nature:

[u, v]T = argminu,v (L) (13)

For the wound healing migration problem we optimized α by looking at the L2 error between
the velocities computed by the algorithm and 200 manually tracked voxels, see Fig. 3(c). The
optimal α was found to be 100.

2.6. Blood flow measurement with FFOCT

For our in vivo blood flow dataset, automated methods based on optical flow failed to extract
a velocity map due to the speckle pattern of the images inside vessels. Motion no longer
corresponded to a diffeomorphism field, especially locally, leading to a complete divergence of
the previous algorithm even with smaller α. Nonetheless we succeeded in extracting a velocity
profile inside a vessel using a kymograph plot, i.e. plotting the vessel curvilinear abscissa against
time. On such a plot, each event (i.e. a passing particle, such as a blood cell) produces a line,
and the slope of this line corresponds to the speed. Using a custom segmentation algorithm, we
automatically fit these lines and extracted the speed for each event at a given vessel cross-position.
We averaged the speed over the 4 to 18 detected events at each position, and calculated the
standard error at each position to evaluate the error in the average speed calculation. Ultimately,
the profile can be smoothed and fit to a Poiseuille flow, typically observed in capillaries [30] to
extract the maximal velocity vmax defined by:

v(r) = vmax

(
1 − r2

R2
cap

)
(14)

where r is the axial distance to the center of the capillary and Rcap is the capillary radius. This
fit allows averaging over more than 400 tracked events and reduces the error on the maximal
blood flow velocity from ±50 µm.s−1 in a single position down to ±15 µm.s−1.

2.7. Samples and subjects

All animal manipulation was approved by the Quinze Vingts National Ophthalmology Hospital
and regional review board (CPP Ile-de-France V), and was performed in accordance with the
ARVO Statement for the Use of Animals in Ophthalmic and Vision Research. Macaque and
porcine ocular globes were obtained from a partner research facility and transported to the
Vision Institute in CO2-free neurobasal medium (Thermo Fisher Scientific, Waltham, MA, USA)
inside a device that maintained oxygenation, for transport to the laboratory for dissection. We
imaged a 2 mm2 piece of peripheral macaque retina, prepared as described in [10]. Briefly, an
incision was made in the sclera to remove the anterior segment. The retina was gently removed
from the choroid, with separation occurring at the RPE, and flattened into petals by making
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four incisions (nasal, temporal, superior, inferior). Pieces approximately 3 mm from the fovea
toward the median raphe were selected for imaging. We also imaged a porcine retinal pigment
epithelium cell culture, prepared as described in [31]. Briefly, porcine eyes were cleaned from
muscle, and incubated during 4 minutes in Pursept-AXpress (Merz Hygiene GmbH, Frankfurt,
Germany) for disinfection. The anterior portion was cut along the limbus to remove the cornea,
lens and retina. A solution containing 0.25% trypsin-EDTA (Life Technologies, Carlsbad, CA,
USA) was introduced for 1 hour at 37°C in the eyecup. RPE cells were then gently detached
from the Bruch’s membrane and resuspended in Dulbecco’s Modified Eagle medium (DMEM,
Life Technologies) supplemented with 20% Fetal Bovine Serum (FBS, Life Technologies)
and 10 mg.ml−1 gentamycin (Life Technologies). Cells were allowed to grow in an incubator
with a controlled atmosphere at 5% CO2 and 37°C. Samples were placed in transwells, and
immersed in CO2-free neurobasal and HEPES (Thermo Fisher Scientific, Waltham, MA, USA)
medium for imaging. Fluorescent labeling in RPE cultures used a polyanionic green fluorescent
(excitation/emission 495 nm/ 515 nm) calcein dye (LIVE/DEAD® Viability/Cytotoxicity Kit,
Thermo Fischer Scientific, France) which is well retained within live cells. For in vitro setups,
typical power incident on the sample surface is approximately 0.1mW, though this varies from
sample to sample as the power level is adapted to work close to saturation of the camera for each
experiment.

Using the new combined anterior/posterior setup (Fig. 1(c)) similar to those described in [19,23],
in vivo imaging was performed on a healthy volunteer who expressed his informed consent,
and the experimental procedures adhered to the tenets of the Declaration of Helsinki. For in
vivo imaging, thorough calculations of light safety according to the appropriate standards are
available in [23]. Weighted retinal irradiance of our setup is 49 mW .cm−2, corresponding to
7% of the maximum permissible exposure (MPE), and corneal irradiance is 2.6 W .cm−2, corre-
sponding to 65%of theMPE,which is further reduced by operating the light source in pulsedmode.

3. Results

3.1. Subcellular contrast enhancement and dynamics detection in retinal explants and
cell cultures

FFOCT and D-FFOCT are useful to reveal contrast inside transparent tissue such as retina. We
imaged a fresh retinal explant from macaque with the inverted setup shown Fig.1(b). We acquired
100 µm deep FFOCT and D-FFOCT stacks with 1 µm step leading to stacks of 101 en-face
images. Fig. 2 shows a 3D volume, en face slices and a reconstructed cross sectional view from
this acquisition. Fig. 2(a-e) show the contrast enhancement in D-FFOCT on cellular features
in layers such as the inner and outer nuclear and photoreceptor layers. Fig. 2(g) demonstrates
the complementarity of static and dynamic FFOCT modes, for example to understand the
disposition of nerve fibers and inner plexiform structures (visible in static mode) in relation to
ganglion cells (visible in dynamic mode). In comparison to the stack acquisition performed in
past setups [10], the improved immobilisation of the sample in the new inverted multimodal
setup facilitated automated acquisition of 3D stacks with reliable micrometer steps so that
volumetric and cross-sectional representations (Fig. 2(a, b)) may be constructed to improve
understanding of retinal cellular organization. The automated plane locking procedure to correct
for axial drift means that we are able to repeatedly acquire 3D stacks beginning at the exact same
plane, making 3D time-lapse imaging possible and ensuring perfect coincidence of multimodal
FFOCT/D-FFOCT stacks. In addition to volumetric imaging through bulk tissue, D-FFOCT can
also be used to image 2D cell cultures to monitor culture behavior over time. An en face image of
a 2D retinal pigment epithelium cell (RPE) culture (Fig. 2(f)) shows high contrast on cell nuclei
and cytoplasm and enables identification of multinucleated cells or cytoplasmic variations from
cell to cell. As a result of the improvements in sample stability and time-lapse acquisition offered
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by the inverted setup, time-lapse imaging over periods of hours, in conjunction with the fast
dynamic signal which creates the D-FFOCT contrast in a single acquisition, can now be reliably
performed. This allows us to identify dynamic behavior at various time scales in these in vitro
conditions over time. We can therefore follow in vitro cellular decline in situ in explanted tissues,
or in vitro cellular development in a growing culture. These capabilities allow understanding of
retinal organization and monitoring of cell viability in disease modeling applications or quality
control of cultured tissue for graft.

Fig. 2. (a) 3D reconstruction of a D-FFOCT image stack in explanted macaque retina
over a 120 by 120 µm field of view. Note that FFOCT signal is damped with increasing
penetration depth, so that upper retinal layers are more clearly visible than lower ones. (b, c,
e) En-face images of the (b) inner nuclear layer, (c) outer nuclear layer and (e) photoreceptor
layer presenting a similar appearance to two-photon fluorescence imaging [32] and (d)
reconstructed cross-section at the location represented by the red dotted line in (a). The
cross-section in (d) was linearly interpolated to obtain a unitary pixel size ratio. (f) D-FFOCT
image of a porcine retinal pigment epithelium cell culture [31]. (g) Overlay of colored
D-FFOCT and FFOCT at the interface between the layers of the nerve fibers (white arrows
point to nerve bundles that are very bright in static and invisible in dynamic mode), ganglion
cells (blue and green cells, visible in dynamic mode) and inner plexiform (fibrous network,
bottom left, visible in static mode). Samples were maintained in vitro in culture medium at
room temperature during imaging.

3.2. Slow dynamics: corneal wound healing imaging

To demonstrate the potential benefits of time-lapse D-FFOCT we imaged a corneal wound. A
macaque cornea was maintained in graft storage conditions, i.e. at room temperature in graft
transport medium (CorneaJet, Eurobio, France), during imaging. Epithelium was scraped in
a small region of the corneal surface using tweezers, creating a wound in the epithelial layer.
The acquired time-lapse sequence in the epithelial layer showed that in addition to revealing
epithelial cells and their arrangement, we were also able to detect the slow corneal healing
with the migration of cells to fill the wound. We acquired 112 dynamic images in a time-lapse
fashion on a wounded macaque cornea with the method and setup introduced in [7], but with
the inverse configuration, as described in Section 2.3 above. The acquisition duration was 112
minutes, corresponding to 1 minute between each dynamic image (see Visualization 1). We
optimized the grayscale range of the dynamic image by applying a non-local mean filter to remove
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the noise while preserving the edges and then averaged 8 images leading to a stack composed
of 14 grayscale images. We computed 13 optical flow maps (between each of the 14 frames)
and summed them to compute the motion map, see Fig. 3(b). The velocities measured range
between 10 − 25 µm.h−1 from near the wound center to periphery respectively. In the literature,
epithelial cell migration speed in vivo in wound healing is around 50 µm.h−1 and lower when
the wound is starting to close [33]. Our figures are therefore of a similar order of magnitude,
although lower, possibly as we were imaging ex-vivo samples at 25°C instead of in vivo cornea
at 37°C and imaged close to an almost closed wound. Indeed, our measured migration rates are
closer to those reported for similar in vitro reepithelialization cell migration studies in rabbit
(10 − 16 µm.h−1 [34]). Our algorithm was validated by comparing with manual tracking of 200
voxels in cells on successive images. Using the previous errors computation presented in Section
2.5 with α = 100 we obtained an accuracy of 2.9 ± 0.6 µm.h−1.

(a)
(b)

(c)

Fig. 3. (a) Dynamic grayscale image of a wounded macaque cornea - the red box shows where
the computation is done, see Visualization 1 (b) Same dynamic image superimposed with
colors coding for the cell migration velocity averaged over the 112 minute acquisition. Each
arrow represents the mean motion in a pixel - (c) Velocity errors for different Horn-Shunk
smoothness terms α. The curve represents the mean error we found by comparing the optical
flow computation with 200 manually tracked voxels. Error-bars represent the error standard
deviation. The optimal α was found to be 100.

3.3. Fast dynamics: blood flow in vivo anterior eye

The fast acquisition speed allows FFOCT to obtain images in vivo and estimate velocities of
physiological processes. Fig. 4 and Visualization 2 depict FFOCT images of conjunctival
blood flow in the in vivo human eye. Images were obtained using a fast acquisition at 275
f rames.s−1 [23] followed by template-matching with an ImageJ plugin to remove lateral
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misalignment [35, 36]. Flow was quantified using the method described in Section 2.6. The
measured flow profile was fitted to a Poiseuille flow profile with good accuracy (R2 > 0.95) and
showed a maximal velocity of 600 ± 15µm.s−1 (Fig. 4(c)), where both speed and diameter are in
agreement with previous experimental findings in the literature, which used slit-lamp microscopy,
coupled with a CCD camera [24,37]. The accuracy of our technique seems to outperform the
accuracy we can estimate from other existing techniques to measure blood flow in the eye by
about one order of magnitude [24–26].

Fig. 4. (a) Single FFOCT-frame of conjunctival blood flow near the limbal region of the in
vivo anterior human eye. See Visualization 2 for a movie of blood flow in the drawn box. (b)
Kymograph plot (space-time domain) inside the blood vessel at x = 10 µm. Grayscale is
inverted so that the black particles indicated by the red arrows are red blood cells flowing
into the vessel. The slope corresponds to the particle speed. (c) Raw velocity profile inside
the blood vessel (blue) computed along the dotted line in (a) with the method explained in
Section 2.6. The standard error is calculated at each position and ranges around 50 µm.s−1

at the center of the profile and 200 µm.s−1 on the sides. The smoothed profile (red) with the
fit to a Poiseuille flow profile (black dashed line) are superimposed and voluntarily shifted
up for increased visibility.

3.4. Towards label free non invasive specific imaging

Multimodal setups that combine fluorescence microscopy and OCT have been developed [38,39]
in order to combine the targeted contrast of fluorescent dyes and antibodies with the structural
contrast of OCT. Recently, a multimodal setup (Fig. 1(a)) was proposed to combine static and
dynamic FFOCT with fluorescence microscopy [40]. This setup can be used to confirm the
FFOCT identity of specific cell types or behaviours via comparison with the fluorescent signal.
Simultaneous coincident imaging on a single multimodal setup is vital in order to correctly
identify the cells at the pixel to pixel scale and so remove any uncertainty that can occur
when imaging one sample on multiple microscopes. To illustrate this validation approach, we
labelled living retinal pigment epithelium (RPE) cells in a sparse culture, using calcein dye. The
polyanionic dye calcein is well retained within live cells, producing an intense uniform green
fluorescence in live cells. We jointly acquired FFOCT, D-FFOCT and fluorescence images of the
labeled cells, in order to compare the different modalities within the same plane at precisely the
same time. Static FFOCT provided the baseline information about cell presence. The refractive
index mismatch between the culture medium and the cells induces light backscattering from cells
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measured by FFOCT. Dynamic FFOCT highlights areas where there is motion of back-scatterers
(e.g. mitochondria), indicating that the cell metabolism was somewhat active. Fluorescence
images showed which cells were alive when we carried out the labelling procedure. The results
are shown in Fig. 5 by merging each channel by pairs: (a) merges static FFOCT and dynamic
FFOCT, highlighting the active cells over all the cells; (b) merges the static and fluorescently
labeled live cells, validating successful labeling as only a subset of cells are fluorescent; (c)
merges dynamic FFOCT and fluorescently labeled live cells allowing the comparison between
live, dead and dying cell dynamics. As shown in Fig. 5(a-c), we thereby observed 3 different
configurations: i) Active cells exhibiting fluorescence indicating that these cells were alive (green
in b, c); ii) Inactive cells without fluorescence indicating that these cells were dead (red arrows
in Fig. 5(b,c)); iii) Highly active cells without fluorescence suggesting that the cell was dying
(white arrows on Fig. 5(a-c)).

(b) (c)(a) Dynamic Static Fluo-Live

Fluo-Live DynamicStatic

Fig. 5. Multimodal binary merging. Static FFOCT is represented in blue, dynamic FFOCT in
red and living labeled cells in green, imaged with the fluorescence setup presented Fig. 1(a).
White arrows show active cells without fluorescence suggesting that apoptosis was occuring.
Red arrows show inactive cells without fluorescence indicating that these cells were dead.

4. Discussion

Through these examples of multimodal static and dynamic FFOCT images, we have demonstrated
the imaging of multiple spatial scales of morphology and temporal scales of dynamic processes
in the eye with multimodal FFOCT. However in order for the technique to be adopted by the
microscopy and medical communities as true label-free microscopy, validation is required in
relation to existing techniques. In addition, further technical improvements could be made with
regards to improving efficiency of data management to enable real-time dynamic imaging and
improve real-time in vivo image display.

4.1. Towards label free dynamic FFOCT

Using the validation approach of fluorescent labeling in tandem with static and dynamic FFOCT
to identify the dynamic signature for specific cell behaviors or types should allow us to achieve
reliable true label-free imaging in 3D tissue samples with FFOCT alone. The proof of concept
presented in Section 3.4 was a first step toward label free imaging as we only used the dynamic
image which is the result of a strong dimension reduction. Indeed, in order to construct an image,
we map the dynamic signal over one or three dimensions depending on the desired output (i.e.
grayscale or color image). The next step is to consider the full signal in order to train machine
learning algorithms to find the optimal signal representation that could distinguish cells based
on different criteria, e.g. live, dead and undergoing apoptosis. We hope that by studying the
dynamic distribution inside cells it will be possible to extract more information such as cell cycle,
cell type, etc. making D-FFOCT a powerful tool for cell biology.
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4.2. Towards real time dynamic FFOCT

Currently each dynamic image is computed in approximately 10 seconds on a GPU (NVidia
Titan Xp). Most of this time is dedicated to memory management. In the original D-FFOCT
configuration [7], images were computed using the CPU so the frame grabber was configured to
save data directly on the computer Random Access Memory (RAM). The difficulty for real-time
applications is the data transfer bottleneck. Indeed, a GPU can process data only as fast as the
data can be transferred to it. In traditional system memory models, each device has access only
to its own memory so that a frame grabber acquires to its own set of system buffers. Meanwhile,
the GPU has a completely separate set of system buffers, so any transfer between the two must
be performed by the CPU, which take times if the amount of data is important. Our current
framework waits for the image to be completely copied to the RAM and then transfers it to the
GPU which limits the maximal system speed. The average load of the GPU during the overall
procedure is less than 5%. In the near future we plan to take advantage of the latest advance in
GPU computing and establish a direct link between the frame grabber and the GPU memory.
Taking the Titan Xp as reference and being limited only by the computation, we expect to be able
to achieve real-time dynamic images. We hope that real-time dynamic movies could highlight
new biological behavior at the cellular and subcellular level. In addition, the faster processing
will improve our real-time in vivo image display.

5. Conclusion

We have demonstrated detection of slow and fast dynamic processes in the eye thanks to recent
technological progress in multimodal full-field optical coherence tomography. Combined static,
dynamic and fluorescence contrasts are moving towards the goal of achieving label-free high-
resolution imaging of anterior eye and retina with temporal resolution from milliseconds to
several hours. Its contactless and non-destructive nature makes FFOCT a useful technique both
for following in vitro sample evolution over long periods of time and for imaging of the human
eye in vivo.
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CHAPTER 5. FROM SIGNALS TO DIAGNOSTICS 138

5.1.2 Article: Real-time, non-contact, cellular imaging and angiogra-
phy of human cornea and limbus with common-path Full-field/SD-
OCT

Fig. 5.1: Angiography of conjunctiva blood flow. The original FFOCT movie (a) is
processed to extract the flow velocity (b) in each pixel, the segmented capillaries (c) and the
average FFOCT image (d). These images are combined to compute angiography velocity maps
(e) and angiography direction maps (f) where interesting areas highlighting Poisseuille flow is

zoomed in (g).

I only contributed on a small part of this study which was aiming at acquiring FFOCT
corneal images on humans in vivo. I worked on automatically generating angiography im-
ages of the blood flow in the cornea that were previously computed using a cumbersome
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approach with Kymograph plots [Scholler et al., 2019]. Computing the optical flow using
Horn-Shunck method was not giving satisfactory results3. I solved this by using block
matching algorithms [Yaakob et al., 2013] where a similarity function is used to compare
a block of pixel in a first image with the neighboring blocks in a second image. The most
probable displacement being the one that maximizes the similarity function. In this case
the similarity function I used was the cross-correlation computed on blocks of size 16× 16
pixels. In order to remove outliers, I filtered low cross-correlation values and applied a
Gaussian filter to smooth the angiography map4 shown Fig. 5.1(b). Finally, I created a
mask depicted Fig. 5.1(c) by segmenting the capillaries with an adaptive thresholding on
the temporally averaged FFOCT image. In order to compute the final angiography map,
I used the HSV method explained appendix B by putting the velocity in H5, the segmen-
tation result in S and the average FFOCT image in V. The same can also be done for the
direction of the flow, see Fig. 5.1(f). Poiseuille flow with quadratic velocity distribution
across the capillary width can be observed in the zoom Fig. 5.1(g) with a maximum veloc-
ity of around 1.2mm.s−1 which was in adequation with the literature [Munson et al., 2006].

I also applied the dust denoising algorithm explained section 3.4 to remove dark spots
that were present on Fig. 7 (article below) on the tear film direct images caused by dust
on the camera sensor6.

3The reason why it was not giving satisfactory results is because Horn-Shunck method prior is that the
underlying displacement field is smooth and is a diffeomorphism (it is an invertible function that maps
one differentiable manifold to another such that both the function and its inverse are smooth) where there
is no crossing in the displacement field. In vessels, red blood cell are giving speckle pattern so that the
optical flow was not a diffeomorphism anymore.

4Flows in capillaries typically follows Poiseuille flow [Munson et al., 2006] and are therefore C-infinity
functions.

5Velocities were inverted and rescaled between 0 and 0.66 so that slow flow corresponds to blue while
fast flow corresponds to red.

