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Abstract (English)

With the increase of the number of people with moderate to severe visual impairment, mon-
itoring and treatment of vision disorders have become major issues in medicine today. At
the Quinze-Vingts national ophthalmology hospital in Paris, two optical benches have been
settled in recent years to develop two real-time digital holography techniques for the retina:
holographic optical coherence tomography (OCT) and laser Doppler holography. The first
reconstructs three-dimensional images, while the second allows visualization of blood flow in
vessels. Besides problems inherent to the imaging system itself, optical devices are subject
to external disturbance, bringing also difficulties in imaging and loss of accuracy. The main
obstacles these technologies face are eye motion and eye aberrations.
In this thesis, we have introduced several methods for image quality improvement in digital

holography, and validated them experimentally. The resolution of holographic images has
been improved by robust non-iterative methods: lateral and axial tracking and compensation
of translation movements, and measurement and compensation of optical aberrations. This
allows us to be optimistic that structures on holographic images of the retina will be more
visible and sharper, which could ultimately provide very valuable information to clinicians.





Résumé (Français)

Avec l’augmentation du nombre de personnes souffrant de déficience visuelle modérée à sévère,
la surveillance et le traitement des troubles de la vision sont devenus des enjeux majeurs
de la médecine actuelle. Au centre hospitalier national d’ophtalmologie des Quinze-Vingts
à Paris, deux bancs optiques ont été installés ces dernières années pour développer deux tech-
niques d’holographie numérique en temps-réel pour l’imagerie de la rétine : la tomographie
holographique par cohérence optique (OCT holographique) plein champ et l’holographie laser
Doppler. La première reconstitue des images en trois dimensions, tandis que la seconde per-
met de visualiser le flux sanguin dans les vaisseaux. Outre les problèmes inhérents au système
d’imagerie lui-même, les appareils optiques sont soumis à des perturbations externes, ce qui
entraîne également des difficultés d’imagerie et une perte de résolution. Les principaux obsta-
cles auxquels ces technologies sont confrontées sont le mouvement des yeux et les aberrations
oculaires.
Dans cette thèse, nous avons étudié plusieurs méthodes d’amélioration de la qualité des

images en holographie numérique, et les avons validées expérimentalement. La résolution des
images holographiques a été améliorée par des méthodes non itératives robustes : compensation
des mouvements et mesure et compensation des aberrations optiques. Ce travail ouvre la voie à
de nouvelles méthodes de traitement qui permettront une amélioration majeure de la résolution
des images en holographie numérique de la rétine, et qui pourront fournir des informations très
précieuses aux cliniciens, à terme.
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Introduction

According to the World Health Organization [1], 217 million people around the world suffer
from moderate to severe visual impairment. 38,5 million of the world population are blind.
With demographic growth and ageing of the population, this number is estimated to triple
by 2050. Monitoring and treatment of vision disorders are therefore major issues in medicine
today.
Several methods have been developed all over the years to study the eye and its internal

dynamics: the shape of the cornea, the structure of the retina, the blood flow circulation...
These characteristics can provide precious information about the vision, but also about some
pathologies. They can be obtained by different imaging techniques, more or less invasive.
The technology we are going to focus on in this manuscript is holography. Non invasive, it

consists in using the optical wavefield recorded by interference of the reflected light beam sent to
the object to be imaged. In the eye, holography is increasingly used for retinal imaging. At the
Quinze-Vingts national ophthalmology hospital in Paris, two optical benches have been settled
in recent years to develop two real-time digital holography techniques for the retina: holographic
optical coherence tomography (OCT) and laser Doppler holography. The first reconstructs
depth-resolved, three dimensional structural images of optical reflection and absorption. The
second allows the visualization of blood flow through the vessels, in a large depth-of-field image,
encompassing the retinal and choroidal networks.
One of the benefits of holography lies in its ability to give access to the entire field without

the need for a complex setup. Digital processing and optimization on Graphics Processing Unit
(GPU) allow to get a high rendering speed. Yet, the image quality needs to be improved in
order to be able to better see the smallest structures like vessels and capillaries. The passage
of the light through the cornea causes a distortion of its wavefront. Indeed, this natural lens
is deformed differently for each person. This distortion, called aberration, is reflected in the
resulting holographic images of the retina, adding more or less blur to them, and decreasing their
resolution. In order to overcome this limitation, aberrations of the eye need to be compensated.
This PhD thesis aims at improving the resolution of the images provided by the holographic

setups at Quinze-Vingts national ophthalmology hospital, in particular by compensating aber-
rations. For this purpose, it is necessary to rigorously understand the transformations carried
out to obtain images, as well as the effect of aberrations. The study of the state of the art
reveals several leads to be explored. We have chosen to investigate thoroughly two of them,
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each with their own specificities.
The first method is based on the most used technique to measure aberrations: a wavefront

sensor. It consists in analogically measuring the wavefront distortion. In our work, we have
transferred this technique from analog to digital, thus to avoid adding any optical element to the
setups. Once the aberration measured, the access to the field, provided by digital holography,
allows its correction in digital post-processing.
The second method has been studied for the time saving it could bring: the compensation of

aberrations would be done in milliseconds. This consists in using a deep neural network, which
is a specific sequence of linear and non linear operations, in order to obtain a corrected image
directly from an aberrated image.
The details and the results of these methods have been documented in this manuscript. The

first chapter introduces the main themes of this thesis through the state of the art. The second
chapter explains how the holography benches are designed and tuned in order to record the
interferograms that will be used for image rendering, as well as the first treatments applied to
images, such as motion compensation. Finally, the third and fourth chapters focus respectively
on the two methods of estimation and correction of the aberrated wavefront introduced earlier.
This work paves the way for new processing methods that will allow a major improvement of
the lateral resolution of images in digital holography of the retina.