6Tutorial and videos of dust denoising available at https://www.jscholler.com/
2019-02-28-remove-dots/.

https://www.jscholler.com/2019-02-28-remove-dots/
https://www.jscholler.com/2019-02-28-remove-dots/
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In today’s clinics, a cell-resolution view of the cornea can be achieved only with a confocal

microscope (IVCM) in contact with the eye. Here, we present a common-path full-field/

spectral-domain OCT microscope (FF/SD OCT), which enables cell-detail imaging of the

entire ocular surface in humans (central and peripheral cornea, limbus, sclera, tear film)

without contact and in real-time. Real-time performance is achieved through rapid axial eye

tracking and simultaneous defocusing correction. Images contain cells and nerves, which can

be quantified over a millimetric field-of-view, beyond the capability of IVCM and conventional

OCT. In the limbus, palisades of Vogt, vessels, and blood flow can be resolved with high

contrast without contrast agent injection. The fast imaging speed of 275 frames/s (0.6 billion

pixels/s) allows direct monitoring of blood flow dynamics, enabling creation of high-

resolution velocity maps. Tear flow velocity and evaporation time can be measured without

fluorescein administration.
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The cornea is the front part of the eye acting as a clear
window into the world. In order to maintain optical clarity,
it has a complex and highly-specialized micromorphology

of fibers, cells and nerves. The tear film protecting the cornea on
top and limbus with blood flow supply at the periphery also play
essential roles in maintaining corneal health. A small malfunction
in any part of this sophisticated system may lead to a broad range
of potentially blinding (4th leading cause of blindness world-
wide1) corneal disorders: degenerative (keratoconus), inherited or
infectious (bacterial, viral, and fungal keratitis). Taking into
account that the largest corneal blindness burden falls on devel-
oping countries2, cost-effective disease prevention through early
diagnosis and treatment, and through public health programs is
preferable over costly surgical interventions3. However, early and
precise diagnosis is frequently complicated as various pathologies,
requiring different therapies, may show the same symptoms on a
macroscopic level4. Clinical OCT5–7 with microscopic axial
resolution proved to be useful for differentiating between many
anterior eye conditions. Nevertheless, a number of pathologies
were left unaddressed by clinical OCT, because of an unmet need
for high lateral resolution in the en face view. The first screening
method to identify specific disease biomarkers with isotropic
micrometer-level resolution was in vivo confocal microscopy
(IVCM)8. Today IVCM is used in clinical practice as an impor-
tant quantitative tool9. Nevertheless, its use is frequently avoided,
primarily because of the requirement for direct physical contact
with the patient’s eye preceded by ocular anesthesia. This results
in discomfort for the patient, increased risk of corneal damage
and risk of infection. Moreover, IVCM provides a limited field of
view (FOV), well below 0.5 mm × 0.5 mm, which results in a long
examination time as the clinician searches for the region of
interest. Despite its drawbacks, IVCM, has remained the only
cell-resolution corneal screening tool available in clinics, with no
alternatives up to now.

Recently, we developed in vivo full-field optical coherence
tomography (FFOCT) and demonstrated its capability to capture
images of the central human cornea, resolving features such as
nerves, cells, and nuclei without touching the eye10. This tech-
nology, originating from the lower speed ex vivo FFOCT11–14,
uses a 2D camera to acquire high-resolution en face images (i)
directly without beam scanning artifacts, (ii) rapidly (at a camera
frame rate), (iii) with flexible FOV. These qualities distinguish
FFOCT from another high-resolution modality—UHR-OCT,
which also achieved impressive cell-detail imaging in the cornea
and limbus using a conventional scanning approach15,16. The
combination of benefits, provided by FFOCT (non-contact
operation, cell-resolution, and en face optical sectioning without
beam scanning artifacts) was achieved thanks to our full-field
interferometry approach. Nevertheless, the first in vivo FFOCT
design captured an image only when the optical path lengths of
the two interferometer arms were perfectly matched, which
occurred only when the cornea happened to land in the perfect
position. Indeed, given that the in vivo cornea is constantly
moving, even during steady fixation, such matching only occurs
at rare random moments, prohibiting consistent real-time ima-
ging and visualization of the whole breadth and depth of the
cornea, necessary for clinical use of FFOCT.

Here we demonstrate a combined common-path FFOCT/
SDOCT microscope (FF/SD OCT), which tracks the axial posi-
tion of the eye and matches the optical arm lengths of FFOCT in
real time to allow consistent imaging of the entire ocular surface
(central, peripheral and limbal cornea, limbus, sclera, tear film).
We demonstrate that real-time, millimeter-field movies of central
and peripheral in vivo corneas consistently reveal cells and
nerves, which can be quantified according to the existing medical
protocols used for IVCM. This makes FF/SD OCT ready for

clinical research and translation into clinical practice as a non-
contact OCT-based alternative to IVCM with higher resolution
than conventional OCT, and capable of detecting changes in the
entire ocular surface. Moreover, we show that our setup also
provides the possibility of monitoring tear film evolution, opening
a door to quantitative and non-contact assessment of dry eye
conditions. Beyond the cornea, the instrument visualizes the
scleral and limbal regions, important to stem cell storage and
regeneration. FF/SD OCT can also directly view blood flow with
high contrast and without fluorescein injection at a high frame
rate of 275 frames per second (fps), which, paired with its high-
resolution capabilities, allows individual blood cells to be fol-
lowed. Furthermore, we demonstrate a method to reveal high-
resolution blood flow velocity and orientation maps, which may
lead the way to new localized diagnostic methodologies of scleral
inflammation and approaches to monitor therapeutic effects
locally.

Results
Tracking eye position with common-path FF/SD OCT. The
central idea in a common-path FF/SD OCT interferometer is to
detect the axial position of the cornea in real-time with SDOCT
and use this information to optically match the arms of the
FFOCT interferometer by moving the reference arm, leading to
consistent FFOCT imaging of a moving in vivo cornea (Fig. 1 and
Supplementary Movies 1, 2). SDOCT, coupled to the microscope
objectives, displays the locations of the corneal surface and other
reflecting surfaces in the XZ plane with high axial resolution
(<3.9 µm) by acquiring 2D cross-sectional 1.25 mm × 2.7 mm
images of backscattered light intensity. 2D SDOCT images are
formed through rapid 100 kHz A-line scanning with a galvan-
ometer mirror. Combined SDOCT and FFOCT share the same
optical paths in the arms of the FFOCT interferometer, which is
apparent in the SDOCT image by appearance of a common-path
FF/SD OCT peak in addition to the conventional peaks from the
cornea and reference mirror of FFOCT (Fig. 2a–d). As the
common-path and reference mirror peaks never overlap, we can
simultaneously detect them and calculate actual position of the
cornea, imaging depth inside the cornea, optimal reference
position, actual reference position and error for validating and
improving the feedback loop (Fig. 2e and Supplementary
Movie 3). Every 8.2 ± 0.5 ms (mean ± standard deviation (s.d.))
information about the current corneal position is sent to the
FFOCT system, where it is used to correct optical mismatch
between the interferometer arms.

Real-time optical path length matching of interferometer arms.
The FFOCT interferometer, equipped with a near-infrared (NIR)
850 nm incoherent light-emitting diode (LED) source and mod-
erate numerical aperture (0.3 NA) 10× air microscope objectives
(MO), acquires 2D en face 1.25 mm× 1.25 mm images of XY
corneal sections with 1.7 µm lateral and 7.7 µm axial resolutions
(see Methods section) by a time-domain two-phase shifting
scheme12 (Fig. 1 and Supplementary Movies 1, 2). Each FFOCT
image, composed of 1440 × 1440 pixels, is captured by a 2D
CMOS camera in 3.5 ms at 275 FFOCT frames/s (or 0.6 billion
pixels/s), which is 130 times faster (in terms of pixel rate) than the
state-of-the-art corneal confocal scanning IVCM systems, imaging
at 30 fps over 384 × 384 pixels FOV (or 3.6 million pixels/s)17.

When the FFOCT interferometer is focused on the surface of
the cornea, the sample and reference arms are optically matched
(or more precisely, the focus spot of light on the cornea matches
with the coherence plane, which is located at the position that
matches (in terms of optical path length) with the reference
mirror). However, as the cornea shifts axially, interferometer
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arms become mismatched due to two factors: (i) the spread of the
focal point into the sample due to Snell’s law, originating from
the large illumination angle and difference between the refractive
indexes of cornea (1.376) and air (1.0), (ii) the shift of the
coherence plane in the opposite direction towards the objectives,
also caused by the refractive index difference (Fig. 3). The optical
mismatch can be measured from the axial location of the cornea,
provided in real-time by SDOCT. The mismatch is used to
calculate, how far the reference arm of the interferometer should
be extended (Fig. 2), in accordance with the defocus correction
procedure18, in order to match the coherence plane with a new
focal position. This extension should be precise enough to land
within the objective’s depth of focus (measured ~ ±35 µm at
FWHM) (Fig. 1b) and rapid enough to follow in vivo movements
of the cornea, which is achieved using a voice coil motor
(accuracy= 2.2 µm, velocity= 1 mm/s, acceleration ~25mm/s2)
operating at a 50 Hz update rate. The entire combined FF/SD
OCT system is mounted on a manual vertical and two motorized
horizontal stages, controllable by the operator using a joystick.

Imaging of ex vivo cornea, mimicking in vivo eye movements.
We tested and optimized real-time feedback of the common-path
FF/SD OCT instrument by imaging ex vivo cornea (Fig. 4a),
mounted on a moving stage. At first, the stage was programmed
to produce a slow steady movement (20 µm/s) to compare system
performance with enabled and disabled defocus correction. With
defocus correction, as the SDOCT detects the cornea coming
closer to the objective, and the image plane going deeper into the
sample, the voice coil stage extends the reference arm to put it in

the optimal position for the current corneal location (Supple-
mentary Movie 4). As a result, the FFOCT interferometer arms
were well matched (Fig. 4f) with 3.7 ± 0.8 µm (mean ± s.d.) error
well within the depth of focus, and FFOCT consistently displayed
corneal images from various depths (Fig. 4g). Only occasionally
the signal vanished due to phase changes induced by unwanted
mechanical vibrations, caused by external factors (e.g., an
underground metro passing nearby). Conversely, without defocus
correction, the reference arm position remains fixed and FFOCT
images are visible only at a single corneal position within the
objective’s depth of focus, which corresponds to matched optical
path lengths of the interferometer arms (Fig. 4d, e and Supple-
mentary Movie 4).

Next, we programmed the stage to move similarly to the
physiological movements of the eye. This was achieved by first
measuring the axial movements of the normal human cornea
in vivo (Fig. 4b) and extracting the underlying frequencies and
amplitudes (Fig. 4c). Two typical movements were visible: (i)
heartbeat at 1.1 Hz with higher harmonics at 2.2, 3.3 Hz, etc., and
(ii) slow breathing at 0.34 Hz, both in agreement with the
literature19. We used the frequencies with the two highest
amplitudes (0.34 Hz with 33 µm amplitude and 1.1 Hz with
13 µm amplitude) as our input for the motorized stage with the
sample (Supplementary Movie 5). In the two cases, applying
defocus correction led to positioning errors of only 1.5 ± 2.2 µm
(mean ± s.d.) (Fig. 4h) and 5.3 ± 4.0 µm (mean ± s.d.) (Fig. 4i), i.e.,
within the depth of focus. Higher frequencies were not important,
as the corresponding amplitudes were smaller than the axial
resolution as well as the depth of focus of the FFOCT device.
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Fig. 1 Common-path FF/SD OCT with axial eye tracking and real-time defocus adjustment. a Side-view of the FFOCT sample arm with the cornea.
Location of the focus changes with changing corneal position, due to refraction at the air-cornea boundary (Supplementary Movie 1). The location of the
coherence plane (depicted in yellow), corresponding to the position of the FFOCT reference arm, also shifts, but in the opposite direction, leading to an
optical mismatch between the two and loss of FFOCT signal. b Measured depth of focus. c The microscope consists of two interferometers: FFOCT, which
acquires en face images using a 850 nm light-emitting diode illumination (depicted in red), and SDOCT, capturing cross-sectional images with a 930 nm
superluminescent diode light (depicted in blue). SDOCT data is used to calculate the current corneal position and the optical mismatch correction required,
which is fed into the fast voice coil stage in the FFOCT reference arm. The stage shifts rapidly to place the coherence plane within the changing position of
the depth of focus. As a result, the FFOCT interferometer arms match, and en face images are acquired consistently and in real-time (Supplementary
Movies 1, 2). All unlabeled scale bars are 400 µm. The source data underlying the plot in b are provided as a Source Data file.
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Imaging of in vivo human cornea and sclera. We used
common-path FF/SD OCT to view in vivo human cornea in real-
time. The study was carried out on three healthy subjects
(1 female and 2 males, aged 36, 24, and 26 years respectively),
which was confirmed by routine eye examination in the hospital
preceding the experiment. Subjects expressed informed consent
and the experimental procedures adhered to the tenets of the
Declaration of Helsinki. Approval for the study was obtained, in

conformity with French regulations, from CPP (Comité de Pro-
tection de Personnes) Sud-Est III de Bron and ANSM (Agence
Nationale de Sécurité du Médicament et des Produits de Santé)
study number 2019-A00942-55. During the experiment, subjects
were asked to rest their chin and temples on a standard headrest,
while looking at a fixation target. Examination was non-contact
and without prior introduction of cycloplegic or mydriatric
agents, nor topical anesthetics. While the system was heavily
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Fig. 2 Real-time detection of back-scattering intensity in SDOCT and calculation of corneal and reference mirror locations. a Left, common-path FF/SD
OCT interferometer with light passing through all optical arms. a Right, SDOCT image with three planes of backscattered/reflected light. b Left, the same
device with blocked FFOCT reference arm. Right, SDOCT image with a single reflected peak, corresponding to the surface of the cornea. c Left, device with
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blue dot). Its narrowness reflects the perfect dispersion matching in identical arms of the FFOCT interferometer. e Left, SDOCT image with common-path
and reference mirror peaks being detected in real-time (Supplementary Movie 3). Both of these maxima move down when the reference arm is extended
for defocus correction. This facilitates their detection, as we can separate only the common-path peak for the upper area of the SDOCT image and the
reference arm peak for the lower part without their overlapping. Right, using current locations of the two maxima and initial location of the reference mirror,
one can calculate the corneal surface position in real-time, along with the depth of the FFOCT imaging plane in the cornea, the optimal reference position
for the current corneal location, the actual reference position and the error between the two, used for validating and improving the optical arms matching
loop. All scale bars are 400 µm. The source data underlying plots in e are provided as a Source Data file.
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optimized for both fast acquisition rate and simultaneous display
at 275 FFOCT images/s, we artificially lowered both acquisition
and display rates of real-time imaging to 10 fps (with each frame
captured in 3.5 ms) in order to be compliant with ocular safety
standards. The pulsed light irradiance was below the maximum
permissible exposure (MPE) levels of up-to-date ISO 15004-
2:2007 (52% of MPE for cornea and 0.5% of MPE for retina) and
ANSI Z80.36-2016 (3.7% of MPE for cornea and 0.5% of MPE for
retina) (for more details see Methods section). Illumination was
comfortable for viewing, due to the low sensitivity of the retina to
NIR and IR light. The operator of the instrument could simul-
taneously view FFOCT movies of en face images, OCT movies
with cross-sectional images of the main corneal reflex, which
serves as an indicator of the current imaging depth, and plots
illustrating the performance of the defocus correction. The
instrument was able to acquire movies (Supplementary Movies 6,
7, 8, 9) from central, peripheral, and limbal zones of the in vivo
cornea (Figs. 5, 6), simultaneously correcting defocus with 9.4 ±
6.2 µm, 11.3 ± 7.2 µm, and 7.2 ± 6.6 µm (mean ± s.d.) errors
(Figs. 5e, 6b, c), respectively.

Non-averaged single FFOCT frames, extracted from the
movies, had high signal from all corneal layers. Over the central

cornea we observed tear film. It appears with a fringe pattern, as
FFOCT is an interferometric technique, meaning that inter-
ference fringes are visible on flat surfaces such as tear film
(Fig. 5f). Just beneath the tear film, we could see superficial
epithelial cells 40–50 µm in diameter with dark 8–13 µm nuclei, in
agreement with the literature20 (Fig. 5b, g). These cells were
revealed by filtering the image in the Fourier domain (see
Methods section). We could also see structures from other
epithelial layers (wing, basal), however were unable to reliably
resolve individual cells, due to low contrast between them.
Beneath the epithelium, we saw the sub-basal nerve plexus (SNP)
with 2–4 µm thick nerves in a vertical orientation (Fig. 5h), which
is characteristic of the central corneal area, located superior to the
whorl-like nerve pattern21. Due to the curvature of the cornea
and small thickness of the SNP, only part of the layer was visible.
Nevertheless, the area of the visible nerve section was 0.317 mm2,
three times larger compared to what is possible with the state-of-
the-art IVCM. As a result, a large-scale view of SNP can
potentially be obtained with a smaller number of “stitched”
images22, leading to significantly faster screening and processing
times. We also show that clinically valuable23 measurement of
nerve density can be performed with FFOCT. Nerves were
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the sample (blue square). The focus spot matches with the coherence plane. An FFOCT image from the surface is captured and defocus correction is not
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the opposite direction due to the higher refractive index inside the sample than in the air. The focus spot and the coherence plane are mismatched and an
FFOCT image cannot be captured without defocus correction. c The FFOCT interferometer is focused inside the sample and the focus is extended. The
defocus correction procedure is performed: the reference arm is extended to put the coherence plane in the new location of the focus and the FFOCT image
from inside of the sample is captured.
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segmented using NeuronJ24 and their density measured 15mm/
mm2 (Fig. 5c), within the healthy margins25. Underneath the
SNP, we enter the anterior part of the stroma with numerous
bright oval-shaped nuclei of keratocyte cells, measured about
15 µm in diameter (Fig. 5i). From the anterior to posterior stroma
the density of keratocytes gradually decreases down to the deep
stromal layer, adjacent to Descemet’s membrane, where the
keratocyte density shows a slight increase, in agreement with the
literature26. Moreover, with the increasing depth, the nuclei show
a more elongated shape27 (Fig. 5k, l). In addition to keratocyte
nuclei, we can resolve keratocyte cell bodies and branching 10 µm
thick stromal nerves (Fig. 5j, k). Descemet’s membrane was also
visible as a dark band separating stromal keratocytes from the
endothelial cells (Fig. 5l). Central endothelium viewed in a single
FFOCT image was hindered by a strong specular reflection and
interference fringe artifacts; nevertheless, after lateral image

registration and averaging (see Methods section) we could resolve
the hexagonal mosaic of 20 µm diameter cells and sometimes a
5 µm nucleus (Fig. 5d, m). While the reflectivity of the
endothelium-aqueous interface is expected to be 100 times less
than the air-tear film interface (based on the refractive index
difference), FFOCT images show only 10 times difference in
brightness, because FFOCT acquires the images of amplitude
(due to the 2-phase amplitude retrieval process) and not intensity
like the conventional OCT. It should be noted that in the figures
these interfaces appear with similar brightness due to an
adjustment of brightness and contrast. We were able to perform
clinically significant28 cell counting and measured the normal
endothelial cell density of 3096 cells/mm2 (Fig. 5d), in agreement
with the literature29, and confirmed on the same subject using a
clinical specular microscope, which counted 3100 cells/mm2. All
of the above images were acquired without any physical contact
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over 12.4 s. i Test of defocusing correction with ex vivo cornea, moved at physiological 1.1 Hz and with 13 µm amplitude (Supplementary Movie 5).
Positioning error is 5.3 ± 4.0 µm (mean ± s.d.), estimated from 1502 positions acquired over 12.5 s. The source data underlying plots in b–d, f, h, i are
provided as a Source Data file. Experiments were reproduced several times using the same ex vivo cornea. All scale bars are 400 µm.
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Fig. 5 Common-path FF/SD OCT imaging of central human cornea in vivo. a Slit-lamp macro photo obtained from one of the subjects. Blue square
depicts the FFOCT field of view. b Zoomed and bandpass filtered (see Methods section) FFOCT image of superficial epithelial cells with dark nuclei.
c Zoomed FFOCT image of sub-basal nerves. NeuronJ24 was used for nerve tracing and quantification. d Zoomed FFOCT image of endothelial cell mosaic.
ImageJ47 point tool was used for cell counting. e Performance of real-time defocus correction, when imaging in vivo human corneal center. Measured
reference mirror position (red), required reference location for ideal defocus correction (green) and error between the two (yellow). The peak at 10 s
corresponds to a blink. Positioning error was 9.4 ± 6.2 µm (mean ± s.d.), estimated from 1488 positions acquired over 38.6 s. f–m Single frame FFOCT
images through the entire thickness of the central cornea extracted from the real-time movies (Supplementary Movies 6, 7). Surface epithelial cells, sub-
basal, and stromal nerves (yellow arrows), keratocyte cells and their nuclei, and endothelial cells were visible. The source data underlying plots in e are
provided as a Source Data file. All unlabeled scale bars 400 µm. Experiments were reproduced several times in each of the three healthy subjects.
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with the eye, with a distance of about 2 cm between the cornea
and the microscope objective. We also benefited from the
insensitivity of FFOCT to aberrations30. More precisely, the
spatially incoherent light source in full-field illumination ensures
that the non-aberrated light from the reference arm can
effectively interfere only with a non-aberrated portion of light
from the sample, while interference with the aberrated part is
heavily suppressed31. As a result, FFOCT keeps the diffraction-
limited 1.7 μm resolution through the entire cornea, despite the
presence of spherical aberrations, which are expected to reduce

the resolution of conventional OCT and IVCM systems by three
times to 5.1 μm (at the paraxial focus 550 μm deep inside the
cornea). Nonetheless, it should be noted that both spectrally-
dependent scattering and absorption in biological tissue, that is
also spatially-dependent, do affect the FFOCT axial resolution.

We also looked at the appearance of stroma in the central and
peripheral cornea, and sclera. The dark background of the central
corneal stroma (Fig. 6d), becomes bright at the periphery (Fig. 6e,
f), which is explained by the increased light scattering from the
stromal fibrils, irregular in diameter and arrangement, known
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µ
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Fig. 6 Common-path FF/SD OCT imaging of peripheral human cornea, episclera and upper sclera in vivo. a Slit-lamp macro photo obtained from one of
the subjects. Squares depict the peripheral locations, where FFOCT images were acquired. b, c Performance of real-time defocus correction, when imaging
the corneal periphery. Measured reference mirror position (red), required reference location for ideal defocus correction (green) and error between the two
(yellow). Peaks at 6 and 14 s correspond to blinks. Positioning errors were 11.3 ± 7.2 µm and 7.2 ± 6.6 µm (mean ± s.d.) estimated from 1022 and 1222
positions acquired over 18.2 and 10.8 s, respectively. d–h Single frame FFOCT images from central cornea to periphery, extracted from real-time movies
(Supplementary Movies 8, 9). Resolving individual keratocyte nuclei (yellow arrows) was increasingly more difficult, when imaging further from the center,
due to stronger light scattering from the stromal fibrils and consequent glare over the entire image. Blue arrows show vessels of episclera, which produced
shadows in the upper sclera. The source data underlying plots in b and c are provided as a Source Data file. All unlabeled scale bars 400 µm. Experiments
were reproduced several times in each of the three healthy subjects.
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from electron microscopy studies32. The aforementioned scatter-
ing bright glare of the background makes it more difficult to
resolve keratocyte cell nuclei at the periphery, comparing to those
in the central cornea, easily visible against the dark background,
in agreement with previous confocal microscopy data33. Blood
vessels (Fig. 6g) were perforating the conjunctiva and episclera
and produced shadows (Fig. 6h) in the upper sections of the
sclera.

It should be noted that ocular movements not only shift the
position of the eye leading to the problem of defocus, but they also
intervene in the FFOCT image retrieval scheme, affecting image
quality. The rapid axial motion of the eye can introduce additional
phase modulation, which, when added to the π piezo modulation,
reduces the FFOCT signal. This effect is seen in FFOCT movies as
occasional wash out of the tomographic signal (Supplementary
Movies 6–9). The rapid saccadic lateral motion of the eye as well
as the rapid flow of tears after a blink can also introduce the
artifacts to the FFOCT images. More precisely, the two-phase
retrieval scheme is unable to completely remove the light
originating from outside of the coherence volume, because the
scene in the two images is shifted. As the largest proportion of
out-of-coherence-volume light comes from the air-tear film
interface, the artifacts manifest the defocused view of the ocular
surface. The artifacts occasionally appear in the FFOCT movies
(Supplementary Movies 6–9) and are more seldom present when
imaging the deeper corneal layers (deep stroma, endothelium), as
the surface gets further from the focus of the optical system.

Imaging of in vivo human tear film. We were able to demon-
strate tear film evolution by blocking the reference arm, thus

converting our FF/SD OCT setup into a conventional microscope.
In order to increase contrast, an image of stray light from
the beam splitter, acquired without the sample, was subtracted
from the tear film image. Before each examination, subjects
were asked to keep their eyes closed for 2 min to replenish
the tear film. Right after the eye opened, a wave pattern was
typically observed (Fig. 7m, n), originating from the interference
within the tear film lipid layer34. In the normal condition (opened
eyes, free to blink) we often saw meshwork (Fig. 7a, l) patterns.
We acquired movies of tear flow after a blink (Supplementary
Movie 10) and after a half-blink, when the eye was not com-
pletely closed, but the tear film shifted (Supplementary Movie 11).
With a blink, the upper lid rapidly moved upward and the layer of
tears followed with a slight delay. At 150 ms after the blink, the
flow velocity was 4.2 mm/s and rapidly decreased to 0.8 mm/s
after 1 s, completely stabilizing to zero in 9 s, in agreement
with literature35,36 (Fig. 7o). Isolated particulate matter, about
1–40 µm in size, was found in all the subjects in lipid and aqueous
layers (Fig. 7a, b, g), thought to be cellular debris or accumula-
tions of newly secreted lipid from the Meibomian glands35.
Particles were static (Fig. 7c–f, h–k), changing locations only from
blink to blink together with the movement of the tear film
(Fig. 7b, c, g, h). We also noticed that small particles were fre-
quently surrounded by liquid drops, which evaporated over time
(Fig. 7h–k).

Imaging of in vivo human limbus. In the inferior limbal region,
30 µm wide radial palisades of Vogt (POV) were visible (Fig. 8f).
The distance between the palisades measured 30–200 µm. Mar-
ginal corneal vascular arcades (MCA) with thin 3–7 µm vessels
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Fig. 7 Imaging human tear film in vivo with conventional microscope configuration of FF/SD OCT. a, l–n Single frame direct reflection images from the
tear film. Interference patterns form the tear lipid layer can be used to evaluate its thickness. b–f, g–k Zoomed images from the real-time blink movie
(Supplementary Movie 10). Isolated particulate matter, thought to be cellular debris or accumulations of newly secreted lipid from the Meibomian glands,
were found in all subjects. Particles were static, changing locations only from blink to blink together with the movement of the tear film. Green zoomed
images show liquid drops surrounding small particles. Liquid was evaporating over time. o Vertical velocity of the tear film, measured by manually tracking
movements of particles in the movie. Tear film stabilized after 9 s following the blink. Peak at 2 s corresponds to saccadic eye motion. The source data
underlying the plot in o are provided as a Source Data file. All unlabeled scale bars 400 µm. Experiments were reproduced several times in each of the
three healthy subjects.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15792-x ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1868 | https://doi.org/10.1038/s41467-020-15792-x | www.nature.com/naturecommunications 9



(Fig. 8g, h) appeared to protrude from inside of the palisades, in
agreement with the literature16,37,38. These vessels, parallel to the
ocular surface, appeared to be connected with a perpendicular
oriented vessel network, visible as dark round shadows (Fig. 8f, g).
Closer to the cornea, MCA vessels curled into the loops, while
continuing to spread in the radial direction. Beneath, we could see
thicker 40 µm branching vessels (Fig. 8i). By looking at the dif-
ference between two camera images (see Methods section), it was
possible to resolve individual 7 µm blood cells (Fig. 8j and Sup-
plementary Movie 12), which were difficult to see with a tomo-
graphic FFOCT image. Moreover, using rapid 275 frame/s
acquisition, we could visualize and track the flow of these cells,

which had a speed of about 1 mm/s (Supplementary Movie 12).
Furthermore, in order to capture the full-field information about
the blood flow, important for addressing inflammatory conditions
in the anterior eye, we measured the local cross-correlation for
each 16 pixel × 16 pixel sub-image and retrieved blood flow
velocity and blood flow direction maps with micrometer-level
resolution (Fig. 8b–e). Average velocity was measured to be
0.446 ± 0.270 mm/s, with the lowest speeds close to vessel walls
and highest speeds in the middle of the vessels, at junctions and
also in locations where vessels were overlaying each other
(Fig. 8c). Blood flow was mostly radial, going back and forth from
the cornea (Fig. 8d, e).

2

3

c

50 µm

1

d

e j

50 µm

i

k

f g

h

a
Limbus

Blood flow velocity

b

50 µm

400 µm

Blood flow direction

1.3

1.05

V
el

oc
ity

 [m
m

/s
]

0.8

0.55

0.3

0.05

Fig. 8 Common-path FF/SD OCT imaging and angiography of in vivo human limbus. a Slit-lamp macro photo obtained from one of the subjects. Red
square depicts location, where FFOCT images were acquired. b, c Blood flow velocity map, retrieved from the rapidly acquired movie at 275 images/s
(Supplementary Movie 12), together with a zoomed image. The lowest speeds were measured close to vessel walls and highest speeds in the middle of the
vessels, in junction points (point 2 and point 1 (with merging vessel coming to point 1 visible only in the movie)) and also, as artifacts, if vessels overlaid
each other (point 3). d Blood flow orientation map retrieved from the movie. Each color corresponds to a certain direction of blood flow, according to the
colormap e. f–k Single frame FFOCT images of consecutive depths in limbus. Yellow arrows—palisades, green arrows—thin vessels hosted within
palisades, blue arrows—perpendicular vessel network thought to be connected with horizontal vessels. Underneath, thicker vessels and scattering stroma-
sclera medium with vessel shadows were seen. j Zoomed view on thin vessel in i. Image is obtained by subtracting the two camera shots. Contrast is
reduced (see Methods), but is more intuitive for resolving and following individual blood cells (yellow arrows) (Supplementary Movie 12). Unlabeled scale
bars are 400 µm. Experiments were reproduced several times in each of the three healthy subjects.
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Discussion
Confocal microscopy, the state-of-the-art tool for cellular-
resolution imaging of the cornea, requires contact with the eye,
preceded by ocular anesthesia. Conventional OCT provides
high axial resolution of corneal layers, but does not resolve cells,
while UHR-OCT resolves cells, however the en face images suffer
from eye movement artifacts during X–Y beam scanning. Our
common-path FF/SD OCT reveals the same micrometer corneal
features (cell, nerves, and nuclei), but in a completely non-contact
way, with a 2 cm distance from the eye, does not require use of
any medication and is immune to beam scanning artifacts. These
features improve patient comfort, remove risk of corneal damage
and risk of infection, and open up the possibility for high-
resolution imaging in a risk-sensitive population (e.g., young
children, candidates for corneal transplant surgery with fragile
corneas). Compared to our previous preliminary work10, in this
article we have integrated SDOCT into FFOCT, which allowed
tracking of the eye position and matching the arms of the FFOCT
interferometer in real-time. This has enabled consistent real-time
acquisition of corneal images and movies with high signal and
allowed exploration of the entire ocular surface (central, periph-
eral, and limbal cornea, as well as limbus, episclera and sclera).
This opens a path for FFOCT implementation in clinical research
and translation into clinical practice. Our device provides images
with three times larger field of view than IVCM (nine times larger
in area), which makes it easier to locate the clinical area of interest
and follow the same location over time. Furthermore, a larger
viewing area is useful for quantitative measurements of sub-basal
nerve and endothelial cell densities, which were demonstrated
with common-path FF/SD OCT following methodologies, used in
confocal studies. Both are clinically valuable parameters: nerve
density correlates with keratoconus, dry eye, several types of
keratitis and diabetes39, while endothelial cell density correlates
with dystrophies, uveitis and acute ischemic stroke40. As FFOCT
lateral resolution is immune to aberrations31, the device is
expected to resolve nerves and cells in pathological distorted
corneas as well (e.g., in the case of keratoconus). Axial resolution
could be improved (for resolving finer corneal layers) in future
iterations of the device through increasing the spectral bandwidth
of the source, for example by implementing emerging broadband
NIR LEDs of sufficient power or by combining several existing
NIR LEDs with close spectral characteristics.

The instrument also opens a door to quantitative diagnosis of
dry eye condition by providing information about tear film
velocity and stabilization time following a blink, the evaporation
time of the liquid micro-droplets on the surface of the eye, and
potentially the thickness of the tear film by grading lipid inter-
ference patterns in a similar way to the Guillon Keeler tear film
grading system41. Common-path FF/SD OCT can resolve finer
high-resolution sections of the limbus and is able to distinguish
layers of palisades of Vogt and underlying vessels, compared to
UHR-OCT16 and IVCM42. Furthermore, our instrument is not
limited to diagnosis of “static” corneal disorders, but can poten-
tially monitor inflammatory and scarring conditions affecting the
fast (millisecond) dynamics of the blood flow in the eye. Pre-
viously, general information about the blood flow velocity and
vessel dimensions from anterior segment fluorescein angiography
(ASFA) and indocyanine green dye angiography (IGDA) proved
to be useful for distinguishing between the various forms of
scleral inflammation, in particular between severe episcleritis and
diffuse anterior scleritis or between peripheral corneal opacifica-
tion and corneal thinning43. With FF/SD OCT, we can have
access to the same information and view the blood flow with high
contrast, but without fluorescein injection and with the exam-
ination taking a fraction of a second. Furthermore, the ability of
the instrument to capture high-resolution maps of blood flow

velocities and orientations can potentially be useful for opening
up new localized diagnostic methodologies and ways to monitor
effects of therapies locally. This could bring insights about the
anatomy and physiology of the vascular system in the anterior eye
and in particular the limbal vessels and MCA supplying the
cornea. Moreover, we suggest that the intravascular mapping of
blood flow with our device may be a promising platform for
testing in vivo microfluidic theories44. Last, but not least,
common-path FF/SD OCT can also be used for non-contact
examination of various in vivo human, animal and ex vivo tissues.

Methods
FFOCT device. The FFOCT device is based on an interference microscope in a
Linnik configuration with identical microscope objectives in the two arms of the
interferometer. Objectives (LMPLN10XIR, Olympus, Japan) have a numerical
aperture (NA) of 0.3, 10× magnification and give high lateral resolution of 1.7 µm
(with a filled 10.8 mm entrance aperture). The lateral resolution (identical in
cornea and in free space) was estimated according to the Rayleigh criterion and
experimentally confirmed with a resolution target and by measuring the diameters
(FWHM) of 80 nm gold nanoparticles imaged on a glass plate, located at the focal
plane of the FFOCT objective. The working distance of the objectives was 18 mm,
sufficient to avoid the risk of accidental physical contact with the eye. Illumination
is provided by an NIR 850 nm light-emitting diode (LED) source (M850LP1,
Thorlabs, USA). The axial resolution of 7.7 μm in the cornea was estimated from
the experimentally measured spectral bandwidth of the LED (30 nm) with a spec-
trometer (CCS175/M, Thorlabs, USA) and by using the average corneal refractive
index of 1.376, often quoted in the literature45. Light from the LED is collected by
an aspheric condenser lens (ACL12708U-B, Thorlabs, USA) and is focused on the
back focal plane of the objective. Before entering the objective, light from the
source is equally separated by the 50:50 beam splitter cube (BS) (BS014, Thorlabs,
USA) into the sample and reference arms of the interferometer. The arms are
slightly tilted from a perpendicular orientation in order to avoid specular reflection
from the BS side. The objective in the reference arm focuses light onto an
absorptive neutral density (ND) glass filter (NENIR550B, Thorlabs, USA), which
plays the role of a single mirrored surface with 4% reflectivity. Use of an ND filter
with OD 5.0 instead of a glass plate enables elimination of ghost reflections from
the back surface of the filter. A low reflectivity value is chosen to achieve high
detection sensitivity, which is maximized when the total reflectivity (from all the
layers participating or not to the FFOCT signal) of the sample and reflectivity of
the reference mirror match, as indicated by FFOCT signal to noise calculations12.
Total reflectivity from all corneal layers, estimated from the Fresnel relations, is
around 2%. By using a reference mirror with a reflectivity of 4%, we can expect
sensitivity close to the ideal condition12. Light in the sample arm, backscattered
from the different planes in the cornea, and light in the reference arm, back-
scattered from a single mirror plane, are collected by the objectives, and recom-
bined on the BS. This results in interference, but only for the light coming from the
corneal plane, and light coming from the reference mirror plane, which match in
terms of optical path length. The temporal coherence length of the light source
determines the thickness of the interference fringe axial extension and therefore the
optical sectioning precision, which is 7.7 µm. Interfering light and non-interfering
light, arising from other planes of the cornea, are focused onto a sensor by a
magnifying tube lens (AC254-250-B, Thorlabs, USA), leading to 14× overall system
magnification. The sensor is a high-full well capacity (2Me−) 1440 × 1440 pixel
CMOS camera (Q-2A750-CXP, Adimec, Netherlands), which captures each 2D
image in 1.75 ms. In order to reach the expected axial sectioning in the system, light
which has interfered must be extracted from the background. To do so, we use a
two-phase shifting scheme, where we rapidly modulate the position of the reference
mirror using a piezo mirror-shifter (STr-25/150/6, Piezomechanik GmbH, Ger-
many), synchronized with the camera, to capture two consecutive images, which
have a π phase shift, and subtract them. The absolute value of the resulting image
contains only interfering light from a 7.7 µm thick section in the cornea. We can
capture images in two modes: (i) fast acquisition mode for visualizing blood flow,
where a sequence of 40 images is captured at 550 fps, and (ii) slow mode for real-
time imaging, where images are displayed live on screen at 10 fps. The real-time
mode has artificially lowered acquisition and display rate to 10 fps in order to be
compliant with the European ISO 15004-2:2007 ocular safety standard (see below).
10 fast pulsed LED exposures/s (3.5 ms each exposure) with pauses in between each
exposure allow us to increase the output of the LED to saturate the high full-well
capacity camera, while still being below the maximum permissible light levels. It
should be noted that the most recent US ocular safety standard ANSI Z80.36-2016
imposes a much less strict limitation for exposure of the anterior eye, which in the
future potentially enables the prolonged use of our device at full speed frame rate at
275 fps without LED pulsation.

A complete evaluation of corneal and retinal safety, involving scenarios of real-
time imaging (used to visualize static corneal structures) and single prolonged LED
exposure (used to visualize blood flow dynamics), was performed. The results are
summarized below.
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For real-time imaging we took into consideration the durations of pulsed light
exposures (3.5 ms for LED and 1.37 ms for SLD (beam scanning)), durations of
pauses without the light (100 ms for LED and 0.41 ms for SLD) and irradiances per
pulse (2W/cm2 for LED and 35mW/cm2 for SLD). These values were used to
calculate the corneal and retinal exposures. The calculated time-dependent graphs
show that during real-time acquisition we reach up to 52% of MPE for the cornea
and only 0.5% of MPE for the retina (according to ISO 15004-2:2007) and 3.7% of
MPE for the cornea and 0.5% of MPE for the retina (ANSI Z80.36-2016).

For single prolonged LED exposure we took into consideration the durations of
pulsed light exposures (70 ms for LED and 1.37 ms for SLD (beam scanning)),
durations of pauses without the light (30 s for LED and 0.41 ms for SLD) and
irradiances per pulse (2W/cm2 for LED and 35mW/cm2 for SLD). The calculated
time-dependent graphs show that during real-time acquisition we reach up to 18%
of MPE for the cornea and only 1% of MPE for the retina (according to ISO 15004-
2:2007) and 1.3% of MPE for the cornea and 1% of MPE for the retina (ANSI
Z80.36-2016). The major contributor to the exposure is the LED.

SDOCT device. The SDOCT device is based on a commercial general-purpose
spectral-domain OCT (GAN510, Thorlabs, USA). It consists of an interferometer
with a galvanometric mirror system (OCTP-900(/M), Thorlabs, USA), which
rapidly scans a collimated light beam laterally at 100 kHz to form a 2D cross-
sectional image. In order to increase the frame-rate, the lateral extension of the
image was limited to 64 pixels. The 2D image is averaged over the lateral
dimension and the resulting 1D data is processed with Labview Peak detector VI
(National Instruments, USA) to locate the maxima. As these are single non-
overlapping peaks, their positions can be detected with a precision better than 3.9 µm
in the cornea, as determined by the Rayleigh criterion and spectral bandwidth of
infrared (IR) 930 nm superluminescent diode (SLD). Because the SDOCT and
FFOCT interferometers share the same optical arms, we detect not only the con-
ventional SDOCT peaks corresponding to the reflection from the cornea and from
the FFOCT reference mirror, but also the third common-path peak corresponding
to the interference inside the FFOCT interferometer (i.e., between FFOCT sample
and FFOCT reference arms). The latter maximum has the advantages that (i) it
does not suffer from dispersion, due to the perfect dispersion symmetry between
the arms of the FFOCT interferometer; (ii) it is moving in the same direction on
the 2D image as the reference arm, extended for defocus correction. As a result,
since the common-path and reference mirror peaks never overlap, we can simul-
taneously detect them and calculate positions of the cornea, the imaging depth
inside the cornea, the optimal reference position for the defocus correction18, the
actual reference position and the error for validating and improving the feedback
loop. By reducing the light entering into the reference arm of SDOCT, we suppress
the conventional peak from the cornea to further facilitate acquisition of common-
path and conventional reference arm peaks. Maxima were detected over a 1.25 mm
lateral range, matching the FFOCT field of view and over a 2.7 mm axial range,
determined by the SDOCT spectrometer. Information about the locations of the
peaks was refreshed every 8.2 ± 0.5 ms (mean ± standard deviation (s.d.)).