CHAPTER 1

Retinal imaging

1.1 The role of the retina

This chapter aims at introducing the different elements that form the basis of the main themes
of the manuscript. This section provides general information about the retina and several
pathologies that can affect it, to understand its role and the reasons why it is important to image
it. An overview of the different imaging techniques is presented in the next part. It focuses
on the two families of technologies that we are interested in in this manuscript: structural
visualisation with holographic OCT and blood flow imaging with laser Doppler holography.
Finally, we discuss about the difficulties brought by these types of imaging, due to motion and
aberrations of the eye.

Figure 1.1 – Eye-fundus and optical coherence tomography (OCT) of a retina taken with Spectralis device.
The green arrow on the eye-fundus image corresponds to the scanning position for the second
image. The fovea, center of the vision, is well-visible on both images, designated with the
blue arrows. The red arrow shows the same vessel.
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Figure 1.2 – Optical configuration of the retina for a perfect eye. Beams coming from an object located at
infinity are focused on the retina. Image plane (retina) and focal object plane are conjugated
by the optical system of the eye.

Figure 1.3 – Drawings by Dave Schumick, extracted from [2]. A: Scheme of the cross section of the
optical nerve along the superior-inferior axis. Two main arteries from the ophthalmic artery
irrigate the fundus: the central retinal artery reaches the eye via the optical nerve, while
posterior ciliary arteries supply blood to the choroid. B: Scheme of vasculature in retina and
choroid next to the fovea. The choroid is a large and dense vascular network which feeds all
the outer retina via the choriocapillaris.

1.1.1 Some information about the eye
The eye is a spherical organ of about 2.5 cm of diameter which can be compared to an optical
system. It is mainly composed of two lenses, a pupil, and a sensor (fig. 1.2).
The retina stands for the sensor in this model. The fig. 1.1 represents an image of the surface

of the retina (eye-fundus image), and its depth-resolved structure (OCT image). The retina is
composed of numerous layers and irrigated by blood vessels from the choroid bringing oxygen
and blood (see fig. 1.3). The largest arteries have a typical diameter of 100− 150 µm while the
capillaries are 3.5 − 6 µm large. The retina captures light through photoreceptor cells layers,
composed of about 5 million cones and 120 million rods. The light signal is converted into
nerve impulse by the photoreceptors, and sent via multiple downstream neurons to the brain
via the ganglion cells whose axons form the optic nerve. In order to have the best signal, light
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must be focused on the retina. This is the role of the cornea and the crystalline lens.
The cornea is the first lens of the system and constitutes the main protection of the eye from

the outside. It is a 0.5 mm thick tissue which is rigid thanks to collagen, its main component.
The cornea allows more than 90 % of light transmission in 550 nm and 1200 nm wavelength
band [3]. The crystalline lens is a deformable lens around 18 mm away from the retina. Ciliary
muscles modify its curvature, which changes its vergence. Then, for normal eyes, this system
of two lenses is able to focus the light on the macula, which is the area of the retina containing
the majority of photoreceptors. The pupil shrinks and grows to regulate the light intensity
entering in the eye.

1.1.2 Retina pathologies

Through retina study, physicians can get a lot of information about pathologies involving the
vision. The morphology of the retina and the blood flow often characterize diseases. Several
pathologies are presented in this part.

(a) Subretinal neovascularization of the macula due to AMD.

(b) Atrophy of the retina due to AMD.

Figure 1.4 – Eye-fundus and SDOCT images of patients with AMD taken with Spectralis device. Green
arrows of the eye-fundus images correspond to OCT images.

Age-related macular degeneration

Age-related macular degeneration (AMD) is the most frequent cause of irreversible decrease of
central vision (governed by the macula) for elderly people. This pathology is divided into two
types: wet and dry. In any case, the first step of AMD is dry AMD. 85% of people suffering
from the disease have dry AMD. It affects retinal pigmentary epithelium, directly responsible
for cones and rods, and provokes the appearance of deposits on the pigmentary epithelium
(drusen). Most advanced stages provoke chorioretinal atrophy (fig. 1.4(b)). Among the 15%
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other people, 80%− 90% are suffering of severe vision loss. Abnormal blood vessels appear on
the choroid under the retina (choroidal neovasculature) in the wet AMD form.

Arterial or vein occlusion

Arterial or vein occlusion often creates new blood vessels in the retina layers (retina neovascu-
larization). Then, vein exudation can occur, provoking fluid accumulation in the macula and
swelling (macular edema).

Figure 1.5 – Early (image taken during the first 2 minutes after contrast agent injection) and late (image
taken after 8-10 minutes) fluorescein angiography (FA), late indocyanine green angiography
(ICGA) and high-resolution optical coherence tomography (OCT) images of macro-aneurysm
(represented by the white arrow) due to retina vein occlusion [4]. The white line in the ICGA
image localizes the OCT scan. The macular edema caused by the occlusion is well-visible
with FA and OCT.

Glaucoma

Glaucoma is a variety of degenerative diseases affecting the ganglion cells. It provokes irre-
versible blindness, starting with the loss of peripheral vision. Glaucoma is the second cause
of blindness in the world after cataract. The pathology is often diagnosed by a visual field
examination, but this test only reveals advanced-step glaucoma. It has been shown intraocular
pressure is highly related to the development of glaucoma [5–7]. Furthermore, the reduction of
blood flow has been shown to be linked to glaucoma [8–10].

Diabetic retinopathy

This pathology caused by diabetes is a major cause of adult blindness. The first stage is
non-proliferative and has no symptoms. During the development of the disease, capillary per-
meability increases, provoking microanevrisms, hemorrhages, exudations, macular edema... Its
proliferative stage causes formation of preretinal vessel neovascularization on the optic nerve
or retinal surface.