Integrated FFOCT-SDOCT instrument. SDOCT is optically integrated through
the dichroic mirror (Edmund Optics, USA) into the illumination arm of FFOCT.
In order to block the SDOCT light from reaching the FFOCT camera, two filters
with opposite spectral characteristics (low and high pass at 900 nm cutoff)
(FELH0900 and FESH0900, Thorlabs, USA) are positioned at the entrance and exit
of the FFOCT device. Glass windows (WG11050-B, Thorlabs, USA) are inserted
into the reference arm of SDOCT to dispersion match with the FFOCT sample and
reference arms. The combined instrument is positioned on two high-load lateral
translation stages (NRT150/M, Thorlabs, USA), controlled by a driver (BSC202,
Thorlabs, USA) with a joystick (MJC001, Thorlabs, USA). Beneath, a laboratory
jack (L490/M, Thorlabs, USA) is used to position the whole device vertically. The
reference arm of the FFOCT device is mounted on a voice-coil translation stage (X-
DMQ12P-DE52, Zaber, Canada), driven with 2.2 µm accuracy, 1 mm/s velocity
and 25 mm/s2 acceleration for rapid defocus adjustment. Information about the
currently required defocus correction shift is communicated to the stage from the
SDOCT system through the same personal computer (PC) to avoid time delays.
The weak link in the communication is the limited read frequency of the stage
encoder, which can accept 50 new positions/s—about two times slower compared
to the rate of positions provided by SDOCT. SDOCT image acquisition is con-
trolled by a separate PC, which is synchronized with the FFOCT PC using the 11 ±
3ms (mean ± s.d.) precision NI-PSP protocol via the local network of the Langevin
Institute. Generation of 3D images should be possible in the future generations of
the device with FFOCT and SDOCT being driven by a single PC.

Software. Custom programs written in Labview 2014 and Thorlabs SpectralRadar
SDK were used for FFOCT and SDOCT image acquisition and display, peak
detection and motor control. MATLAB R2017a was used for plots and calculation
of angiography maps. We utilized ImageJ 1.51p for image display and measure-
ments of cell and nerve densities. ZEMAX Optics Studio was used to simulate the
light propagation inside the cornea and measure aberrations.

Artifact suppression and contrast enhancement. In order to remove surface
interference fringes and reveal superficial epithelial cells (Fig. 5b), we transformed
the image into the Fourier domain and masked the bright spots, corresponding to
fringes. Inverting this Fourier image with suppressed artifacts revealed the cells.
The same artifacts were also visible at the outer endothelial layer. We were able to
suppress them by registering and averaging multiple (23) tomographic FFOCT
images with ImageJ46 without Fourier domain conversion (although averaging and
Fourier domain processing can be used together to improve the final image). It is
worth noting that filtering the interference fringes was more difficult in cases, when
the endothelium was captured exactly in line with the corneal apex, because the
fringes had varying spatial frequency and spacing. The endothelium on the apex
had the smallest fringe frequency, because its orientation was perpendicular to the
optical axis, i.e.,—the same orientation as the reference mirror. The endothelium
elsewhere than at the apex was tilted due to the corneal curvature, which increased
the interference fringe frequency.

The image and movie (Fig. 8j and Supplementary Movie 12) of individual blood
cells was obtained not with a FFOCT image retrieval scheme, but by subtracting
two consecutive images from the camera without taking the absolute value. The
reason for this is the following: when we retrieve the FFOCT image via the two-
phase method, the two consecutive images from the camera are subtracted and
then the absolute of the image is taken to reveal the pixels, previously hidden due to
their negative value after subtraction. Unfortunately, in the case of FFOCT imaging
of a moving particle, we get a “doubling artifact”, i.e. we see the moving particle as
the two objects separated by a small gap. This complicates particle tracking. To get
a better view of moving particles, we performed image subtraction without taking
the absolute value. In this case each particle is seen as a single object, which
simplifies its tracking. However, half of the signal (i.e., corresponding to the
negative pixels) is lost.

Quantitative image analysis. Semi-automated nerve segmentation and density
analysis (Fig. 5c) was performed with ImageJ47 using the NeuronJ plugin24. Manual
endothelial cell counting (Fig. 5d) was done with the Multi-point Tool in ImageJ. A
Manual Tracking ImageJ plugin enabled manual blood cell tracking and the sub-
sequent particle velocity analysis (Supplementary Movie 12).

Mapping blood flow velocity and orientation. Previously, we demonstrated the
possibility of local blood flow measurements from the conjunctival surface using
manually drawn kymograph plots (i.e., plotting the vessel curvilinear abscissa
against time)48. However, each plot provided only a single local velocity value, so
that obtaining a full-field velocity map would require considerable manual effort.
Here we used a method based on a block-matching algorithm to track single
features inside vessels, which allows rapid semi-automatic mapping of blood flow
velocities and orientations in full-field. We cross-correlated 16 × 16 pixels windows
and retrieved the cross-correlation maximum for each pixel in the vicinity corre-
sponding to a maximal speed of 2 mm/s. Low cross-correlation peaks were dis-
carded in order to remove artifacts and outliers. A velocity array is then created
based on eight frames, so that the velocity computed for each pixel is the average of
the seven velocities computed by the block-matching algorithm. Then the velocities
and orientations are mapped on the hue channel, the FFOCT image is mapped on
the value channel and the saturation is arbitrarily set to 0.8 for each pixel in order
to construct the velocity and orientation map of the blood flow (Fig. 8b–e).

Ex vivo cornea. Ex vivo macaque corneas were obtained from a partner research
institution as recuperated waste tissue from an unrelated experiment. Corneas were
dissected from the ocular globes within two hours post-mortem and fixed in 2%
paraformaldehyde prior to transfer to the imaging lab. Some edematous swelling
occurred, causing enhanced visibility of stromal striae49, indicative of tissue stress.

In vivo imaging. Informed consent was obtained from all subjects and the
experimental procedures adhered to the tenets of the Declaration of Helsinki.
Examination was non-contact and no medication was introduced into the eye.
Light illumination, visible as a dim red circular background, was comfortable for
viewing, due to the low sensitivity of the retina to NIR and IR light. For real-time
imaging, light exposures measured 52% of maximum permissible exposure (MPE)
for cornea and only 0.5% of MPE for retina (according to ISO 15004-2:2007) and
3.7% of MPE for the cornea and 0.5% of MPE for the retina (ANSI Z80.36-2016).
For single exposure imaging (angiography), light exposures measured 18% of
maximum permissible exposure (MPE) for cornea and only 1% of MPE for retina
(according to ISO 15004-2:2007) and 1.3% of MPE for the cornea and 1% of MPE
for the retina (ANSI Z80.36-2016). These values reflect that the light beam is
focused on the cornea and widely spread on the retina. Up-to-date ISO and ANSI
standards specify different MPE levels for corneal imaging at 850 nm wavelength,
leading to different safety margins. The subject’s head was comfortably positioned
with temple supports and a chin rest. While one eye was imaged, the second eye
was fixating on a target. When imaging non-central parts of the cornea, the sub-
ject’s head was tilted by the examiner to position the eye’s surface plane perpen-
dicular to the direction of the incoming light beam.
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Other instruments. Macro images were obtained with a slit-lamp biomicroscope
(Topcon, France Medical S.A.S.) using 10× magnification and the lowest illumi-
nation. For comparison with FFOCT images, the endothelium was photographed
using a clinical specular microscope (SP-3000P, Topcon, Japan) with 0.25 × 0.5 mm
field of view.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the first author and the
corresponding author upon request. The source data underlying plots in Figs. 1b, 2e,
4b–d, f, h, i, 5e, 6b, c, and 7o are provided as a Source Data file.

Code availability
Code that supports the findings of this study is available upon reasonable request from
the first author but third party restrictions may apply (e.g., Thorlabs SDK).
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5.2 Combining fluorescence and FFOCT
The understanding of dynamic signals is investigated through parallel measurement with
labeled cells and organoids using fluorescent dies. The problem that quickly arises is the
scattering that prevent us to image deep inside organoid with fluorescence. Typically,
biologists use confocal microscopes to reject the out of focus light and image samples in
3D up to several millimeters deep. They can also use clearing procedures to increase the
scattering mean free path and image even deeper [Richardson and Lichtman, 2015]. The
problem with confocal microscopy is that it is a scanning technique and it is therefore not
straightforward to combine it with (D-)FFOCT. One possibility is to use HiLo microscopy
[Lim et al., 2008, Mertz, 2011] to obtain optical sectioning and reconstruct 3D structures.
More details on fluorescent imaging methods are presented in section 2.4 in the article
supplementary material, especially in Table 1 where each technique is compared to (D-
)FFOCT.

5.2.1 Adding optical sectioning to wide-field fluorescence with HiLo

The setup is the same as the one used for combined FFOCT and structured illumination
microscopy (SIM) proposed in [Thouvenin et al., 2017b]. SIM was originally aiming at
obtaining super resolved images rather than optical sectioning [Sheppard, 1988, Chasles
et al., 2007]. A modified version of SIM called HiLo and requiring only two images was
then proposed in [Lim et al., 2008] using a coherent source to generate speckle in the in
focus plane. The advantage of HiLo over SIM was that it required a fewer number of
images to reconstruct the fluorescence image with background rejection, hence allowing to
image in vivo with a fast camera. Later, the same team proposed the same HiLo approach
using a grid pattern rather than a speckle pattern in [Bozinovic et al., 2008] which was
compatible with our LED illumination and which could be implemented with minimal
modifications on a FFOCT setup. In order to combine HiLo with (D-)FFOCT, a grid is
conjugated in the sample plane using a microscope objective and a 200 lp.mm−1 ronchi
ruling grid. The magnification is chosen adequately to obtain a period of around 40 pixels
on the camera which is a good trade-off between optimal reconstruction (which requires
the highest possible frequency) and signal-to-noise ratio (because higher frequencies are
more attenuated in scattering media). The experimental setup is depicted on Fig. 5.2.

In order to reconstruct the HiLo image, the technique requires two different acquisitions.
First, a uniform illumination is used to image the sample. To achieve this and rather than
using a motor to place and remove the grid, I decided to use a piezoelectric translation7.
By applying a sinusoidal voltage with several periods8 per exposure time, I was able
to successfully acquire uniform images. This image contains both in-focus and out-of-
focus contributions. However out-of-focus contributions are blurred due to the optical
transfer function, hence containing only low frequency contents. To remove the out-of-
focus contributions, a high-pass filter is applied on the image in order to extract the high
frequency content that was present in the in-focus plane. The second image is acquired
with the structured illumination9 by projecting the grid on the sample in-focus plane.
Doing that, the contrast of the imaged modulation is attenuated by the optical transfer
function two times for out-of-focus planes: when projected and when measured. The

7Current amplification was necessary in order to reach satisfactory speed and displacements.
8Typically the piezo frequency was 500 times faster than the exposure time.
9HiLo can also work with speckle pattern instead of a grid. It was originally proposed with a laser

source and a rotating scattering disk to obtain uniform images.
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structured illumination image is demodulated by locally measuring the contrast. The
evaluation of this contrast being coarse, it is only possible to extract a low resolution
image of the in-focus object which corresponds to low frequency components. Finally,
both high frequency and low frequency images are combined in an optimal manner such
that we can recover the object.

Fig. 5.2: HiLo combined with FFOCT setup. The ronchi rulling is 200 lp.mm−1 and the
microscope objective used to preject the grid is a Olympus Plan N 10x 0.25NA.

I tested the method on cell culture, see Fig. 5.3(a-c). For these samples, HiLo was able
to reject the out of focus light, the only drawback was a 30% signal loss. Aberrations
can affect HiLo performances. Indeed, even if the PSF is diffraction limited in the imaged
plane, its 3D profile can exhibits a particular shape with high frequencies in the (x, y) plane.
I observed ring pattern, see Fig. 5.3(d), that dramatically decreases the performance of
HiLo because high spatial frequencies where present in the out of focus plane. Finally,
HiLo suffers from two important drawbacks. For point like sources, the PSF can have
a halo shape due to aberrations and give ring on the reconstructed images. The second
problem is that I couldn’t image deep inside tissues and organoids because I couldn’t
project the grid inside samples, even if it was a low spatial frequency pattern, preventing
me to reconstruct images and thus obtain optical sectioning, which was the point of using
HiLo in the first place. Jerome Mertz, the inventor of the technique, confirmed that it
only works for weakly scattering medium at shallow depth and that this technique suffers
from the same low penetration in biological medium as structured illumination. As a
consequence, it is hard to obtain sharp fluorescence images simply because it is hard to
compete with OCT in terms of optical sectioning10. These simultaneous measurements
are therefore limited to shallow depth or 2D cell cultures.

10OCT can image up to 9 scattering mean free path [Badon et al., 2017], which is tremendously high
compared to incoherent techniques.
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Fig. 5.3: HiLo results. (a) Uniform image. (b) Structured image. (c) HiLo reconstructed
image. White arrows indicate out of focus light that is effectively filtered out by HiLo. (d)
Aberrations can lead to dramatic decreases in performance for HiLo. Here, the defocused PSF

exhibits a ring shape which led to high frequencies that are not filtered by the algorithm.

5.2.2 Sub-pixel registration of (D-)FFOCT and fluorescence images

When performing multimodal imaging with (D-)FFOCT and fluorescence, a registration
step is necessary in order to overlay both modalities. Indeed, obtaining optical alignment
of both camera is nearly impossible as it requires micrometer precision with cameras that
can weight more than 1kg and which are connected with multiples cables to the computer
and cooled (for the fluorescence camera). The first method I tried in order to register
images was based on [Matungka et al., 2009] which takes advantage of the polar transform
that transforms rotation and scaling into shifting so that by iterating between the initial
domain and the log polar domain one can find the (x, y) shifts and the rotations and scaling
for registering two images. Unfortunately most of the time the transformation between
both cameras was not a rigid transformation but rather a projective transformation, see
Fig. 5.4. Indeed, if both cameras are not perfectly aligned, i.e their sensor are not perfectly
co-planar then a rigid transformation is theoretically not able to register both images. A
projective transformation P transforms u1 in u2 with the equation:

u1 = Pu2

where:

P =

p11 p12 p13
p21 p22 p23
p31 p32 p33


In order to find the projective transformation to perform the registration I used the fol-
lowing approach:

1. Compute characteristic points on each image using SURF algorithm [Oyallon and
Rabin, 2015].
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2. Robustly match points in each image using RANSAC algorithm for projective trans-
formations [Fischler and Bolles, 1987].

After finding the projective transformation, both images are finally registered for trans-
lation with a sub-pixel accuracy using a simple phase cross-correlation with a bicubic
interpolation in Fourier domain. The bicubic interpolation allows to locate the maximum
of the phase cross-correlation with a sub-pixel accuracy. The final registration is shown
Fig. 5.4 on a Siemens star target.

Fig. 5.4: (D-)FFOCT and Fluorescence registration. (a) Projective transform scheme.
Imaging a plane on two different planes lead to projective transform between both planes. (b)
Registration results on a Siemens star target. The checker pattern allows to see both images.



Conclusion and perspectives

In this thesis I investigated the hardware and software axes to achieve high-resolution dy-
namic and static FFOCT acquisitions while keeping a low complexity experimental setup
with a high level of robustness. For microscopy, I applied D-FFOCT for the imaging of
retinal organoids and demonstrated that this technique can bring interesting biological
insights owing to its metabolic contrast. I found a new method based on singular value
decomposition to remove unwanted artifacts coming from the sample axial motion dur-
ing acquisitions. I also proposed a new operator to compute dynamic images based on
the cumulative sum to enhance non-stationnarities, which lead to an improvement on the
signal to noise ratio. This allowed us to image deeper with D-FFOCT inside samples.
For retinal imaging, I implemented a real-time tracking of the retina which operates at
50 Hz and with a root mean square error of 9.1 µm which allowed us to obtain images of
the retina reliably. Then, I studied the field curvature due to the optical asymmetry in
the Linnik interferometer for retinal imaging and proposed a method to find the optimal
compensation to correct for the field curvature which also reduces dispersion effects. This
allowed us to image the retina on 1 × 1 mm field of view with an homogeneous SNR. I
also validated experimentally the aberrations theory proposed by Victor Barolle [Barolle,
2019] using a custom built AO-FFOCT setup with an adaptive lens and a Shack-Hartmann
wavefront sensor. I then transferred the AO part in our retinal imaging setup and imple-
mented and studied several wavefront sensorless optimisation schemes to achieve real-time
near diffraction limited imaging of the human retina in vivo. I could image and resolve
photoreceptors as close as 0.5◦ from the fovea and image reliably the retinal fiber layer at
different depths. I also adapted motion tracking algorithms for D-FFOCT to study the
wound healing process in cornea and for FFOCT to quantitatively measure blood flow in
the human limbus in vivo. These achievements are of great importance as they highlights
the multimodal capability of (D-)FFOCT imaging and its ability to capture important and
meaningful information. Finally, I investigated several machine learning and deep learning
approaches to successfully perform retinal cell classification and breast cancer screening
using D-FFOCT signals.

Considering the potential of (D-)FFOCT, its future seems bright and I hope that the
clinical translation will take place for eye imaging but also for microscopy for organoids
developmental studies and biopsies screening now that this technique is reliable and con-
sistent. From a more fundamental point of view, there are still some leads that I have
not had the time to investigate but which could be interesting for further developments.
These ideas are briefly discussed below.

Computational aberrations correction

Recent work [Borycki et al., 2019] showed that computational aberrations correction can
work for phase decorrelated swept-source FFOCT even when the spatial coherence of the

158
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source is destroyed. This technique was successfully applied for in vivo cornea [Auksorius
et al., 2020] and retina [Auksorius et al., 2019] imaging and briefly explained section
1.4.2. Benefits of performing computational aberrations correction include better signal
to noise ratio, diffraction limited resolution and enhanced depth of field (especially useful
for techniques that record the whole sample depth at each acquisition) while keeping
the same experimental setup. In our implementation of FFOCT (spatially incoherent
and time domain), aberrated photons are partly filtered out because they can’t interfere
with the reference. Computational aberrations correction would therefore lead to minimal
improvements. My idea is to introduce a defocus in the reference arm so that aberrated
photons could still interfere with the reference. By looking at the energy in the FFOCT
image for various amount of defocus it should be possible to monitor the proportion of
photons interfering. Then, by adding defocus in the reference we should observe more
aberrations on the FFOCT image as the model for FFOCT image formation presented
section 4.3.2 would not hold anymore. However these aberrations could be corrected in
post-processing using previously developed approaches [Borycki et al., 2019, Hillmann
et al., 2016] and could potentially remove the need for using an adaptive lens.

D-FFOCT on phase and amplitude only

As explained section 2.2 it is not possible to compute local physical properties of scatterers
from raw D-FFOCT signals. This is partly due to the mixing of amplitude and phase fluc-
tuations. Using the 10 phases triangular demodulation which exhibits a low degree of error
regarding phase un-mixing and presented section 1.3.2 it should be possible to compute
both phase and amplitude D-FFOCT images distinctly. This could lead to new biological
insights depending on the type of fluctuations. A recent work [Münter et al., 2020] showed
the possibility of doing dynamic measurements using a SD-OCT. The authors constructed
dynamic image by computing the fluctuations on the amplitude of the OCT signals but
they could potentially compute the same for the phase. Dynamic SD-OCT could therefore
help understand the origin of dynamic signals because it naturally records amplitude and
phase at the same time in the Fourier domain. In addition, by reducing the sensor size on
the camera we could acquire with an higher frame rate. And by acquiring more images
(typically tens of thousands) we could use the same approach as fluorescence correlation
spectroscopy [Elson, 2011] in order to extract local physical properties of scatterers.

Phase retrieval approach for single shot FFOCT

Computational aberrations correction and amplitude and phase un-mixing could both
benefit from phase retrieval algorithms. Adapting currently used algorithms [Yeh et al.,
2015] to better separate the phase and amplitude of the light field should allow to image
faster by acquiring FFOCT images in a single shot and allow for better computational
aberrations correction if it can reduce reconstruction artifacts.

Dark Field D-FFOCT

Dark Field FFOCT was first proposed in [Auksorius and Boccara, 2015] and then applied
for sub-surface fingerprint imaging [Auksorius and Boccara, 2020]. It relies on blocking
specular reflections by adding a mask in the pupil plane of the system. In order for the
reference to propagate back to the camera, the reference mirror therefore needs to be tilted
or replaced by a grating. Combined with a light efficient beamsplitter, Fourier Domain
Dark Field FFOCT can lead to a 4-fold improvement in SNR [Auksorius, 2020] in addition
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to removing specular reflections which again allow to send more power and obtain an even
better SNR. Dark Field D-FFOCT could therefore improve the penetration depth by a
large amount. The difficulty being that the pupil plane of high NA objectives is usually
physically inside the housing so that implementing Dark Field D-FFOCT would require
to add a 4-f telescope to relay the pupil plane in each arm. This configuration will lead to
bigger and more cumbersome systems but the expected gain is probably worth the risk.



Appendix A

Building a custom computer for
D-FFOCT experiments

At the beginning of my PhD I was given the chance to build a computer especially de-
signed for D-FFOCT computation with a high throughput. Several points were of great
importance when choosing the parts:

• The motherboard should have as many PCIe ports as possible because each camera
has a framegrabber that needs one. The digital to analog converter to drive the
piezo also needs one. I was planning to have 2 graphics processing unit (GPU) to
speed up the computation of D-FFOCT images, so 2 more PCIe express. Finally
one or two spare ports needs to be considered in case we want to upgrade the setup.

• GPU with as many memory as possible to be able to compute D-FFOCT images
on the biggest cube of data possible. I asked a grant to NVidia and I was offered a
NVidia Titan V which was the best GPU at the time, so finally we did not need two
GPUs.

• The hard drive must be fast enough to be able to store the data coming from the
cameras for raw acquisitions without any data loss.

• The system must have enough random access memory (RAM) to store raw data for
computation on the central processing unit (CPU) when using scripting program-
ming language1.

• The system must have a great cooling system in order to manage the heat under
strong solicitations.

• The computer must be able to power itself plus several cameras (Adimec cameras
are powered by the framegrabber) so the power supply must be powerful enough to
power everything adequately.

Considering the previous requirements, the final build is the following:
1Scripting languages like Python allow rapid prototyping of experiments. Performances are generally

lower than with C++/Cuda implementations but are a lot faster to develop.
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Part Name
Motherboard Asus Sage x299 (7 PCIe)

Cooling system Corsair Hydro H60 (water cooling)
CPU Intel i7-7820X
GPU Nvidia Titan V (12Go)
RAM Crucial 2666 MHz 128Go

Hard drive (1) Samsung NVMe 970 pro (fastest available SSD at the time)
Hard drive (2) Samsung 860 pro (1To) + Mechanical disks (8To) for data storage.
Cooling system CORSAIR HX1200I 1200W

Fig. A.1: Final computer build after mounting all the parts.



Appendix B

HSV image processing for 4D data
representation on 2D image

Data representation and display is very important in research. Indeed, when showing
results in conferences or publishing an article, researchers usually start by looking at fig-
ures. If you happen to have very interesting results but display them poorly, then your
research impact will probably be considerably lower. Printed and screen format imposes
major constrains when it comes to displaying data, especially in 3D. During my PhD I
often needed to display 3D and 4D data on a 2D figure. Rather than using traditional
volume display1. I developed a color approach using Hue Saturation and Value (HSV)
colorspace that works very well for displaying physical parameters on images. This ap-
proach was used to construct D-FFOCT images chapter 2 and section 5.1.1, but also to
display corneal blood flow section 5.1.2 and photoreceptor density section 4.2. This HSV
approach is shown and compared with another display approach Fig. B.1 for organoid
dynamic imaging. Although their resolution is lower in [Yang et al., 2020], the way the
information is displayed is harder to interpret because natural images do not look like
this in nature. The human brain is train to distinguish color and contrast, but perfoms
poorly when superimposing shapes with different sizes and colors on an image. The result
is a non appealing figure which is very hard to interpret Fig. B.1(B-D). On the contrary,
the HSV approach creates natural looking images that are visually pleasing and easier to
interpret. Comparing both approaches, our brightness corresponds to the motility metric
M (or metabolic index), our colors corresponds to their α and our saturation is somehow
similar to their R2 as it measures something similar to noise.

Colored HSV images are constructed with the following steps:

1. 2 or 3 images must be created and be already displayable with satisfactory contrast2.
These images must have the same dtype (e.g. unint16, float64).

2. Three matrices are created: H, S and V. The matrix V contains the image brighness
(e.g. the protoreceptors acquired in FFOCT). The matrix H contains the physical
property to be displayed in color (e.g. photoreceptor density). The matrix S contains
the physical property to be coded as saturation on the image. It can be a mask to
limit the color in certain area (e.g. the capillaries for the blood flow); or a constant
matrix if only 2 physical properties are of interest.

12D isocurves are also popular.
2Typically histograms are shrinked to saturate 0.1% of the lowest and highest values. Also, spatial

filters can be applied for smoothing or denoising to improve the final aspect.
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3. H, S and V are stacked in order to obtain a 3D tensor uHSV with shape (x, y, 3).

4. uHSV is transformed3 from HSV to RGB colorspace for display purposes.

Fig. B.1: Comparison of display. (A-D) Figures representing D-FFOCT data from
[Yang et al., 2020] (A) A representative cross-sectional OCT image of 6 live organoids (B)
visualization of motility metrics on (A), where two of the organoids (yellow arrows) are enlarged
in (C) and (D). The background gray-scale image indicates M at each pixel, and the yellow
contour lines indicate the ROIs determined from a semi-automated segmentation. α is overlaid
in each ROI as spherical glyphs with different colors and sizes. The color of the glyph indicates
the value of α, while the size of the glyph represents R2 from the power-law fitting. E Retinal

organoid displayed using the proposed HSV methods.

3For many libraries, the functions requires the input to be scaled between 0 and 1, thus being of float
type



Appendix C

Characterisation and calibration of
the Adaptive Lens

Before mounting the lens in the AO-FFOCT setup I wanted to investigate its performances
and properties. In order to characterise the lens I built the setup presented in Fig. C.1.
The laser beam is expanded and collimated using a 4x microscope objective and a lens
conjugated in its focal plane. The AL is conjugated through a telescope (γ = 1

2.5) on the
WFS.

Fig. C.1: Experimental setup for lens characterisation. Source: 633nm laser - f1 =
100 mm - f2 = 150 mm - f1 = 60 mm - WFS: Shack-Hartmann wavefront sensor.

Initial aberrations due to the AL computed on the 15 firsts Zernike modes was approx-
imately 1.7λ RMS1 almost exclusively defocus. Only the 15 firsts Zernike polynomials
were considered because the lens can only correct for those [Bonora et al., 2015] and also
because most of eye aberrations are low order modes [Guirao et al., 2002]. The first step
in using the AL is to calibrate it by measuring the influence function, i.e. link the voltage
applied to each actuator to the resulting wavefront modification which are measured using
a Shack-Hartmann WFS (SH-WFS).

The AL is imaged onto a SH-WFS: an array of micro-lenses focused on a camera, see
Fig. C.2. When there are no aberrations, the wavefront is plane. This results in a regular
array of spots being formed on the camera placed at the focal length of the lenslet array.
When the wavefront is aberrated however, the spots will shift their location according to
the local tilt of the wavefront across each lenslet. The slopes Si(u, v) of the wavefront in

1Initial aberrations greatly vary with the lens. At the end of my PhD I used a second one which had
less initial aberrations (∼ 0.6λ RMS).

165



APPENDIX C. CHARACTERISATION AND CALIBRATION OF THE ADAPTIVE LENS166

both transverse direction is computed for each lenslet as:

Si(u, v) = r0 − ra
f

(C.1)

where r0 is the position of the centroid of the focal spot i without aberrations, ra is the
position of the centroid of the focal spot i with aberration and f is the focal length of
the lenslet. The spot location ra is determined by a center of mass algorithm where the
center position is determined as the barycenter of the spot intensity, resulting in a subpixel
localisation accuracy.

Fig. C.2: Shack-Hartmann WFS principle. A 2D array of lenselets with the same focal
length is focusing the incoming beam onto a camera. Any phase aberration can be approximated
by a set of local discrete tilts that are measured by the focal shift. By sampling the wavefront

on the whole lenselet array it can be reconstructed with good accuracy.

The AL is composed of two 150 µm glass windows, upon which is mounted a piezoelectric
actuator ring, see Fig. C.3. The space in between the windows is filled with a transparent
mineral oil. The first window is mainly used to generate even wavefront distortion (e.g.
defocus and astigmatism) while the second one mainly generates odd wavefront distortions
(e.g. coma and trefoil). Piezoelectric actuators have an external diameter of 25 mm and an
internal diameter of 10 mm with a thickness of 200 µm resulting in a annular shape. Each
ring is divided into 9 independent actuators leading to 18 degrees of freedom. Application
of a voltage on one of the actuator generates a bending of the glass window leading to a
varying oil thickness, therefore introducing phase modifications. Actuators are controlled
by a high voltage (±125 V ) driver.
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Fig. C.3: Adaptive lens principle. (a-c) Show the measured wavefront deformations (ar-
rows) and the interferograms relative to the actuation of the AL in three different configurations:
(a) one actuator on the top window, (b) one actuator on the bottom window, (c) all actuators

fed with the same voltage. Figure adapted from [Bonora et al., 2015].

The idea is then to calibrate the AL in order to compute the influence function for each
actuator and find an optimisation basis suitable for aberrations correction. If we suppose
that the adaptive lens operates in a linear fashion, i.e. the voltages applied on different
actuators lead to several wavefront modifications that can be added independently, then
measuring the influence function entirely characterise our system. In order to measure the
influence matrix we apply a positive and negative voltage for each actuator2 and measure
the associated Zernike aberration coefficients per unit control voltage. For each actuator
we obtain a column in the influence matrix which corresponds to the wavefront distortion
decomposed on the Zernike polynomials basis (c)i∈[0,14]

3:

a(nactuator, nZernike) =
c+V
nZernike

− c−VnZernike
2V (C.2)

where nZernike is the n− th Zernike polynomials, nactuator is the n− th actuator and V is
the control voltage. Then the influence matrix is computed as:

I =


a1

1 a2
1 . . aNactuator1

a1
2 . .
. . .
. . .

a1
NZernike

. . . aNactuatorNZernike

 (C.3)

where Nactuator = 18 and NZernike = 15. Then, given a wavefront error W measured with
the SH-WFS (decomposed on the Zernike basis), the control voltage V that needs to be
applied to correct the wavefront distortions are:

V = I−1W (C.4)

In order to evaluate I−1 I compute the SVD of I:

I = UΣV T (C.5)

where the rows of V T represents each AL singular modes in the actuator space which
can be used to perform the wavefront correction, see Fig. C.4, while the columns of U

2In practice I acquire the influence matrix by using a set of Hadamar control voltages rather than single
actuator excitation in order to improve the signal to noise ratio of the measurement.

3The basis is composed of the 15-th firsts Zernike polynomials.
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represent the modes in the sensor space. Finally, the singular values in Σ link the modes
together. The influence matrix I is then inverted:

I−1 = V Σ−1UT (C.6)

Fig. C.4: AL singular modes and influence matrix. On the left are displayed the reshaped
rows of V T with the associated singular values σi in title. The singular modes looks like Zernike
polynomials. On the right the influence function of each actuator are displayed with the peak

to valley wavefront deformation in title.

The wavefront can then be corrected in a closed loop fashion using a proportional–integral
controller:

Vt+1 = Vt + I−1
(
KPWt +KI

∑
t

Wt

)
(C.7)

where Vt+1 are the new control voltages, Vt are the previous control voltages, KP and
KI are non-negative and denote the coefficients for the proportional and integral terms
respectively which should be set to quickly converge and ensure stability. The first step
when adding the lens is to calibrate the control voltage that are required to flatten it, i.e.
to remove the introduced aberrations. After flattening, the residual AL aberrations are
well below Marechal criterion ∼ 0.04λ RMS (KD = 1 and KI = 0.1).

Up to now I described how I calibrated and used the lens with a wavefront sensor and
using a closed loop control. In practice, for retinal imaging, we use a wavefront sensorless
approach to keep both complexity and cost down. The calibration step was nonetheless
required in order to find the flattening control voltages and the modal decomposition:

1. For each experiment we start with a flat lens in order to limit the introduced aber-
rations.

2. Knowing the modal decomposition we can pre-compensate for known aberrations
(given by the prescription glasses) in an open-loop fashion.

3. We can use a modal sensorless approach to correct for eye aberrations.



Appendix D

Cell and tissue classification

In this appendix I explore different approaches to process and treat dynamic signals to
perform automatic classifications. With D-FFOCT I purposely performed dimensionality
reduction and projected temporal signals on 3 dimensions (colored images) or 1 dimension
(grayscale images) so that humans can visualize and interpret dynamic images. For algo-
rithms however, higher dimensions are not a problem and the full dimension of dynamic
signals can be considered to train machine learning algorithms, e.g. to distinguish between
different cell types. I tested several approaches at various scale to test whether it was pos-
sible to classify cells or tissues based on the dynamic signals alone. Results suggests that
biological information such as the cell type can be detected at the cell scale by computing
the right features and aggregating them on each segmented cells, leading to more than
97% accuracy for retinal cell classification. Training deep neural networks when cells are
not easily segmentable can also lead to accurate segmentation maps. In the preprint be-
low, I also show that using information at the mesoscale (1.2 × 1.2 mm) it is possible to
detect tumoral tissue in breast cancer biopsies. Finally, I tried to perform clustering with
a non-supervised strategy at the pixel scale to see if there was meaningful information to
probe on single pixel. Unfortunately it seems that without spatial knowledge and local
dynamic variations it is not possible to gather much information.
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Abstract: Classification of cells and tissues using dynamic full field OCT signals are
demonstrated for various scales. At the tissue scale we were able to classify breast cancer tissue
from healthy ones with an accuracy of 100% when aggregating results. At the cell scale we
were able to classify retinal cells in 4 categories with more than 97% and proposed a method to
perform cell classification even when cells can’t be segmented. Finally we show that at the pixel
scale, there is a lack of information to perform classification suggesting that spatial information
is needed to gain insight on the underlying biology.
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1. Introduction

Optical coherence tomography (OCT) is an interferometric imaging technique used for 3D
imaging of microstructures in tissues and 3D cell cultures [1]. Especially used for imaging of
the retina, OCT has revolutionized the clinical practice of ophthalmology [2]. OCT contrast
arises from the endogenous backscattering contrast [3, 4] and is therefore completely label-free.
Time domain Full-field optical coherence tomography (FFOCT) is an en face, high transverse
resolution version of OCT [5, 6]. Using a megapixel camera and a spatially incoherent LED
source, FFOCT acquires en face cross-sections of the sample at a given depth and has been used
for biology studies and rapid histology applications [7, 8]. Using the same experimental setup,
a novel contrast has been exploited owing to FFOCT high throughput by measuring temporal
fluctuations of the interferograms in a technique called Dynamic Full-Field OCT (D-FFOCT) [9].
Such dynamic contrasts have also been recently succesfully reported with scanning Fourier
domain OCT [10]. In ex vivo fresh tissues, these dynamic measurements reveal living cells that
are very weak backscatterers [11]. The high spatial resolution of FFOCT together with the high
number of frames used to generate dynamic images makes D-FFOCT sensitive to intracellular
motility signals and produces a contrast that reveals living cells in the retina [12,13]. Recently,
phase fluctuations measurement in the human retina in vivo was applied for functional imaging
with a swept source OCT [14] and allowed to see the shift in the information transduction in
the retina. Imaging 3D live tissue samples is important in disease modeling applications, and
non invasive methods such as D-FFOCT hold promise for removing the need for complex and
invasive fluorescent labeling. However in order for non invasive methods to offer an effective
alternative to fluorescent labeling, identification of specific cell types is an essential step. This
study aims to use machine learning to achieve this goal through different approaches. First, we
consider the dynamic signal directly at the mesoscale (intermediate scale between cell-scale
and tissue-scale) and successfully performed classification using transfer learning on VGG16
convolutional neural network [15] for retinal cells classification and breast cancer detection on



biopsies. Secondly, we developed a cell-scale framework which consider the full dynamic signal
to improve the classification performance when cells can be segmented. We used it to classify
retinal cells in an explanted 100 `< thick live retinal tissue from primate: given the experimental
data, cells are automatically segmented and classified given their depth and a data-set containing
4 different cell types is built. Classifiers are then trained using only the dynamic dimension
of the signal, disregarding any information on the shape, structure, etc. leading in classifying
retinal cells with 95% accuracy. We followed a similar approach to achieve 100% accuracy on
breast cancer detection by computing cell and fibers features on dynamic images. Finally, we
present a pixel-scale blind classification using clustering methods where we demonstrate that
neglecting dynamic spatial distribution by considering only single pixel lead to poor classification
performances and suggesting that single pixel dynamic does not carry much information when
considered alone.

2. Acquisition protocol and signal processing

In this study we used two different FFOCT setups. The first one used for retinal samples imaging
is a laboratory setup which consists of a Linnik interferometer where both arms contain identical
microscope objectives (Olympus UPlanSApo 30×), see Fig. 1(a). Both sample and reference
arms are mounted on translation stages (X-NA08A25, Zaber Technologies) for optical path length
matching and axial scanning, respectively. In addition, the reference mirror is mounted on a
piezoelectric translation stage (STr-25, Piezomechanik) for phase-shifting. Indeed, in order to
construct an FFOCT image, at least two frames are acquired with different phase modulations and
appropriate phase-shifting algorithms are used to build the final image [13, 16]. For D-FFOCT
experiments the mirror position is not modulated, fluctuations arise by scatterers motions inside
the coherence volume. This setup is purposely built in an inverted configuration where the sample
is directly placed on top of a coverslip and imaged from beneath with high-numerical-aperture
oil-immersed objectives. In this configuration the sample is held motionless by gravity and is
naturally flattened against the coverslip. The second setup, used for breast biopsy imaging, is a
LightCT commercial setup manufactured by LLTech SAS. The characteristics of both of these
setups are summarized in Table 1.

Fig. 1. PZT: piezoelectric translation - BS: Beam splitter. Experimental D-FFOCT setup
in an inverted configuration optimized for tissue imaging. 512 images are acquired by
the CMOS camera (a). The resulting (1440, 1440, 512) 3D tensor (b) is then processed
independently for each pixel (c).

In order to construct a D-FFOCT image, a stack of 512 direct images (1440 × 1440 pixels) is
acquired (Fig. 1(b)) using a custom software [17] where each pixel are processed independently



(Fig. 1(c)). In the first report on D-FFOCT, grayscale dynamic images were computed using a
running standard deviation averaged over the whole acquisition [9]. Computing the intensity
standard deviation in time removes the signals from highly scattering stationary structures such as
collagen and myelin fibers and enhance signals arising from cells. Recently, the cumulative sum
was proposed to improve the signal to noise ratio together with Singular Value Decomposition
(SVD) filtering to remove vibration artifacts [18]. Prior to classifications, each stack was denoised
using SVD filtering. Segmentations and classification were performed using the dynamic images
computed with the cumulative sum:

� ′3H= (r) =
1
#

∑
8

<0G
( |�D<(D< (

� (r, C [8,8+g ]) − �̄ (r, C [8,8+g ])
) |) (1)

where �D<(D< is the cumulative sum operator, # is the total number of sub-windows, g is the
sub-windows length so that C [8,8+g ] is the time corresponding to one sub-window and �̄ (r, C [8,8+g ])
is the signal mean on the sub-window. Images were computed with g = 16.

Table 1. Setups characteristics.

Setup Lab. setup Fig. 1(a) LightCT (LLTech SAS)

Transverse resolution [`<] 0.4 1.5

Axial resolution [`<] 1 1

Field of view [`< × `<] 390 × 390 1260 × 1260

Framerate [�I] 150 150

3. Mesoscale classification with D-FFOCT images

This first mesoscale approach used for cell classification can be applied on all types of samples
and do not require segmentation. Indeed, depending on the tissue properties it is not always
possible to segment single cells. Moreover, cell segmentation is a hard task in itself, which is not
in the scope of this paper. A straightforward approach is therefore presented in this section which
avoid the need for segmentation and lead to fast classification by directly considering D-FFOCT
images as a whole.

3.1. Thumbnail image classification on mouse retina

5 different mouse retinas were imaged with D-FFOCT and a training set was created on a single
mouse retina Fig. 2(a) by manually annotating 395 random thumbnail images in 5 classes:

1. Ganglion Cell Layer (GCL)

2. Inner Plexiform Layer (IPL)

3. Inner Nuclear Layer (INL)

4. Outter Nuclear Layer (ONL)

5. Photoreceptors: inner segments and outter segments (PR)

The test set was created by manually annotating 292 random thumbnail images on a second
retina in order to avoid over-fitting a single retina and validate that the model could generalize to
another sample.