For all these diseases, retina observation and sectioning and blood flow imaging techniques
are important to study characteristics and progresses of the pathologies. The improvement of
these techniques is crucial to have a better understanding of those pathologies. Several imaging
techniques to image the retina are presented in the following part.
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1.2 Imaging techniques
First observations of the retina have been made possible thanks to funduscopy and fundus
photography invented in the middle of the nineteenth century by Hermann von Helmholtz.
With this technology, physicians are able to detect both forms of AMD. They can also diagnose
diabetic retinopathy and glaucoma.
Later, several optical methods have emerged to provide other types of information about

the retina, specially about layers shape with optical coherence tomography and local dynamics
inside the vessels with blood flow imaging.

1.2.1 Optical coherence tomography
Optical coherence tomography (OCT) [11–13] is a very powerful imaging technique, invented in
1991, for imaging biological tissues. It performs a non-invasive optical depth-sectioning of the
samples. OCT has emerged when ultrasounds and microscopy technologies were dominating
biological imaging. Microscopy has high axial and transverse resolutions (inferior to 1 µm,
depending on the aperture), but limited penetration in the tissues (about 100 µm). In contrast,
ultrasound imaging can provide images with a penetration depending on the frequency of the
sound wave, of several centimeters for tens of megahertz, and several milimeters for a hundred
of megahertz [14, 15]. However, it is limited to 0.1 − 1 mm in axial resolution for a wave
frequency of tens of megahertz, and around 20 µm for a hundred of megahertz.
OCT brings a good compromise between resolution and penetration depth, or microscopy and

ultrasounds: it can reach a 2 mm of penetration depth, with an axial resolution of 1− 10 µm.
For a gaussian-shape spectrum beam like the laser, the axial resolution of OCT is defined as:

∆z = 2ln(2)
π

λ2

∆λ, (1.1)

where ∆λ and λ are the spectral bandwidth and the center wavelength of the light source [16].
The transverse resolution of OCT is:

∆x = ∆y = 4λ
π

f

d
= 2λ
πNA

, (1.2)

where d is the diameter of the incident beam on the objective lens and f is the focal distance
[12]. NA is the numerical aperture of the beam. The transverse resolution is only determined
by the diffraction limit, which can be assimilated to λ/NA.
These definitions show one aspect of the power of OCT: the axial resolution is independent of

the transverse resolution. Then, OCT images can reach the same resolution as in microscopy,
with a fine resolution in depth too.
Concerning the penetration depth, we can define the depth of field as two times the Rayleigh

range [12]:

b = 2zR = π(∆x)2

λ
. (1.3)
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Figure 1.6 – Eye-fundus image and TDOCT image of in vivo human retina, extracted from [24]. The right
arrow of the first image corresponds to the depth profile view. Several layers are visible on
the OCT image.

This brings a limit to the OCT: improving the transverse resolution implies reducing the
penetration depth.

Ophthalmology is the main field where OCT is used, specially due to the properties of high
transmittance of ocular media which ease its use. Thanks to OCT, retina layers can be imaged,
which is convenient to study pathologies of the eye fundus.
OCT images can help to evaluate macular edema severity, which is the most frequent cause of

blindness due to diabetic retinopathy. Macular edema due to vein or arterial occlusion can also
be observed with OCT (fig. 1.5). OCT is often performed to identify intraretinal and subretinal
fluids. It is also used to control AMD progression, as the pathology’s effects are well-visible on
OCT images (fig. 1.4).
The main evolutions of OCT bring an increase of resolution and speed. The first OCT, time-

domain (TDOCT), was outperformed by the spectral-domain approach (SDOCT), improving
signal-to-noise ratio [17,18] and speed. Other types of OCT are also in development, like line-
field OCT [19], time-domain full field OCT [20, 21], off-axis time-domain full-field OCT [22]
and off-axis swept-source full field OCT [23].

Time-domain OCT (TDOCT)

TDOCT is the first generation of OCT which has been commercialized. An example of imaging
of the retina is represented on the fig. 1.6. It uses time-domain approach for amplitude and
phase retrieval [11,25]. It is generally composed of a Michelson interferometer. A beam emitted
by a low-coherence light is divided into two parts. The first one is sent and reflected on the
object before reaching the sensor: this is the object arm. The second one is reflected by a
mirror and sent to the sensor to interfere with the first wave: this is the reference arm.
Interference between both waves can happen only if the path length difference between both

arms is below the coherence length of the source, which is equal to the axial resolution ∆z
(eq. (1.1)). Thus, by moving the reference mirror, we can reduce the path length difference
and image the object. The amplitude of the signal recorded depends on the reflectivity of the
sample. The plot of this amplitude as a function of the depth is called A-scan, and corresponds
to the reference mirror scanning.
The lateral scan is performed by moving the object or the sensor to get other A-scans.
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One row or one column of A-scans give a B-scan which image a depth profile. The C-scan
corresponds to all the acquired volume.
TDOCT acquisition is very time-consuming because of these two scans. Threfore, all the

researches from there have focused on increasing the speed of OCT (acquisition and computation
of images), while trying to improve image quality as well.

Figure 1.7 – Images of in vivo human retina, extracted from [21]. (a) SDOCT depth image. It only serve
to localize retina layers. (b) Eye-fundus photography. The black box indicates the FFOCT
field, while the green dashed line represents the OCT scan of (a). (c) Retinal nerve fiber
layer (RNFL) and (d) inner/outer segment photoreceptor layer (IS/OS) imaged with FFOCT.
RNFL is located by the red dashed line in (a) and IS/OS by the blue dashed line in (a). (e)
2D power spectrum of (d). (f) RNFL and (g) IS/OS imaged with adaptive optics (AO)
retinal camera, at the same location as (c) and (d). (h) 2D power spectrum of (g). The
axial sectioning of the FFOCT is better than the AO retinal camera: (f) shows images of
vessels which do not appear on (c), because FFOCT selects with more precision the layer to
observe.

Time-domain full-field OCT (FFOCT)

One way to increase OCT speed is to parallelize acquisitions using a 2D-camera. Then, the
depth-scan is still necessary, but en-face 2D images are recorded. This version of the OCT has
been introduced at Institut Langevin in 1998 [20].
FFOCT is based on an interferometric setup too. Microscope objectives have been added to

both reference and object arms in order to increase the transverse resolution. To compute a
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single en-face image, 4 images are acquired by the camera at 4 different positions of the reference
mirror, controlled by a piezoelectric motor, in order to modulate the intensity interference
pattern. The phase difference between each images is well-known. The full-field image can be
computed from these 4 images, via a 4-phase temporal demodulation [26]. The fig. 1.7 shows
the kind of images obtained with FFOCT device.

Spectral-domain OCT (SDOCT)

Another way to decrease acquisition time is to remove the depth scan. Instead of acquiring one
pixel by axial line, the interference spectrum corresponding to the whole line is measured with
a spectrometer. The reference mirror stays still, which saves time. This is the main difference
between SDOCT and TDOCT.
The signal produced by interferometry and recorded by the camera is :

I0 ∝ |Er|2 + |Es|2 + 2ErEscos(2k∆L), (1.4)

where I0 is the recorded intensity, Er is the reference field, Es is the signal field, k is the wave
number and ∆L is the path length difference between arms. The cosine modulates the signal
at a frequency depending on ∆L. The spectrometer records the frequencies, corresponding to
different ∆L. The amplitude of the spectrum is proportional to the sample reflectivity. Then,
a map of the different object positions and reflectivities is computed as A-scan. Moving the
sample sideways allows the construction of B-scans.
Nowadays, SDOCT is one of the most used OCT technique to image retina of patients.

Images acquired with SDOCT are shown in fig. 1.1, fig. 1.5 and fig. 1.4.

Swept-source OCT (SSOCT)

Swept-source OCT is an extension of SDOCT. SSOCT uses a narrow bandwidth light source
with a frequency sweep to acquire interferometer spectrum, while SDOCT uses a low-coherence
light source to record interferometer spectrum by moving the reference mirror. Thus, the
modulation is not spatially encoded but depends on the frequency of the light source, varying
with time. SSOCT performs a fast scanning limited by the laser sweep speed and the sensor
sample frequency.
With the constant need for acceleration of acquisition, FFOCT and SSOCT were combined

to form the full-field swept-source OCT (FF-SSOCT) [27, 28]. It allows the acquisition of en-
face 2D images with a fast depth mapping with swept-source. Hence the 3D volume is more
quickly available.

Digital holography and FF-SSOCT

The first images of eye fundus in vivo by holographic ophtalmoscopy [29–32] paved the way
to the development of time-averaged holography for retinal vessel imaging. Digital holography
ensures the recording of entire wave fields. The images are computed from the interference
pattern. Then, the reconstruction of images is not limited to a precise depth: numerical
refocusing can be achieved with phase and amplitude information. Image quality remains
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Figure 1.8 – Fluorescein angiography (FA) images. FA highlights retina vessels and arteries and the edema
in the center of the image, due to hemorrhages of the vessels.

the same regardless the reconstruction depth. However, digital holography does not provide
cross-sectional imaging. Digital holography technique will be explained in the section 2.1.
The combination of FF-SSOCT and digital holography allows to get 3D volumes [12,33,34].

OCT remains one of the most used imaging technology in ophthalmology. All the variations
presented previously are still improving by different teams around the world. The combination
of several techniques, like full-field imaging and OCT (FFOCT), FFOCT and SSOCT (FF-
SSOCT) or digital holography and FF-SSOCT, are more and more studied: they open up
opportunities, each technique bringing its own set of advantages.

1.2.2 Blood flow imaging

Blood flow imaging has been developed at the end of the twentieth century. As it has been
said in the section 1.1.2, many pathologies involve blood circutation, making the evolution of
imaging techniques interesting.
Nowadays, fluorescein angiography (FA) and indocyanin-green angiography (ICG-A) are the

most used imaging techniques but also the most invasive ones. They consist in an intravenous
injection of fluorescent contrast agent which emits at a precise wavelength in veins and arteries.
FA is usually employed in first investigation to observe veins and arteries of the retina (fig. 1.8).
The contrast agent in FA is sodium fluorescein which emits at 520−530 nm after being exposed
at a light of 465− 490 nm. To observe the choroidal vasculature, ICG-A (fig. 1.9) is preferred
because the indocyanine green emits at 790− 805 nm and then penetrates more easily retina’s
pigmented tissues. Choroidal veins are clearly visible with ICG-A, while choroidal arteries
can be seen only in a short time window just after the contrast agent injection. Besides the
fact intravenous injection is invasive for the patients, the dyes can provoke adverse effects or
anaphylatic reactions. Hence several other technologies have emerged to study blood flow in a
less invasive way.
First images of retina and choroid microvasculature with OCT-angiography (OCT-A) have

been shown in 2008 [35]. To obtain an image, several B-scans are acquired with SDOCT or
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Figure 1.9 – Images of ICG-A. Retina and choroid vessels are highlighted by the dye. Choroidal vasculature
is not visible.