Fig. 2. (a) 3D stack of mouse retina on 80 `< depth. 697 thumbnail images of 100 × 100
pixels (corresponding to 27 × 27 `<) were randomly selected and manually classified on
a single retina in 5 different classes: GCL, IPL, INL, ONL and PR. (b) For breast cancer
classification each FOV is split in thumbnail images of size 224 × 224 pixels (corresponding
to 196 × 196 `<) with an overlap of 112 pixels (50%). For each field we obtain 121
thumbnail images with a label corresponding to the original FOV label. (c) Neural network
architecture based on VGG16 used for classifying thumbnail images in 5 different classes
(mouse retina) or 3 different classes (breast cancer). Only the lasts fully connected layers
(depicted in purple) were trained. Scale bar: 25 `<.

3.1.1. Transfer learning using convolutional neural network

In order to perform both feature extraction and classification the VGG16 network was used
and adapted to this problem. The input size was changed so that it accepts 100 × 100 × 3
thumbnail images (we duplicated the D-FFOCT in each channel, giving a grayscale image). The
convolutional part, depicted in orange Fig. 2(c) was not retrained so that weights corresponds
to the VGG16 network trained on ImageNet data-set [15]. To perform the classification, 2
fully-connected layers of size 1024 were added with a Rectified Linear Unit (ReLU) activation
followed by a fully connected layer of size 5 with a SoftMax activation. These last layers were
trained using dropout with a rate of 0.5. The final model consists of 20.5 millions parameters of
which 5.8 millions are trainable. Data augmentation was used to generate more training data by
using translation, rotations, mirror flips and small amount of shear (maximal shear angle was
10°), hence improving the generalization. The network was trained with 30 epochs with a batch
size of 32 images and a total of 5000 images per epoch using a categorical cross-entropy loss and
a RMSProp optimizer [19] which adapts the learning rate using a running average of the past
gradients magnitudes.



3.1.2. Results

Fig. 3. (a) Classification results for mouse retina. Segmentation results for 3 held out
retinas (that were not used during training and testing). The prediction accuracy is 92%, the
neural networks mostly failing in boundary and low signal areas. (b,c)Classification results
for breast cancer. (b) Confusion matrix for the held out set. (c) Ratio of thumbnail images
classified as healthy and cancer =ℎ40;CℎH/=20=24A . The low opacity blue area highlights
the ideal threshold to separate healthy samples from cancerous samples. Scale bar: 50 `<.

In order to test the trained network the 3 lasts retinas were used, especially on folded areas were
several layers appear on each image. To do so, the input image was cropped in 100 × 100 pixels
thumbnail images with an overlap of 75 pixels in order to obtain a 25 × 25 pixel resolution for
the final classification map. Each thumbnail image was then classified using the trained neural
network resulting in a coarse classification of the inputs image Fig. 3(a). The generalization was
good as the accuracy reached 92% on the 3 held out retinas (that were not used during training
and testing), the neural networks failed to make a good prediction mostly in boundaries between
layers and in low signals area. These results suggests that using spatial information on dynamic
signals also allows to predict the cell type.

3.2. Breast cancer detection using D-FFOCT images

Following the same scheme, the classification between cancerous and healthy samples from
breast biopsies was performed on D-FFOCT images taken on a LightCT FFOCT commercial
device from LLTech SAS.



3.2.1. Data set

The data set is composed of 650 field of view (FOV) taken on n samples from m patients. 517
FOV were from cancerous samples and 133 FOV were from healthy samples. Note that it may
happen that cancerous FOV were in fact from healthy area, meaning that the data-set is possibly
noisy in that regard.

3.2.2. Training framework

For each FOV thumbnail images of size 224 × 224 with an overlap of 50% were computed, see
Fig. 2(b). The label assigned for each thumbnail image is the same as the label of the full FOV
except for thumbnail images with low signals which are labeled as a third category corresponding
to noisy thumbnail. This is to help the network focusing on interesting thumbnails rather than
trying to classify noise when it is clearly not possible because no actual dynamic signals are in the
thumbnail. The classifier part of the neural network was trained in the same fashion as in Section
3.1 with three category: healthy, cancerous and noise. During the training, adaptive sampling
was used so that the neural network saw the same number of examples for each category.

3.2.3. Results

10% of the thumbnail images were held out for final accuracy testing (these thumbnail images
were selected among the same FOV, so that one FOV is not split across training, validation and
testing sets). The network performed reasonably well with an overall accuracy of 76,41%, see
Table 2. The classifier tends to over predict cancer even-though adaptive sampling was used.
Plotting the ratio between thumbnails classified as healthy and thumbnails classified as cancerous
allows to separate most of the FOV, except for 3 false negatives and 1 false positive (which after
investigation has in fact fibrosis which present similar features as breast cancer).

Table 2. Accuracy results on breast cancer classification.

Accuracy on held out set

Healthy 45.41%

Cancerous 83.63%

Noise 66.98%

Total 76.41%

3.2.4. Class activation map for locating important features

Deep neural models based on Convolutional Neural Networks (CNNs) have lead to important
breakthroughs in many computer vision tasks especially for image classification. While these
models enable superior performance, their lack of decomposability into intuitive components
makes them hard to interpret. Investigating signals and images for clinical purpose is particularly
useful if there is knowledge to be extracted and this is why interpretability matters, i.e. we need
models that have the ability to explain why they predict what they predict. In CNN, convolutional
layers naturally retain spatial information whereas fully-connected layers usually present at the
end of the NN performing the classification task does not. In order to locate the image area
that triggered the CNN to decide in which category the image belongs the Grad-CAM [20]
technique was used. Grad-CAM uses the gradient information flowing into the last convolutional
layer of the CNN to assign importance values to each neuron for a particular class. In our case,
this results in a coarse heatmap of the same size as the convolutional feature maps (14 × 14).
Then, <0G(0, ℎ40C<0?(G, H)) is taken to remove negative values because only features that have



positive influence on the class are interesting, i.e. pixels whose intensity should be increased in
order to increase the class probability. This coarse heatmap is then interpolated and added as hue
component to generate a thumbnail image with colored information corresponding to activation
strength, see Fig. 4(a). Then, full FOV can be reconstructed by stitching (the maximum activation
is taken on each overlapping area) the thumbnail images, see Fig.4(b). The trained CNN mainly
focus on packed cell areas to make the prediction for healthy and cancerous classes, whereas
focuses on low signal area for the last class. Interestingly, the same locations are triggering the
CNN for both healthy and cancerous class suggesting that features of interest for detecting either
if the sample is healthy or cancerous are the same, or at least located at the same spot.

Fig. 4. (a) Grad-CAM computation. For an input D-FFOCT thumbnail image a heatmap is
generated using Grad-CAM [20], the final image is generated by setting the activation level
in the Hue channel and the D-FFOCT channel in the V channel and keeping the saturation
constant. (b) Grad-CAM applied on a full FOV for a healthy breast sample.

4. Cell scale classification

4.1. Individual retinal cell classification

Current imaging modalities for cell cultures and tissues mainly fall in immunohistochemistry
methods. Immunohistology rely on staining which adds specific color contrast and where
the sample is mechanically sliced to provide sectioning, whereas immunofluorescence rely on
targeted dyes where various techniques such as confocal illumination/detection and light-sheet
illumination can provide optical sectioning. These techniques all require slicing, fixation or
clearing steps which preclude the study of the same sample during its development. Furthermore,
as these techniques depend on exogenous contrasts for imaging it greatly limits what can be
seen in samples. Immunohistochemistry methods however can provide interpretable images
with a diffraction limited resolution. Indeed, numerous research have been carried out using
these methods and nowadays thousands of targeted dyes are commercially available. On the
other hand, D-FFOCT is the only imaging technique that combines high spatial and temporal
resolution, which already make it valuable, but it is also non-destructive which opens up the
possibility to follow the development of the same cell in a bulk tissue throughout its cycles or for
drug screening. The retina is a complex tissue made of several layers each of which containing
different type of cells involved in the photo-transduction processes that ultimately lead to vision.



Because this tissue is highly structured it is possible to annotate cells based on the layer they
are in, rather than on their real type. We acquired a stack on a macaque retina up to 100 `<
depth with 1 `< steps where cells are clearly seperated and identifiable on 4 differents layer
Fig. 5(a-c) (Ganglion cells on the Ganglion Cell Layer (GCL), bipolar cells on the Inner Nuclear
Layer (INL), photoreceptor nuclei on the Outer Nuclear Layer (ONL) and Photoreceptors (PR)).

Fig. 5. (a) 3D dynamic stack of a macaque retina. (b) en face cross-sections are shown for the
4 layers where cells were classified: GCL, INL, ONL and PR. (c) Immunohistochemistry of
a Macaque (Macaca fascicularis) retina, stained for nuclei (DAPI) and cones photoreceptors
(Cone arrestin), courtesy of Dr. Anna Verschueren, highlighting the different layer and cell
connections.

4.1.1. Cell segmentation

In order to build a data-set the first step is to segment as many cells as possible from the 4
aforementioned layers. To do so we developed two strategies; the first one based on active
contours where the seeds are given by a coarse hierarchical K-means [21] segmentation and
the second one based on pixel classification using different filtered version of the input image
fed to a random forest classifier. The first methods performed better for sparse layers (GCL)
whereas the latter performed better for packed cells, see Fig. 6(a-f). For the GCL segmentation
with hierarchical K-means a 10-class thresholding based on a K-Means classification of the input
image histogram was performed and then the contour of objects containing between 500 and 3000
pixels was used as input for an active contour algorithm [22] in order to refine the detection. For
the other dense layers a pixel based approach where the task is to assign a class (cell, membrane
and background) for each pixel was adopted. We manually segmented 10 cells for each layer.
For each pixel a set of features listed in Table 3 was computed. A random forest classification
algorithm was then trained with the manual segmentation and applied on the whole image. The
probability map for the cell class was then thresholded at 0.6 followed by a morphological
opening. A data-set of the detected cell was then constructed by considering all the different
connected sets. Finally, outliers are filtered out based on high level features (size and shape).

4.1.2. Features computation

At this step pixels coordinates are known for each cell. The corresponding raw signals are then
gathered for each detected cell and a set of features is computed in order to get the same number
of descriptor for each cell, see Fig. 6(g). In this approach we purposely chose to disregard any
information regarding the shape and size of each cell and consider only the measured dynamic
and its statistics to make predictions. In order to get some insight on the importance of features,
classifiers were trained using features based either on the amplitude of fluctuations, the temporal
statistics of the fluctuations or both:



Fig. 6. Cell segmentation with two different strategies. For sparse cell distribution (a) in the
GCL. Coarse segmentations are obtained with hierarchical K-means [21] (b) which serve as
seeds input for an active contour (c) algorithm which further refines cells detection. Finally
outliers are automatically filtered based on their size and shape (d). For dense distribution
(e) different filtered version of the image (f,g) are computed and a random forest classifier is
trained on a few examples (manual segmentation of 10 cells). (g) Learning framework. Raw
temporal signal extracted from direct images are gathered for each cells, then features are
computed on these signals. Classification results (zoomed on errors) on held out validation
set (which represent 15% of the total segmented cells) for (h) GCL, (i) INL, (j) ONL and (k)
PR. Cells classified as belonging to the GCL are depicted in red, belonging to the INL in
blue, belonging to the ONL in yellow an belonging to the PR in pink. These colors match
the retina cross-section Fig. 5.



Table 3. Features used for feature based cells segmentation.

Pixel feature Dimension Description

Intensity 1 Pixel value

Gaussian blur 5 Gaussian blur with f = [1, 2, 5, 10, 20] ?8G4;
Anisotropic diffusion 10 Anisotropic diffusion filtering

Sobel filter 5 Sobel filtering perfomed for each blurred image

Hessian 48
Module, trace, orientation, eigenvalue, determinant of

pixel Hessian matrix performed for each blurred image

Entropy 12 Histogram entropy of pixel vicinity

Difference of Gaussian 10 Differences of Gaussian blured images

• Amplitude of fluctuations: for each cell, the dynamic level was computed with Eq. 1
for each pixel included in the cell. Then, the mean, standard deviation and normalized
histogram on 5 bins of dynamic level was computed for each cell.

• Statistics of fluctuations: for each cell, the decorrelation time was computed as the width
at half maximum of the signal autocorrelation for each pixel included in the cell volume.
Then, the mean, standard deviation and normalized histogram on 5 bins of decorrelation
time was computed for each cell.

4.1.3. Training and performances

The data-set is split into a training/validation set (85%) and a testing held out set (15%). Classifiers
including support vector machine [23], Gaussian processes, nearest neighbors and gradient tree
boosting [24] were trained using 5-folds cross-validation on the training/validation set. The
latter performing the better with an accuracy of 97.7% when all features are considered (chances
are 25% for a 4 classes classification), see Table 4. Hyper-parameters have been optimized
using a grid search strategy. Classification is obviously helped when the dynamic amplitude is
considered, probably because the signal to noise ratio is lower at higher depth, nonetheless the
accuracy remains very good when the decorrelation times (which do not depend on the signal to
noise ratio) only are considered. Classification results on the held out validation set are shown
Fig. 6(h-k). Classification error are mainly between the GCL and INL, by looking closely at the
INL cell classified as belonging to the GCL (red overlay Fig. 6(i)) it seems that it was in fact a
displaced ganglion cell. This experiment show that D-FFOCT raw signals contain metabolic
information that can be useful at cellular level to gain information e.g. on the cell type here.

Table 4. Accuracy results for mouse retinal cell classification.

Training strategy Accuracy on held out set

Amplitude of fluctuations 0.956

Statistics of fluctuation 0.886

Combined 0.977



4.2. Multi-scale cancer classification

Using D-FFOCT images, and comparison with histological diagnosis, two breast pathologists
were able to distinguish normal/benign tissue from tumorous with a sensitivity of 92% and
specificity of 94%. Although the results of the manual diagnosis are promising, they required
training and time from expert histopathologists. There is an important need for efficient automatic
diagnosis to reduce processing time and allow surgeons to operate with minimal protocol changes.
A second approach was to define features of interest that will be measured automatically in our
data set via image analysis. These features should help segmenting the acquired individual images
as being part of a tumoral sample or not. We first selected a subpart of the original data set in order
to obtain more homogeneous data. We selected only the images that have a corresponding static
FFOCT and dynamic FFOCT image from the same field of view (Figure 7A1 and B1), and we
imposed to have at least 5 field of views for each sample. It results in selecting 496 field of views
(496 static FFOCT and 496 D-FFOCT images) from 39 samples (31 cancerous and 8 healthy).
To analyze these images, we defined 44 features that were previously characterized as potential
cancer biomarkers (REFS). These features can be sorted into 4 categories, including cell-based
features, extracellular matrix features, mesoscale features and fat content (see supplementary for
detailed description and specific references).

In order to measure these features for each image, two random forest classifiers were trained
to segment individual cells and fibers using ILastik free software [25]. A first classifier was
trained on all channels of 8 D-FFOCT images and was applied to all other images to segment
cells in D-FFOCT images (Figure 7B2). A second classifier was trained on 8 FFOCT images and
applied to all other FFOCT images to segment fibers, cell regions, and fat regions (respectively
red, green, and blue -Figure 7A2). These classifiers were evaluated by manual inspection and are
rather imprecise, but, because many cells and fibers can be found in each image, we believe the
errors can be averaged out. Besides, the segmented images were then analyzed using a second
filtering step to exclude some misclassified pixels. We also calculated mesoscale features, by
segmenting regions of high-fiber, or high-cell, densities (Figure 7A3, B3).

The histological diagnosis of the sample was attributed to all the field of views acquired in this
sample. This ground truth is rather imprecise because healthy regions can be found in cancerous
samples. Nonetheless, We trained a linear SVM to classify each field of view (Figure 7C). We
used a 5-fold cross validation and penalized by a factor 3 the possibility of having false positives
(healthy samples found as cancerous) to balance the datas et inhomogeneity. Also, if healthy
regions can be found in cancerous samples, the opposite should not be found, so that our ground
truth is inhomogenous as well. An accuracy of 89% (89% sensitivity, 88% specificity) was found.
This classification was used to calculate the ratio of field of views classified as normal versus
all field of views for each sample (Figure 7D). Segmenting samples with such ratio above 0.5
results in a 100% accuracy segmentation between healthy and cancerous samples. Because the
histological validation is made on the entire sample, it makes sense that the best level of prediction
of our algorithm is the tissue scale. Note that, because the number of samples, especially healthy
samples, is limited, we directly used the results from the test set applied to the SVM, although
the k-fold cross validation ensures that none of the data was seen by the classifier before being
predicted. To confirm these results, we performed a double k-fold cross validation, one at the
image level, and a second one at the sample level. For each run, we kept the images from one
healthy sample and four cancerous samples unused to serve as the validation set. The images
from the other samples are used to train and test the SVM, which was applied to the kept images.
Within height runs, all samples were evaluated separately, and we also obtained a 100% accuracy,
although the accuracy at the image level is slightly worse. We could also mention that, using a
quadratic SVM instead of a linear, we could obtain an accuracy of 97% at the image level (See
supplementary) and of 100% at the sample level, but the validation procedure of double cross



validation did not give perfect predictions, suggesting that the quadratic SVM was more prone to
overfitting. A larger and more balanced data set might give higher prediction scores at the image
level.

496 FF-OCT
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Fig. 7. Feature engineering and SVM classification of breast cancer D-FFOCT images.
Static (A1) and dynamic (B1) FFOCT images of a cancerous breast sample are analyzed
using two random forest classifiers (A2,B2). FFOCT image are segmented (A2) into fibers
(red), cells (green), and fat/holes (blue). D-FFOCT image are segmented (B2) in cells. These
segmented images, as well as mesoscale images (A3,B3), are used to compute engineered
features. Mesoscale fiber regions (A3) describes the region of high fiber density in the
FFOCT image. Mesoscale cell regions (B3) describes regions of high cell density in the
D-FFOCT image. (C) Chart summarizing the processing of FFOCT and D-FFOCT images
in order to classify each image and each sample using SVM. (D) Proportion of normal areas
found for each healthy (blue) and cancerous (sample) showing 100% separability between
the two classes. Scale bars: 200 `<.

In total, once the random forests and SVM were trained, the acquisition of about 10 field of



views, as well as the prediction for a sample only took a few minutes, and was shown to be very
powerful to distinguish healthy from cancerous samples. Nonetheless, the accuracy per field
of view is not so high, which would make it complicated to use to find tumor margins within a
sample. Also, this approach was only successful here, because the field of views acquired with
D-FFOCT were chosen as being representative of the sample, but this requires training with
FFOCT imaging. Finally, SVM are known to become computationally intensive when multiple
classes (outputs) are used, which may add complexity if tumor phenotyping is to be achieved.

5. Pixel scale blind classification using clustering

Fig. 8. Clustering results using GMM on a 10 dimensions feature space for each pixel on a
mouse retina. Scale bar: 25 `<.

Finally, a pixel scale approach was developed with a non-supervised strategy. The bottleneck in
the development of machine learning and neural networks is often data annotation which is both
cumbersome and time consuming. It is interesting to see whether non-supervised algorithms
could identify and cluster dynamic patterns without prior knowledge. To do so, dynamic features
were extracted on each pixel. For each pixel, the power spectrum density was computed using
Welch method with 16 samples per segment giving 9 features. The decorrelation time computed
as the width at half maximum of the auto-correlation was added as 10th feature. The feature
space was then clustered using Gaussian Mixtures Models (GMM) with 4 classes (arbitrary
choice corresponding to the number of cell types present in the FOV). A local spatial filter was
applied to take advantage of the spatial information and to smooth the class map which was noisy.
For a given pixel, the final class was the most predicted class in a neighborhood corresponding to
a disk of radius 4 pixels. The resulting clustering mainly follows the image intensity because the
power spectrum density carries the energy information of fluctuations. With this approach it is
possible to segment cell if membranes exhibit high contrast but it is really not a straightforward
and fast method. These results suggest that D-FFOCT signals at the pixel scale do not carry
much information without considering the spatial distribution of these fluctuations.