SSOCT device and amplitude and phase comparisons between frames are computed to detect
motion within the vessels. Besides the non-invasive quality of OCT-A, it provides quantitative
analysis of blood flow in retina and choroid and using OCT device allows 3D images [36]. OCT
technique brings also a depth sectioning that does not exist in FA or ICG-A, to image vessels
and arteries from more precise layers of retina or choroid (fig. 1.10). The retinal and choroidal
neovasculatures can be localised by OCT-A, which is useful in case of arterial or vein occlusion,
wet AMD, or diabetic retinopathy. However, there are some drawbacks inherent to the OCT
technology. Deeper vessels can be difficult to image due to too high absorption by tissue and
shadowing artifacts, where superficial vessels can hide the deepest ones [37]. OCT-A is also
highly affected by eye and body motion. The field of view is limited. Eventually, low amounts
of blood flow may not be detected by the device.

Figure 1.10 – FA (first image), OCT-A of the inner retinal vascular plexus (second image) and OCT-A of
the outer plexus (third image) of the same central macular region, extracted from [38]. OCT-
A lets a depth sectioning of the layers, while FA highlights the most superficial vasculatures
of the retina without differentiating the depth of imaging.

Laser speckle flowgraphy or laser speckle contrast has been developped by Fercher and Briers
[39] in 1981 to observe blood flow (fig. 1.11). Retina images are recorded while illuminated
by a laser. The speckle pattern variations between frames are converted into blurs of different
intensities, which indicate the local velocity of blood flow. Recently, a study has showed that
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one type of glaucoma can be detected by analysing blood flow with laser speckle flowgraphy [40].
Laser speckle contrast requires a simple setup and camera. For now, it has not been used to
observe choroid vasculature.
Laser Doppler flowmetry uses self-interferences of a wave backscattered by the retina to pro-

vide blood flow measurement [41–43]. Laser Doppler flowmetry researches showed the choroidal
blood flow decreases with age [44] and with the evolution of the AMD [45]. The main limita-
tion of this method is the field of view: the measurement is performed on a single point, and
obtaining larger field of view takes time.

Figure 1.11 – Laser speckle flowgraphy NAVI device (a) and image of the retina blood flow. [46]

Ultrasounds can also be used for blood flow imaging. The Doppler effect is measured by
sending acoustic waves on the retina and the local fluctuations can be measured. As mentioned
in section 2.2, ultrasounds have the advantage of penetrating deep into the tissues. However,
the imaging resolution is very low compared to other methods.
Laser Doppler holography [47, 48] is a full-field interferometric instrument which is able to

image retina and choroid blood flow. It is very similar to laser Doppler flowmetry, with the
addition of an interferometric setup to make the wave interfering with the reference beam. This
setup allows full-field acquisition, and post processing of the data by recording the entire field.

1.2.3 Conclusion on imaging techniques
The various technologies presented in this part have been developed with a view to increasing
speed and improving resolution in eye imaging. With the rise of computation power, optical
instruments are increasingly being replaced by calculation on faster computers, which is well
illustrated by the use of digital holography to get tomographic or blood flow images of the
retina.
Besides problems inherent to the imaging system itself, optical devices are subject to external

disturbance, bringing also difficulties in imaging and loss of accuracy. The main obstacles these
technologies face are eye motion and eye aberrations.
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1.3 Eye motion

1.3.1 Fixation movements
The human eye is constantly subject to movements, even when trying to fixate a precise point.
The vision could not be possible without those movements [49]. If photoreceptors receive the
same signal without any change, the response of neural cells will be weak and tend to vanish.
Constant motion makes the neuronal response strong.
Fixation movements are divided into three main classes depending on their frequency, speed

and duration:

• Tremor: this is an aperiodic movement with a characteristic bandwidth between 10 and
200 Hz. It has the smallest amplitude with 20 arcsec.

• Drift: this is the dominant movement in the eye. It is slower than the tremor with a
characteristic speed between 6 and 30 arcmin/s. It happens simultaneously with tremor.
Its mean amplitude varies between 2 and 5 arcmin.

• Microsaccade: this is the fastest movement with a displacement speed from 600 to
6000 arcmin/s. The amplitude varies between 2 and 20 arcmin.

Figure 1.12 – Movements of the eye during fixation of about 10 seconds. The large circle stands for 10
minutes of arc in diameter, while the small one represents the dimension of a photoreceptor.
Tremors occur during drift, and saccades (microsaccades) tend to refocus the vision. Credits
to [50].

During the fixation, drift occurs, with tremors, moving the focus point of the vision. Mi-
crosaccades make up for the distance covered by the drift and focus the image of the object on
the fovea. These movements are represented on the fig. 1.12.
Added to heartbeat, respiration and tissue motion, fixation movements can shift or even

remove the object of interest from the image during several frames. It can cause blur when
averaging the images, or even misencoding of the signal. For example, in OCT, the depth
information is crucial for imaging. When an axial drift occurs, the depth information encoded
in interferograms is spoiled, decreasing the axial accuracy (fig. 1.13). In the following, we will
differentiate lateral motion and axial motion.
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(a) (b)

Figure 1.13 – B-scans of a finger tip acquired with SSOCT with stabilization (a) and without stabilization
(b). Motion disturbs the rendering. Images extracted from [51].

1.3.2 State of the art in motion compensation

Compensating the lateral movement means stabilizing the object of interest in the center of the
images. This is done by finding a geometric transformation in order to minimise the distance
between the two images to align. This is called registration.
Registration techniques have been developped in the past years, specially in the medical

field [52, 53]. The word itself often refers to making two images from the same patient (taken
at different times) coincide. Registration methods can also be used to compensate lateral
movement due to fixation movements.
Most of the literature concerns radiological modalities, but researches exist in retina imaging.

These are specially concerning eye fundus images. Other studies exist to register images from
different modalities like OCT and fundus photography [54,55].
With eye-fundus images, feature-based registration [56–58] is preferred to intensity or area-

based registration. Indeed, correspondence between two images through points, lines and con-
tours can be easily found in fundus photography and OCT: optic disc and vessels are salient
features. However, too much noise can create false descriptors and mislead the algorithms.
If there are not enough prominent details, intensity-based registration methods are used, like
cross-correlation [59], phase correlation [60] and mutual information comparison [61] between
images involved in registration. These methods give results with a root mean square error of
the order of degree. Image stabilization has also been shown by using a tip/tilt mirror [62],
reaching a root mean square error of about 0.34− 0.53 arcmin or 1.66− 2.56 µm.
As far as the axial motion compensation is concerned, it has more impact on OCT device.

Indeed, it causes a phase difference between acquisitions and then disturbs the encryption of
the depth data within the phase. Axial tracking can be used to stabilize the axial plane at a
depth of interest [63], reaching cellular resolution, but it increases system complexity. Another
methods consist in computing and retrieving the phase corresponding to the motion after the
full volume acquisition [51,64], which allows an improvement in resolution of the order of 10 µm.

Depending on the imaging conditions, optimizing motion compensation techniques may be
more or less necessary. In section 2.4, we will study the motion compensation requirements of
our system and select the appropriate algorithms.
The following section presents another difficulty for retina imaging which is the main topic

of interest of this manuscript: aberrations caused by the eye.
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1.4 Eye aberrations

1.4.1 Sources of aberrations in the eye
No optical system is perfect and the eye is no exception to the rule. Light wave can be more
or less distorted by an optical system, provoking changes in output image. These defects
are aberrations, characterised by the transformation of the point spread function (PSF) of
the system. There are chromatic aberrations, provoked by the dispersion of the occular media
[65,66], and geometric aberrations, decreasing the image resolution. This last type of aberration
will be detailed in the following.

RetinaAberrated wavefront

Perfect wavefront

Figure 1.14 – Comparison between wavefronts from a perfect eye (perfect wavefront) and a normal eye
(aberrated wavefront). Light crossing the cornea and lens system sees its wavefront locally
distorted. This prevents the light from focusing on a single point on the retina as is the
case with a perfect eye.

In the eye, the main source of geometric aberration is the system of diopters created by the
cornea, the crystalline lens and the tear film [67]. Wavefront of the light going through this
combination is distorted, which changes wave phase locally (see fig. 1.14). The distortion occurs
even for healthy eyes, but is more penalizing for imaging techniques when the lens is affected
by strong aberrations, as for myopia or hypermetropia for example.

1.4.2 Mathematical description of aberrations
Aberrated phase

Several methods and conventions exist to describe and quantify aberrations. They all evaluate
the error to the non-aberrated wavefront. One of them consists in projecting this phase φa on
a polynomial basis:

φa(ρ, θ) =
∞∑
i=0

aiPi(ρ, θ), (1.5)

with θ the azimuth angle, ρ the radial distance as 0 ≤ ρ ≤ 1, ai a real coefficient and Pi(ρ, θ)
the ith order of the polynomial P . The most used polynomial is Zernike polynomial.
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Zernike polynomials

Zernike polynomials are divided between even and odd polynomials. Even polynomials are
defined by:

Zm
n (ρ, θ) = Rm

n (ρ)cos(mθ), (1.6)

whereas odd polynomials are expressed as:

Z−mn (ρ, θ) = Rm
n (ρ)sin(mθ), (1.7)

where m and n are integers as n ≥ m, with m the azimuth frequency and n the radial order,
and Rm

n a radial polynomial as:

Rm
n (ρ) =

n−m
2∑

k=0
(−1)k

(
n− k
k

)(
n− 2k
n−m

2 − k

)
ρn−2k. (1.8)

-4

Figure 1.15 – Wavefronts corresponding to the first Zernike polynomials in OSA/ANSI convention [68],
classified by radial and azimuth frequency n and m.

Zernike polynomials can be described under Noll [69] or OSA/ANSI [68] conventions. For
the rest of this manuscript, we will use the OSA/ANSI standard. The fig. 1.15 illustrates the
phase corresponding to the first modes of Zernike polynomials in this convention. The following
formula is used to have the ith index of OSA/ANSI standard from m and n:

i = n(n+ 2) +m

2 . (1.9)
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This formula links Zm
n and Z−mn to Zi.

Zernike polynomials are normalized such that:

∫ 2π

θ=0

∫ 1

ρ=0
Z2
i (ρ, θ)ρ dρdθ = π. (1.10)

In the human eye, Z4 (Z0
2 , corresponding to defocus) and Z3 and Z5 (Z−2

2 and Z2
2 , corre-

sponding to oblique and horizontal astigmatisms respectively) are the biggest contributors to
eye aberrations [67]. The vision defaults corrected by glasses correspond to these modes, which
are low-order aberrations. High-order aberrations correspond to modes from the third radial
order n.