6. Conclusion

In this paper, we show that using the information contained in the dynamic signal allow for
tissue and cell classification. We successfully classified retinal cells with 97.7% accuracy and
breast healthy and cancerous tissues with 100% accuracy when aggregating results. We also
demonstrated that dynamic images can be treated directly, disregarding most of the dynamic
information by considering only its amplitude (motility index), and performed classification on
thumbnail images using convolutional neural networks. Using the Grad-CAM technique we were
able to exhibit the spatial location that led to a given classification and validated that the neural
network learnt to discriminate between cancerous and healthy cell packing. Finally we shown
that considering the dynamic at the single pixel scale does not carry much information and that
the spatial distribution of the probed dynamics is important to gain insight on the tissue and cells.
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Appendix F

Résumé en français

F.1 Introduction
Cette thèse s’inscrit dans le thème de l’imagerie optique, qui vise à sonder des objets et
à produire des images claires et agrandies de ceux-ci. En clinique, l’imagerie précise du
corps humain peut aider à fournir de meilleurs diagnostics; en recherche, elle peut apporter
des connaissances biologiques importantes ou une meilleure compréhension de l’univers en
imageant le ciel. Même si la propagation de la lumière peut être extrêmement complexe et
que les images peuvent contenir une quantité d’informations démesurée, les systèmes op-
tiques sont naturellement privilégiés par les humains, car c’est en partie de cette manière
que nous interagissons avec le monde par l’intermédiaire de l’un des systèmes optiques
les plus évolué : l’œil. La détection de la lumière présente de nombreux avantages par
rapport à d’autres ondes. Tout d’abord, nous disposons d’une source de lumière gratuite
qui éclaire notre monde. De plus, la lumière se propage si vite que, dans la plupart des cas,
notre cerveau peut simplement négliger la propagation de celle-ci et traiter la scène comme
si la vitesse de la lumière était infinie. Enfin, la lumière peut propager efficacement des
informations provenant de structures plus petites que nos autres sens, ce qui nous donne
un pouvoir de résolution supérieur.

L’imagerie optique est un domaine vaste et dynamique dans lequel de nombreux groupes
et chercheurs s’investissent et développent des idées brillantes pour repousser toujours
plus loin les limites de l’imagerie. Les systèmes d’imagerie optique peuvent être regroupés
en différentes catégories, ce qui permet de les classer et de les comprendre. Ils peuvent
d’abord être séparés en dispositifs fonctionnant en transmission ou en réflexion1. Dans
les systèmes en transmission, l’illumination est du côté opposé à la détection, tandis que
dans les systèmes en réflexion, l’illumination et la détection sont effectués du même côté
de l’objet. Bien que la configuration en transmission puisse être intéressante (par exemple
pour mesurer l’absorption des rayons X), elle serait invasive pour la plupart des applica-
tions de microscopie2 de sorte que les systèmes fonctionnant en réflexion sont généralement
préférés pour l’imagerie en limite de diffraction. Les systèmes optiques peuvent ensuite
être classés en détection cohérente et incohérente en fonction de la façon dont le champ lu-
mineux est mesuré. Les systèmes cohérents présentent des propriétés très intéressantes car
ils permettent d’accéder à la nature complexe du champ lumineux, c’est-à-dire de mesurer

1Il existe également des systèmes hybrides où l’éclairage peut être orthogonal à la détection, comme la
microscopie à feuille de lumière.

2L’endoscopie en transmission serait terriblement invasive car elle nécessiterait d’encastrer le détecteur
dans le tissu du patient
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à la fois l’amplitude et la phase. Les informations sur la phase sont utiles, par exemple,
pour mesurer les déplacements axiaux avec une précision bien meilleure que la longueur
d’onde ou pour propager le champ afin d’accéder à d’autres plans. Enfin, les systèmes peu-
vent être subdivisés en mesures directes et indirectes selon la façon dont les signaux sont
sondés. En effet, certains systèmes d’imagerie tels que l’IRM, l’imagerie par diffraction des
rayons X ou la spectroscopie par transformée de Fourier n’acquièrent pas de signaux dans
le domaine direct (c’est-à-dire dans l’espace ou le temps) mais dans le domaine de Fourier
(fréquence). Bien que les mesures indirectes présentent souvent des propriétés intéres-
santes, elles présentent généralement le même inconvénient, à savoir qu’il faut mesurer
tout le domaine avant de pouvoir récupérer l’image en passant de l’espace sondé à l’espace
direct. L’objectif commun de tous ces systèmes d’imagerie est de mesurer les propriétés
optiques d’un objet avec la meilleure qualité et la meilleure résolution d’image possible.
Les microscopistes ont de nombreux ennemis physiques3 qui détériorent les performances
d’imagerie. Ils s’efforcent de les surmonter en imaginant et concevant des méthodes in-
novantes qui permettent de récupérer et de filtrer les informations même lorsqu’elles sont
supposées avoir été perdues. Ces méthodes comprennent le filtrage des photons balistiques
des photons diffusés, les approches matricielles et l’utilisation de systèmes multimodaux
qui combinent les ondes électromagnétiques et acoustiques. Toutes ces méthodes sont
actuellement étudiées et développées dans notre laboratoire dans un environnement très
stimulant.

Dans le cadre de cette thèse, j’ai surtout été impliqué dans la construction et l’utilisation
des systèmes de tomographie optique cohérente (OCT) qui fonctionnent en réflexion, avec
comme son nom l’indique une détection cohérente et à mesure directe4. Une propriété très
intéressante de l’OCT est sa capacité à rejeter les photons diffusés ainsi que sa capacité
de sectionnement optique qui permettent d’obtenir des images 3D. L’OCT est similaire à
l’holographie, la différence étant que l’holographie utilise un éclairage monochromatique
alors que l’OCT utilise des sources à large bande, de sorte que l’holographie n’a pas de
capacité de sectionnement optique direct. Toutefois, pour les objets faiblement diffu-
sants, la microscopie holographique numérique5 peut reconstruire la structure de l’objet
en 3D en utilisant des modèles de propagation de la lumière qui échouent généralement
lorsque l’objet contient plus que quelques cellules d’épaisseur. Au cours de mon doctorat,
j’ai essayé de combiner l’OCT avec l’imagerie de fluorescence dans une configuration en
réflexion. La fluorescence est une mesure directe qui entre toujours dans la catégorie inco-
hérente car la fluorescence est un processus non cohérent même si l’éclairage utilisé pour
générer la fluorescence est cohérent. La nature incohérente de la fluorescence a conduit à
de nombreuses tentatives6 pour apporter une capacité de sectionnement optique avec des
approches d’illumination et de détection intelligents.

Ce manuscrit est divisé en cinq chapitres. Le premier chapitre présente les concepts et les
défis de l’imagerie dans les milieux diffusants. À cette fin, une brève introduction sur la
propagation de la lumière dans ces milieux est donnée. Ensuite, les concepts généraux de
filtrage des photons diffusés sont discutés et le filtrage ou fenêtrage temporel est introduit

3La diffraction, le bruit de photons, les aberrations, la diffusion et bien d’autres encore !
4Il existe également des systèmes OCT indirects qui fonctionnent dans le domaine de Fourier.
5Parfois appelée tomographie par diffraction optique.
6Telles que la microscopie confocale de fluorescence qui est basée sur un filtrage spatial des photons

diffusés par illumination et détection à travers un sténopé, la microscopie à feuille de lumière où seule
une fine tranche axiale de l’échantillon est illuminée et la fluorescence multi-photons qui est basée sur des
processus non linéaires.



APPENDIX F. RÉSUMÉ EN FRANÇAIS 190

avec l’OCT. La première implémentation de l’OCT7 est présentée avec les mains avant de
dériver les concepts et équations mathématiques qui conduisent à la formation d’images
sur le détecteur. Ces modèles mathématiques sont appliqués à la fois sur l’OCT temporel
et de Fourier afin de montrer qu’ils mesurent tous deux la même quantité physique. Je
voulais introduire ces concepts parce que je pense qu’ils sont importants pour quiconque
veut construire un système d’OCT, car même s’ils semblent simples, les systèmes d’OCT
présentent de nombreux pièges et subtilités. De plus, ces concepts sont fondamentaux pour
comprendre les dernières recherches et avancées en OCT avec ses nombreuses branches.
Ensuite, avec la description complète de l’OCT, je déduis les performances et les limites
de l’OCT à balayage avant d’introduire l’OCT plein champ (FFOCT) où la mesure est
parallélisée par l’utilisation d’une caméra plutôt que d’une photo-diode, et ne nécessite
donc aucun balayage. De nombreux aspects du FFOCT sont décrits afin de donner au
lecteur une vue d’ensemble des différents paramètres et de fournir un guide d’utilisation
à tous ceux qui pourraient vouloir construire un tel système. Enfin, je compare notre
approche FFOCT, qui est dans le domaine temporel et incohérent spatialement, avec les
approches OCT plein champ qui me semble les plus prometteuses.

Le deuxième chapitre présente les mesures dynamiques que l’on peut faire avec le FFOCT
en analysant les fluctuations temporelles du signal interférométrique. Dans ce chapitre, je
soutiens l’idée que le FFOCT dynamique (D-FFOCT) n’est pas adapté pour mesurer les
propriétés physiques locales des diffuseurs mais peut être utilisé pour générer des images
quantitatives où les cellules sont révélées avec un excellent contraste et où l’étude de leur
profil dynamique peut conduire à observer d’intéressants phénomènes biologiques. Une
application du D-FFOCT est montrée avec l’imagerie d’organoïdes de rétine dans un ar-
ticle intégré à ce manuscrit [Scholler et al., 2020].

Le troisième chapitre rassemble les méthodes de post-traitement que j’ai développées au
cours mon doctorat afin d’améliorer les images (D-)FFOCT. Une section particulièrement
intéressantes est celle concernant la suppression des artefacts de mouvement des acquisi-
tions D-FFOCT. Comme le D-FFOCT est sensible à la phase, de minuscules déplacements
axiaux créent de grands signaux artefactuels qui masquent le signal d’intérêt et empêchent
l’acquisition d’images D-FFOCT in vivo. L’élimination de ces artefacts a été une étape
importante dans le développement du D-FFOCT et la méthode est expliquée en détail
dans un article intégré à ce manuscrit qui a été publié en 2019 [Scholler, 2019b]. Dans ce
même article, une méthode différente de calcul des images dynamiques qui a amélioré le
rapport signal sur bruit est aussi présentée, permettant ainsi d’obtenir des images plus en
profondeur des tissus.

Le quatrième chapitre rassemble les modifications ainsi que les améliorations matériel des
système expérimentaux que j’ai développés pour la microscopie et l’imagerie in vivo de
la rétine chez l’homme. En ce qui concerne l’imagerie de la rétine, le travail présenté est
un effort commun avec Pedro Mecê pour faire du FFOCT un appareil robuste, à haute
résolution et répétable pour imager la rétine. La première étape a consisté à combiner le
FFOCT avec un dispositif de suivi axial afin de traquer la rétine pour faire correspondre
automatiquement la longueur du chemin optique entre la couche de rétine imagée et le
miroir de référence; condition nécessaire à l’obtention d’une image. Ensuite, la deuxième
étape a consisté à manipuler le front d’onde afin de maintenir une symétrie optique entre
l’œil et le bras de référence. Sans cette symétrie, les images FFOCT ne pouvaient être

7Qui est appelée OCT à balayage.
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acquises que sur une petite zone plutôt que sur l’ensemble du champ imagé. Enfin, la
dernière étape a consisté à corriger les aberrations oculaires par une approche efficace et
peu coûteuse utilisant une lentille adaptative afin d’améliorer le rapport signal sur bruit
et la répétabilité des acquisitions. Pour réussir cette dernière étape, un grand effort de
compréhension sur la théorie de la manifestation des aberrations en FFOCT a été mené
par Victor Barolle pendant son doctorat, puis démontré expérimentalement dans cette
thèse.

Enfin, le cinquième chapitre rassemble les nombreuses applications du (D-)FFOCT qui
ont été réalisées avec succès pendant ma thèse. Le suivi de mouvement a été utilisé pour
surveiller la cicatrisation des blessures à l’aide d’images D-FFOCT et a fait l’objet d’un
article publié en 2019 [Scholler et al., 2019]. Le suivi de mouvement a également été ap-
pliqué pour calculer des cartes d’angiographie du flux sanguin dans la conjonctive et limbe
sclérocornéen chez l’homme in vivo dans un article publié en 2020 [Mazlin et al., 2020].
Ensuite, des stratégies visant à combiner le (D-)FFOCT avec l’imagerie par fluorescence
sont décrites afin de mieux comprendre les signaux dynamiques (par exemple, différencier
les mitochondries des vésicules), ce qui sera utile pour les futurs développements et ap-
plications biologiques du D-FFOCT8. Enfin, l’apprentissage machine et l’apprentissage
profond pour la classification des cellules de la rétine et le dépistage du cancer du sein
sont présentés à l’aide de mesures de (D-)FFOCT en appendice D.

F.2 Chapitre 1: imagerie 3D des milieux diffusants
Pendant de nombreuses années, l’imagerie optique a été l’outil le plus important de la
recherche biomédicale pour observer les spécimens avec une résolution submicronique et
un caractère invasif minimal [Hajdu, 2002]. Cependant, les conditions requises pour im-
ager en limite de diffraction sont rarement réunies car la résolution et le contraste dimin-
uent lorsque la profondeur d’imagerie augmente à l’intérieur d’un tissu biologique. Ce
phénomène est une conséquence des variations spatiales de l’indice de réfraction du spéci-
men observé qui créent des distorsions du front d’onde. Lorsque ces variations présentent
de faibles fréquences spatiales, ces distorsions sont appelées aberrations et sont générale-
ment décrites à l’aide de polynômes orthogonaux. En revanche, lorsque ces variations sont
de fréquences plus élevées, ces distorsions sont appelées diffusion9. Les aberrations et la
diffusion limitent l’utilisation de la microscopie conventionnelle à de faibles profondeurs
ou à des spécimens presque transparents. L’imagerie plus profonde, et donc l’imagerie 3D,
nécessite de contrecarrer ces phénomènes nuisibles, de sorte que pour l’imagerie profonde,
un mécanisme de sélection est généralement utilisé pour rejeter les photons diffusés et ne
capturer que la lumière dite balistique. La lumière balistique est atténuée de façon expo-
nentielle dans les tissus biologiques [Akkermans and Montambaux, 2007], ce qui signifie
que plus on veut obtenir des images profondes, plus le signal balistique mesuré est faible
et plus le bruit est élevé.

Une des grandeurs d’intérêt pour caractériser et comparer les systèmes d’imagerie 3D
est le libre parcours moyen de diffusion. Le libre parcours moyen de diffusion ls est
la distance moyenne que parcours un photon entre deux évènements de diffusions. Un

8Ces aspects sont actuellement étudiés par Kassandra Groux dans notre équipe, en particulier sur les
échantillons rétiniens.

9Le terme diffusion renvoie ici au scattering et non à la diffusion qui régie le transport de chaleur ou de
particule. Malheureusement en français les deux principes physiques portent le même nom.
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système d’imagerie classique permet d’imager un objet jusqu’à une profondeur de l’ordre
du ls, ensuite les photons diffusés rendent l’image trop floue et le contraste insuffisant
pour reconstruire l’objet [Badon et al., 2017]. Un moyen pour imager à des profondeurs
plus importantes est de filtrer les photons diffusées des photons balistiques. Ce filtrage
peut être spatial comme en microscopie confocale [Minsky, 1988] où l’illumination et la
détection sont filtrées à l’aide d’un sténopé. Ce filtrage peut aussi être temporel, en
focalisant un pulse de lumière dans l’échantillon on peut trier les photons en fonction
de leur temps d’arrivée et garder seulement ceux dont le temps de vol correspond à la
profondeur à imager. Malheureusement la vitesse de l’électronique qu’il faudrait pour
obtenir une résolution temporelle suffisante est plusieurs ordres de grandeurs supérieurs à
ce dont nous disposons. Si, au lieu de mesurer le temps de vol des photons on les compare
avec un pulse de référence qui a parcouru une distance connue alors les photons qui arrivent
en même temps que les photons de référence vont donner lieu à des interférences. En
mesurant ces interférence il est possible de séparer les photons diffusés des autres, c’est le
principe de l’OCT [Huang et al., 1991] présenté Fig. 1.2. La résolution axiale δz en OCT
dépend des propriétés spectrales de la source lumineuse utilisée [Goodman, 1985] et vaut:

δz = lγ
2 = 2ln(2)

π

λ2
c

∆λ (F.1)

où lγ est la longueur de cohérence de l’illumination, ∆λ est la largeur à mi-hauteur de
la densité spectrale de puissance de la source et λc est la longueur d’onde centrale. La
résolution transverse δx,y est limitée par la diffraction et vaut:
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√
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π

λc
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(F.2)

où NA est l’ouverture numérique du système d’imagerie. La profondeur de champ (DOF)
de l’OCT est liée à la longueur de Rayleigh et vaut:
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Étant donné que la profondeur de champ diminue lorsque la résolution transverse aug-
mente, il est clair qu’il y a un compromis à trouver pour l’OCT à balayage. En effet, en
améliorant la résolution latérale et en diminuant ainsi δx,y dans Eq. F.2, alors la DOF
diminuera fortement. Dans les tissus biologiques, l’OCT permet d’acquérir des signaux
jusqu’à une profondeur de 1 mm, de sorte que la DOF devrait être supérieur à 0.5 mm,
ce qui conduit à une résolution transverse maximale de δx,y = 20 µm, ce qui correspond
à NA = 0.015. Par rapport aux techniques classiques de microscopie où le NA peut
atteindre 1.5, ce résultat pour les OCT limitait son utilisation extensive en microscopie.
Néanmoins, comme la résolution axiale était découplée du NA et de l’ordre de δz = 1 µm
l’OCT a rapidement trouvé des applications en ophtalmologie pour l’imagerie de la rétine
où les couches rétiniennes sont séparées de quelques microns, l’OCT a donc pu résoudre
les différentes couches de la rétine pour le diagnostic clinique. Afin de palier à ces défauts,
l’OCT plein champ à été proposé, améliorant ainsi la résolution transverse et la vitesse
d’acquisition. Contrairement à son homologue à balayage le FFOCT est très sensible à la
cohérence spatiale de la source. En effet, comme les mesures sont parallélisées sur tout un
plan, les interférences entre des pixels voisins peuvent donner des artefacts. Dans notre
approche du FFOCT nous utilisons une LED qui est une source spatialement incohérente,
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c’est à dire que deux points voisins de la source ne peuvent produire d’interférence et per-
met ainsi d’obtenir des images sans artefacts. D’autres approches de l’OCT plein champ
existent notamment une approche hors-axe [Hillmann et al., 2016, Hillmann et al., 2017]
qui permet de séparer spatialement les interférences intra-échantillons des interférences
échantillon référence, ainsi qu’une approche utilisant une source spatialement cohérente
conjuguée à une membrane vibrante [Auksorius et al., 2019] qui vient faire décorrélée la
phase pendant le temps de la mesure, cassant ainsi la cohérence spatiale de la source.

F.3 Chapitre 2: nouveau contraste pour l’imagerie des cel-
lules et tissus vivant avec le D-FFOCT

L’OCT plein champ dynamique (D-FFOCT) a été proposée pour la première fois par
Clément Apelian [Apelian et al., 2016] comme une nouvelle technique permettant d’imager
la dynamique intracellulaire des cellules vivantes dans des tissus frais ex vivo. L’idée
première était de révéler les cellules à l’intérieur des tissus. En effet, les cellules sont
pour la plupart transparentes et homogènes, ce qui les rend difficiles à imager, surtout
dans les tissus où elles sont mélangées à des fibres de collagène très réfléchissantes. Les
cellules sont essentiellement des objets de phase et Zernike a proposé en 1942 [Zernike,
1942] l’imagerie par contraste de phase pour améliorer le contraste des cellules, quasiment
invisible en imagerie classique jusqu’alors. En utilisant la même idée, le D-FFOCT se base
sur l’interférométrie pour sonder les changements de phase afin d’améliorer le contraste
cellulaire et permettre de mesurer la motilité intracellulaire. Pour ce faire, on acquière
un film de plusieurs centaines d’images (typiquement 512) sans introduire de décalage de
phase, les décalages étant introduit par le mouvement des diffuseurs dans l’échantillon. A
partir de ce film on construit une image dynamique en étudiant les fluctuations temporelles
pour chaque pixel. L’indice métabolique a d’abord été proposé en étant calculé comme
l’écart type glissant moyenné sur la totalité du signal pour chaque pixel [Apelian et al.,
2016, Thouvenin et al., 2017a]. Plusieurs caractéristiques peuvent être calculées en plus
de l’indice métabolique afin de générer des images colorées. Ces caractéristiques portent
des informations physiques limitées sur les propriétés physique des diffuseurs locaux mais
permettent de différencier les cellules en examinant leur profil dynamique. Une application
de l’imagerie D-FFOCT pour les organoïdes de rétines est présenté avec une publication
[Scholler et al., 2020] page 28 de ce manuscrit.