Aberrated phase expressed with Zernike polynomials

The phase corresponding to aberrations can be written as follows:

φa(ρ, θ) = 2π
λ

∞∑
i=0

aiZi(ρ, θ), (1.11)

with λ the wavelength and Zi the ith index Zernike polynomial in the OSA/ANSI standard.
Zernike polynomials form an orthonomal basis. Then, the ai coefficients can be expressed as:

ai = 1
π

∫ 2π

θ=0

∫ 1

ρ=0
φa(ρ, θ)Zi(ρ, θ)ρ dρdθ. (1.12)

The mean of φa is the first coefficient a0. Its variance, called squared wavefront error (SWFE),
is defined by:

SWFE =
∞∑
i=1

a2
i . (1.13)

It is noticeable that the SWFE does not take into account the mean a0, and starts from index
1. The wavefront error (WFE) is defined as:

WFE =
√
SWFE. (1.14)

Impulse response

We consider P (x, y) the pupil function in the pupil plane:

P (x, y) = p(x, y)eiφa(x,y) = p(ρ, θ)eiφa(ρ,θ), (1.15)

where x and y are the Cartesian coordinates corresponding to the polar coordinates ρ and θ,
and p(x, y) ∈ R. Then, the response to a punctual source located in the focal image plane is
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Figure 1.16 – PSF of a normal eye for different pupil diameters in en-face plane (x, y) (a) and in-depth
plane (x, z) (c). PSF of a normal eye corrected by adaptive optics, equivalent to a perfect
eye, for different pupil diameters in en-face plane (x, y) (b) and in-depth plane (x, z) (d).
Without adaptive optics (AO), equivalent to a normal eye, the larger the NA is, the more
distorted the PSF of the system is. With AO, equivalent to the perfect eye, the PSF
precision increases with the pupil diameter. Credits to [70].

called point spread function (PSF) and defined as:

PSF (x, y) = |FT2D{P (x′, y′)}|2 , (1.16)

where FT2D is the 2-dimension Fourier transform:

FT2D{P (x′, y′)}(x, y) =
∫∫ +∞

−∞
P (x′, y′)e2iπ(x′x+y′y)dx′dy′. (1.17)

PSFs are used to define the power of resolution of a system. If there are aberrations, it
becomes:

PSF (x, y) =
∣∣∣FT2D{P (x′, y′)ejφa(x′,y′)}

∣∣∣2 . (1.18)

For a perfect eye, the PSF size is only limited by diffraction. However, for a normal eye, the
larger the pupil is, the more distorted the PSF is [70]. This is illustrated by the fig. 1.16, where
the perfect eye is represented by a normal eye whose PSF has been corrected by adaptive optics
(see below section 1.4.3). The fig. 1.17 illustrates the effect of each Zernike mode on the PSF.
The effects of the aberrations on the PSF show the deformations that can be caused on an

image: as the image of a point can be distorted like in fig. 1.16 and fig. 1.17, the image of the
retina can be blurred. Therefore, aberrations need to be removed to increase the resolution of
retina images. In the next part, a state of the art of the methods developed to compensate
aberrations is presented.
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-4

Figure 1.17 – PSF corresponding to the first Zernike polynomials in OSA/ANSI convention [68], classified
by radial and azimuth frequency n and m.

1.4.3 State of the art in aberration compensation

Sensor based hardware AO (HAO)

Adaptive optics (AO) is a method created to correct aberrations. Its effects on the PSF of an
optical system is well-illustrated on the fig. 1.16. AO has been designed first for astronomy
to correct star images from telescope observation, which are spoiled by atmosphere turbulence
[73]. Then, it has been adapted to ophthalmology to have more resolved images of retina and
photoreceptors. AO has been implemented in ophthalmologic devices like AO flood illumination
ophthalmoscope (AO-FIO) [74] or AO scanning laser ophthalmoscope (AO-SLO) [75]. The
fig. 1.18 illustrates the effect of adaptive optics on imaging: the photoreceptors are much more
visible after the correction by the AO-SLO
The most commonly used AO methods rely on hardware system of aberration detection and

correction (fig. 1.19). Some of the light used for imaging is taken to evaluate aberrations.
Wavefront distortion is measured by a sensor, and the corresponding correction is sent to a
wavefront corrector to change the shape of the wave in the optical system, before detection and
image formation.
The Shack-Hartmann (SH) wavefront sensor [76, 77] is the most used wavefront sensor in

ophthalmology. It measures wavefront distortions using a network of lenses (fig. 1.20). The
principle of SH wavefront sensor will be detailed in section 3.1. Other wavefront sensors have
been studied, in order to improve the axial resolution comparing to SH sensor and to handle high
spatial frequency aberrations [78–81]. However, they add complexity to an already complex
system. Besides, they need more light to be efficient, which means reducing the amount of
light in the main path to make images. As far as hardware correctors are concerned, several
possibilities exist: liquid crystal phase plates, programmable lenses or deformable mirrors (most
used nowadays). Their main aim is to settle local delays to the wave to compensate distortions
brought by aberrations.
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Figure 1.18 – Images recorded with the PSI AO-SLO device of retina vessels and photoreceptors [71].
Adaptive optics has only been used on the second image. It has significantly improved the
resolution of photoreceptors.

Optical system

Figure 1.19 – Sensor based hardware AO (HAO) for correction of aberrations [72]. This is divided between
an imaging part and a wavefront correction part. The imaging system aims at producing
an image while the wavefront correction system changes the shape of the wavefront hard-
warewise. The arrows correspond to the path of the signal containing the information.

One of the main drawbacks of HAO is the complexity of the setups: they have often a lot of
parts to calibrate carefully to make the device work. Besides some of the light is lost for the
imaging because of the wavefront measurement. In order to overcome these negative aspects,
several teams turned to the development of other AO methods.
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Plane wavefront Tilted wavefront Aberrated wavefront

Figure 1.20 – Principle of the Shack-Hartmann wavefront sensor. It is based on the use of a lens network.
When the wavefront is plane, the beams crossing the lenses focus in the middle of each
subaperture, on the optical axis. For a tilted wavefront, the focus points are shifted in the
same direction. For an aberrated wavefront, the position of each focus point depends on the
local distortion of the wavefront. Hence from shifts of focus points within the subapertures,
it is possible to go back to the phase.