F.4 Chapitre 3: développements logiciels pour le (D-)FFOCT
Dans ce chapitre je montre que la partie de traitement des signaux est très importante dans
la fabrication des images dynamiques. En effet, les mouvements axiaux de l’échantillon
durant l’acquisition (qui dure plusieurs secondes) créent des changements de phase très
important et masques les changements de phase lié aux diffuseurs locaux et donc à la
motilité cellulaire. Une méthode de séparation des artefacts de mouvements est proposé
utilisant la décomposition en valeur singulière. Cette méthode a permis pour la première
fois d’obtenir des images D-FFOCT in vivo sur un foie de souris. Cette méthode est dé-
taillée dans un article publié en 2019 [Scholler, 2019b] intégré page 42 de ce manuscrit avec
un nouvel opérateur pour calculer l’index métabolique qui permet de multiplier le rapport
signal sur bruit au moins par deux. Cet opérateur utilisant la somme cumulée permet
d’amplifier les non-stationnarités dans les signaux dynamiques afin de les amplifier par
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rapport au bruit. Ensuite, j’explique comment nous avons pu utiliser Holovibes10 [Atlan,
M. et al., 2009] et le modifier pour calculer des images dynamiques beaucoup plus rapide-
ment et en évitant de devoir sauvegarder les données brutes qui peuvent peser jusque 4 Go
par seconde d’acquisition. Grâce à l’utilisation d’Holovibes nous avons pu atteindre une
résolution temporelle de 20 ms sur plusieurs heures, contre 30 s auparavant. Enfin, dans
ce chapitre je présente deux autres méthodes. La première permet de stabiliser le plan
d’imagerie pour rester plusieurs heures dans le même plan d’un échantillon en compensant
ainsi les dérives mécaniques. La seconde permet de retirer les artefactes liés aux imperfec-
tions du miroir de référence sur les images FFOCT en les détectant automatiquement et
en reconstruisant le signal FFOCT sous-jacent en propageant l’information sur les bords
en utilisant l’équation de Navier-Stokes.

F.5 Chapitre 4: développements matériels: vers le D-FFOCT
in vivo.

Dans ce chapitre je traite les nombreux développement matériels que j’ai mis en oeuvre
pendant ma thèse pour l’imagerie de la rétine. La première étape a été de développer un
dispositif de tracking de la rétine pour compenser les mouvement de l’oeil et ainsi obtenir
des images FFOCT de la rétine avec une meilleure consistance et a fait l’object d’une
publication [Mecê et al., 2020b]. Pour ce faire nous utilisons un SD-OCT pour acquérir
des B-Scans de la rétine et ainsi déterminer sa position axiale au cours du temps. Lorsqu’un
mouvement de la rétine est détecté, une commande numérique est envoyée à un moteur à
bobine mobile qui contrôle la position du miroir de référence afin de conserver la même
différence de chemin optique entre la couche de la rétine que l’on souhaite imager et le
bras de référence, et ce même lorsque le sujet bouge. Ensuite nous avons observés que chez
certain sujet et pour imager certaines excentricités de la rétine le champ de vue présentait
des signaux en forme de bande. Le rapport signal sur bruit n’était pas constant sur le
champ de vue à cause de l’asymétrie optique entre l’oeil et l’objectif de microscope dans le
bras de référence. Les deux champs interférant sur la caméra n’étant plus co-planaire on
observait des bandes de signaux (là où les champs étaient superposés). Pour résoudre ce
problème nous avons proposé de contrôler la courbure du champ en ajoutant une lame de
verre dans un des bras. Les points à l’extrémité du champ sortant avec un angle plus grand,
ils traversent une plus grande épaisseur de verre entre la pupille de l’objectif ou de l’oeil
et la lentille de tube. Ainsi on ajoute un retard ou une avance de phase différente selon
la position transverse dans le champ de vue et on peut manipuler facilement la courbure
du champ. Ce procédé simple et peu coûteux a fait l’objet d’une publication [Mecê et al.,
2020a] qui est présenté dans la deuxième partie de ce chapitre. La troisième partie traite
des aberrations et fera sûrement l’objet d’une publication dans un futur proche. Dans un
premier temps je dérive les résultats connus sur la manifestation des aberrations dans un
système optique conventionnel avant de dériver l’effet des aberrations en FFOCT qui a été
découvert par Victor Barolle durant sa thèse [Barolle, 2019]. Ce modèle met en lumière
plusieurs propriétés intéressantes du FFOCT grâce à la nature spatialement incohérente
de l’illumination:

• Les aberrations symétriques ont une plus faible influence sur les images FFOCT que
les images conventionnelles contrairement aux aberrations anti-symétriques.

10Holovibes est un logiciel développé par Michael Atlan et son équipe pour faire de la reconstruction
d’hologramme sur GPU en temps réel.
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• Le module de la fonction d’étalement du point est le même en FFOCT qu’en imagerie
conventionnelle.

Dans le but de démontrer expérimentalement ce modèle j’ai construit un dispositif ex-
périmental permettant de rajouter des aberrations de manière contrôlée à l’aide d’une
lentille déformable et d’une mesure du front d’onde à l’aide d’un Shack-Hartmann. J’ai
aussi mesuré les fonctions d’étalement du point à l’aide d’un gel de particules de TiO2
conjointement en FFOCT et en imagerie conventionnel. A la lumière de ses résultats j’ai
ensuite transféré la partie contrôle du front d’onde de l’expérience précédente sur notre
banc d’imagerie rétinienne afin de corriger les aberrations oculaires pour l’imagerie. Dif-
férentes stratégies d’optimisation du front d’onde sont testés ainsi que différentes fonctions
de coût. Finalement c’est l’algorithme DONE [Verstraete et al., 2017] combiné à une fonc-
tion de coût hybride calculée sur les B-Scans SD-OCT qui montre les meilleurs résultats.
Grâce à la correction du front d’onde en temps réel nous avons pu obtenir des images
proche de la limite de diffraction sur pupille dilatée11, y compris sur des sujets présentant
des aberrations de haut ordre (à cause de l’opération LASIK) et donc non imageable sans
correction du front d’onde. En optimisant le signal sur la partie supérieure de la rétine
nous avons pu obtenir pour la première en fois en FFOCT des image de la couche de
fibre nerveuse à différentes profondeurs où l’on a pu deviner l’écoulement du sang dans un
vaisseau. Grâce aux améliorations matérielles présentées dans ce chapitre nous avons bon
espoir de pouvoir faire des mesures dynamiques in vivo dans la rétine.

F.6 Chapitre 5: des signaux aux diagnostiques
Le cinquième et dernier chapitre de ce manuscrit présente les différentes approches que
j’ai développé pour extraire plus d’information des signaux dynamiques et aller vers le
diagnostic. La première section regroupe les suivi de mouvements basés sur des films
D-FFOCT et FFOCT. Le premier exemple est présentée dans un article [Scholler et al.,
2019] et permet le suivi de la cicatrisation d’une blessure sur une cornée de macaque ex
vivo. En traquant temporellement les cellules de l’epithelium grâce au calcul du flow
optique j’ai pu extraire des cartes de déplacement et de vitesses et retrouver les valeurs
typique de la littérature. Le second exemple est présenté dans un article [Mazlin et al.,
2020] sur l’imagerie in vivo de la cornée. En analysant les films FFOCT du limbus j’ai
pu mesurer quantitativement la vitesse du flux sanguin dans les capillaires du limbus.
Pour ce faire j’ai traqué les globules rouges avec une approche par block-matching et
reconstitué des carte angiographique du flux sanguin. Les propriétés du flux sanguin ainsi
extrait ont été en accord avec la littérature et la théorie qui prédit un écoulement de type
Poiseuille. La seconde section regroupe les étapes pour combiner le D-FFOCT et l’imagerie
de fluorescence. L’imagerie de fluorescence est aujourd’hui la référence en biologie car elle
permet par exemple de marquer des protéines, organelles, membranes et ainsi d’obtenir
des images interprétable directement. Les images D-FFOCT sont elles très récentes et le
manque de recul et de comparaison avec d’autres techniques font que nous ne pouvons pour
l’instant pas interpréter toute l’information présente dans ces images. Le but de combiner
l’imagerie de fluorescence au D-FFOCT est de pouvoir gagner en interprétabilité sur les
images dynamiques et ainsi obtenir une méthode d’imagerie non-destructive et endogène.
La difficulté que j’ai rencontré pour construire un système combiné est que l’imagerie
de fluorescence ne présente pas de sectionnement optique en soi et il faut donc utiliser
des méthodes d’illumination/détection évoluées pour ajouter ce sectionnement optique,

11Donc présentant un haut niveau d’aberrations.
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nécessaire à l’imagerie en profondeur. J’ai utilisé pour cela la méthode HiLo, qui permet
de rejeter les photons hors focus à partir de seulement deux images. Le problème est
que cette technique fonctionne seulement à faible profondeur et ne permet pas de rivaliser
avec le D-FFOCT en terme de pénétration. Une solution pourrait être de combiner le
D-FFOCT avec un montage confocal mais l’implémentation n’est pas simple car le D-
FFOCT est une technique plein champ alors que le confocal est une technique à balayage
qui est de surcroît plus lente et nécessitant souvent la fixation des tissus et cellules. La
dernière section traite de l’utilisation des signaux dynamiques pour faire de la classification
de cellules et de la détection de cancer avec des approches d’apprentissage automatique
et profond. En isolant des cellules de rétines par des techniques de segmentation et en
utilisant les signaux brutes j’ai pu classifier ces cellules avec une précision de 97%. Pour
la détection du cancer j’ai pu travailler sur des données d’une campagne de mesure sur la
détection de cancer du sein et obtenir une précision de classification de 100%.

F.7 Conclusion et perspectives
Dans cette thèse, j’ai étudié les axes matériels et logiciels permettant de réaliser des acquisi-
tions haute résolution en FFOCT dynamiques et statiques tout en conservant un dispositif
expérimental peu complexe et très robuste. Pour la microscopie, j’ai appliqué le D-FFOCT
pour l’imagerie des organoïdes rétiniens et j’ai démontré que cette technique peut apporter
des connaissances biologiques intéressantes grâce à son contraste métabolique. J’ai trouvé
une nouvelle méthode basée sur la décomposition en valeur singulière pour éliminer les
artefacts provenant du mouvement axial de l’échantillon lors des acquisitions. J’ai égale-
ment proposé un nouvel opérateur basé sur la somme cumulée pour calculer les images
dynamiques. Cela a qui conduit à une amélioration du rapport signal sur bruit, nous
permettant ainsi de pouvoir réaliser des images plus en profondeur dans les échantillons
avec le D-FFOCT. Pour l’imagerie de la rétine, nous avons mis en œuvre un suivi et une
compensation en temps réel de la position de la rétine qui fonctionne à 50 Hz et avec une
erreur quadratique moyenne de 9, 1 µm. Cela nous a permis d’obtenir des images de la
rétine de manière fiable et répétable. Ensuite, nous avons étudié la courbure de champ
due à l’asymétrie optique dans l’interféromètre de Linnik pour l’imagerie rétinienne et
proposé une méthode pour trouver la compensation optimale afin de corriger à la fois la
courbure de champ et la dispersion. Cela nous a permis d’imager la rétine sur un champ
de vision de 1 × 1 mm avec un rapport signal sur bruit homogène sur tout le champ de
vu. J’ai également validé expérimentalement la théorie des aberrations optiques proposée
par Victor Barolle [Barolle, 2019] en utilisant une configuration AO-FFOCT construite à
cette fin avec une lentille déformable et un capteur de front d’onde Shack-Hartmann. J’ai
ensuite transféré la partie AO sur notre banc d’imagerie rétinienne et j’ai mis en œuvre
et étudié plusieurs schémas d’optimisation sans capteur de front d’onde pour obtenir une
image de la rétine humaine in vivo proche de la limite de diffraction en temps réel. J’ai pu
imager et résoudre des photorécepteurs jusque 0,5 degré de la fovéa et imager de manière
fiable la couche de fibre rétinienne à différentes profondeurs. J’ai également adapté des
algorithmes de suivi de mouvement pour le D-FFOCT afin d’étudier le processus de ci-
catrisation des plaies de la cornée et pour le FFOCT afin de mesurer quantitativement
le flux sanguin dans le limbe sclérocornéen in vivo chez l’humain. Ces accomplissements
sont d’une grande importance car ils mettent en évidence la multimodalité de l’imagerie
(D-)FFOCT et sa capacité à capturer des informations importantes et significatives. En-
fin, j’ai étudié avec succès plusieurs approches d’apprentissage machine et d’apprentissage
profond pour la classification des cellules de la rétine et la détection du cancer du sein à
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l’aide des signaux D-FFOCT.

Compte tenu du potentiel du (D-)FFOCT, son avenir semble prometteur et j’espère que le
transfert clinique pour l’imagerie de l’oeil mais aussi pour la microscopie avec l’étude du
développement des organoides ainsi que le dépistage des biopsies aura lieu maintenant que
cette technique est fiable et robuste. D’un point de vue plus fondamental, il existe encore
certaines pistes que je n’ai pas eu le temps d’étudier mais qui pourraient être intéressantes
pour de futurs développements. Ces idées sont brièvement discutées ci-dessous.

Correction numérique d’aberrations

Des travaux récents [Borycki et al., 2019] ont montré que la correction numérique des
aberrations fonctionne aussi pour le FFOCT à transformée de Fourier même lorsque la co-
hérence spatiale de la source est détruite. Cette technique a récemment été appliquée avec
succès pour l’imagerie in vivo de la cornée [Auksorius et al., 2020] et de la rétine [Auksorius
et al., 2019] et a été brièvement expliquée dans la section 1.4.2. Les avantages de la correc-
tion numérique des aberrations sont notamment un meilleur rapport signal sur bruit, une
résolution limitée par la diffraction et une profondeur de champ améliorée (particulière-
ment utile pour les techniques qui mesure axialement l’échantillon à chaque acquisition)
sans nécéssité de modification du montage expérimental. Dans notre montage FFOCT
(spatialement incohérent et dans le domaine temporel), les photons aberrés sont partielle-
ment filtrés car ils ne peuvent pas interférer avec la référence. La correction numérique des
aberrations n’entraînerait donc que des améliorations minimes. Mon idée est d’introduire
une défocalisation dans le bras de référence afin que les photons aberrés puissent con-
tinuer à interférer avec la référence. En examinant l’énergie dans l’image FFOCT pour
différentes niveaux de défocalisation, il devrait être possible de contrôler la proportion des
photons abérrés interférant. Nous devrions observer davantage d’aberrations avec cette
défocalisation car le modèle de formation d’images FFOCT présenté dans la section 4.3.2
ne tiendrait plus. Cependant, ces aberrations pourraient être corrigées en post-traitement
en utilisant les approches développées précédemment [Borycki et al., 2019, Hillmann et al.,
2016] et nous pourrions potentiellement nous passer de la lentille déformable.

D-FFOCT sur la phase et l’amplitude uniquement

Comme l’explique la section 2.2, il n’est pas possible de calculer les propriétés physiques lo-
cales des diffuseurs à partir des signaux D-FFOCT bruts. Cela est dû en partie au mélange
des fluctuations d’amplitude et de phase. En utilisant la démodulation triangulaire à 10
phases qui a l’avantage de présenté un degré d’erreur faible sur la séparation de la phase
et de l’amplitude présentée section 1.3.2, il devrait être possible de calculer distinctement
les images D-FFOCT en phase et en amplitude. Cela pourrait conduire à de nouvelles
connaissances en biologie selon le type de fluctuations. Un travail récent [Münter et al.,
2020] a montré la possibilité de faire des mesures dynamiques en utilisant un SD-OCT. Les
auteurs ont construit une image dynamique en mesurant les fluctuations de l’amplitude des
signaux OCT, mais ils pourraient éventuellement calculer la même chose sur l’information
de phase. Le SD-OCT dynamique pourrait ainsi aider à comprendre l’origine du signal
dynamique. De plus, en réduisant la taille du capteur de la caméra, nous pourrions ac-
quérir avec une fréquence d’images plus élevée. En acquérant plus d’images (des dizaines
de milliers), nous pourrions utiliser la même approche que la spectroscopie de corrélation
de fluorescence pour extraire les propriétés physiques locales des diffuseurs et ainsi extraire
plus d’information quantitative sur les diffuseurs.
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Phase retrieval pour le FFOCT

La correction numérique d’aberrations et le démélangeage d’amplitude et de phase pour-
raient tous deux bénéficier d’algorithmes de récupération de phase. L’adaptation des
algorithmes actuellement utilisés [Yeh et al., 2015] pour le FFOCT pourrait permettre de
mieux séparer la phase et l’amplitude du champ lumineux et ainsi d’obtenir des images
plus rapidement et potentiellement en une seule prise. Cela pourrait aussi permettre une
meilleure correction numérique d’aberrations en réduisant les artefacts de reconstruction.

D-FFOCT en champ sombre

Le FFOCT en champ sombre a d’abord été proposé dans [Auksorius and Boccara, 2015]
puis appliqué à l’imagerie des empreintes digitales profondes [Auksorius and Boccara,
2020]. L’idée est de bloquer les réflexions spéculaires en ajoutant un masque dans le plan
pupille du système d’imagerie. Pour que la référence puisse se propager vers la caméra, le
miroir de référence doit donc être incliné ou remplacé par un réseau de diffraction. Combiné
à un séparateur de faisceau efficace, le FFOCT par transformée de Fourier en champ
sombre peut conduire à une amélioration par 4 du rapport signal sur bruit [Auksorius,
2020] en plus de supprimer les réflexions spéculaires qui permettent à nouveau d’envoyer
plus de puissance et d’obtenir un signal encore meilleur. Le D-FFOCT en champ sombre
pourrait donc améliorer considérablement la profondeur de pénétration. La difficulté étant
que le plan de la pupille des objectifs à haute ouverture numérique est généralement
physiquement à l’intérieur des objectifs, la mise en œuvre du D-FFOCT en champ sombre
nécessiterait l’ajout d’un télescope pour relayer le plan de la pupille dans chaque bras.
Cette configuration conduira à des systèmes plus grands et plus encombrants, mais le gain
expecté en vaut probablement la peine.
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MOTS CLÉS

Tomographie optique cohérente - Microscopie - Imagerie dynamique - Traitements spatio-temporels - Im-
agerie de la rétine - Optique adaptative - Apprentissage automatique.

RÉSUMÉ

Cette thèse vise à appliquer et combiner des méthodes numériques et optiques pour repousser les limites de la
tomographie optique cohérente plein champ (FFOCT) statique et dynamique pour la microscopie et l’imagerie médicale.

Des méthodes de post-traitement utilisant la décomposition en valeurs singulières ont permis pour la première fois
l’acquisition d’images dynamiques in vivo tandis que l’utilisation des signaux non stationnaires a permis d’obtenir
des images avec un meilleur rapport signal sur bruit, soit la possibilité d’imager plus profondément les échantillons.
L’application de l’imagerie dynamique est présentée sur des organoïdes rétiniens où nous montrons que notre méthode
est capable de fournir de nouvelles informations biologiques intéressantes qui ne sont possibles avec aucune autre
méthode.

Des développements matériel pour compenser les aberrations optiques ont été menés avec succès, ce qui a permis une
mise en œuvre peu complexe et peu coûteuse permettant d’acquérir de manière fiable des images de la rétine avec une
résolution proche de la limite de diffraction. La compréhension de la manifestation des aberrations optiques en FFOCT
validée expérimentalement nous a permis de concevoir et de simuler les performances du système proposé.

Enfin, les applications cliniques potentielles du FFOCT dynamique et statique pour l’angiographie de l’œil humain in vivo,
la cicatrisation ex vivo, la classification des cellules de la rétine et le dépistage du cancer du sein par des méthodes
d’apprentissage automatique ont été démontrées avec succès.

ABSTRACT

This PhD project aims at combining numerical and optical methods to apply and push the limits of static and dynamic
full-field optical coherent tomography (FFOCT) for microscopy and medical imaging.

Post-processing methods using singular value decomposition allowed the acquisition of dynamic images in vivo for the
first time while the use of the signals non-stationarities allowed to image with a better signal to noise ratio, hence deeper
inside samples. Application of dynamic imaging is presented on retinal organoids where we show that our method is able
to provide new interesting biological insights that are not possible with any other methods.

Hardware developments to counteracts optical aberrations were successfully conducted leading to low complexity and
cost efficient implementation which can reliably acquire retinal images with a resolution close to the diffraction limit. The
understanding and demonstration of the particular aberrations manifestation in FFOCT allowed us to design and simulate
the performances of the proposed system.

Finally, potential clinical applications of dynamic and static FFOCT for angiography in the human eye in vivo, wound
healing ex vivo, retinal cell classification and breast cancer screening using machine learning methods are successfully
demonstrated.

KEYWORDS

Optical coherence tomography - Microscopy - Dynamic imaging - Spatio-temporal processing - Retinal imag-
ing - Adaptive optics - Machine learning.
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