Sensorless AO (SAO)

The desire to simplify the setup gave birth to a way of correction without any wavefront sensor:
the sensorless AO (see fig. 1.21). This technique estimates the wavefront from the reconstructed
image. It uses image-based algorithms, aiming at optimizing image quality calculated from a
metric like image intensity [82, 83], sharpness [84] and spatial frequency content [84–86]. The
choice of the metric is very important, depending on the imaging technique and the structures
of interest. However, the main problem of SAO remains the speed of convergence. It requires
a lot of iterations over the process of wavefront estimation. Some help can be given to the
algorithm by weighting more some aberration modes, like defocus and astigmatism, because of
their importance in human eyes. Nevertheless, it is often not sufficient because of the quick
variations of aberrations (dynamic aberrations [67]). This technique remains interesting mainly
for reducing the system complexity and increasing the amount of light dedicated to the image
rendering.

Optical system

Figure 1.21 – Sensorless AO (SAO) for correction of aberrations [72]. It is very similar to the HAO
(fig. 1.19), except the wavefront sensor has been removed. Instead, the correction is based
on the image. The compensation to add to the wave is calculated and applied thanks to a
hardware corrector.
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Optical system

Figure 1.22 – Computational AO (CAO) for correction of aberrations [72]. The light reflected by the retina
is sent through the optical system and captured by a sensor. The correction is calculated
from this signal and directly applied to produce a corrected image.

Computational AO (CAO)

With incoherent imaging, spatial frequencies below the noise level are impossible to restore.
Therefore, wavefront correction must be hardware-based. However, in coherent imaging, access
to the field allows correction after acquisition.
The increase of computer power over the last few decades has led to new computational AO

(CAO) methods (fig. 1.22). It removes the last remain of hardware from SAO. The principle
of the correction is to find the best aberration correction filter, directly calculated with the
output signal from the detector. Instead of optimizing parameters of the hardware wavefront
corrector like in SAO, CAO techniques optimize parameters of the digital filter.
Aberration compensation was demonstrated by measurement of a guide star hologram [87,88].

This method specially applies to objects with point-like scatterers such as photoreceptors in
the case of the retina.
Another approach is very similar to the one used in SAO: it consists in an image-based

correction. A metric characterizing the image is defined such as sharpness [89–91], image in-
tensity [92,93], spatial frequency content of the image [92,93] or entropy [94], and an iterative
process optimizes it. This method is very time-consuming, preventing real-time image render-
ing.
Reconstruction of digital holograms in subapertures from wavefront measurement with a

digital wavefront sensor for line-field OCT has been shown possible [19, 95]. It is very similar
to a Shack-Hartmann sensor. It estimates the local slopes of the wavefront by computing
correlations between images of subdivisions in the Fourier plane. However, this method can
only estimate low-order aberrations: to estimate higher orders, more subdivisions are necessary,
which decreases the accuracy of the correlations.

Computational methods using machine learning for phase estimation

Machine learning has skyrocketed for the last years, due to CPU and GPU improvements.
With the desire of simplifying setups and acquisition and processing times, optics field has
become increasingly interesting by these new methods to solve several problems, including
image reconstruction and phase recovery.
As seen before in this manuscript, most of imaging techniques go through a reconstruction

stage, which is becoming increasingly fast. A deep neural network (DNN) has been used to
reconstruct images from holograms in holography [96]. By training the network with holograms
of MNIST database, it makes possible to reconstruct the original images of handwritten numbers
or USAF targets. Optical tomography reconstruction of refractive beads and cells with DNN
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has also been investigated [97]. Another team works on the improvement of image quality in
holographic microscopy (without image reconstruction) [98,99].
More and more studies focus on phase estimation and recovery. Several teams have created a

digital wavefront sensor (like in SAO or CAO) using neural networks. First emerging works have
mimicked wavefront sensors taking on the exact same role, i.e. estimating Zernike coefficients
from displacements within subapertures [100]. Then, the studies have moved on something
more complex. Paine et al. have used convolutional neural networks (CNN) to estimate a
first approximation of Zernike coefficients from PSF as a starting point for a more accurate
estimation [101]. Nishizaki et al. have gone even further by calculating Zernike coefficients
from single intensity images with aberrations for point sources and extended sources [102].
Networks used in those cases are derivatives of Inception v3 [103] which is a classification CNN.
In parallel, a lot of teams have developed machine learning methods to directly estimate the

shape of the phase. For incoherent light, the reconstruction has been shown in [104]. The
wavefront of the beam is modified with a spatial light modulator (SLM) and then sent through
a diffuser. The recorded light is sent as input of a CNN or a machine learning algorithm. The
output of the algorithm is the estimation of the SLM phase. For coherent source, phase recovery
has been performed from speckle pattern with training and testing on databases like MNIST,
ImageNet, Faces-LFW and the Caltech computer vision database [105–109]. The networks used
are often derivatives of UNet network [110], first designed for medical image segmentation, and
there used for these reconstructions [104,108,109].
The main problem of deep learning for image and phase reconstruction is the need of a large

amount of images, which can be a major limitation specially in the medical field. Moreover,
techniques presented in this part are used for now on simple images (often from MNIST dataset)
or with a low resolution. The challenge is to process and improve higher resolution medical
images.

1.5 Conclusion
In this first chapter, state of the art of imaging methods for depth sectioning and blood flow
imaging has been presented. Most of these methods are highly affected by motion or aberrations,
spoiling or even preventing image reconstruction. Several correction technologies have been
tested. Digital methods are more and more used, taking advantage of major advances in
computer science in order to decrease time of acquisition and processing. This thesis goes in
the same direction. Digital holography will be presented as our way to image the retina, and
motion and aberrations compensation algorithms will be developed, aiming at the best image
quality in the shortest time possible.



CHAPTER 2

Digital holography: OCT and Laser Doppler

2.1 Holographic imaging
For several years, the research on eye diseases has been strengthened by the opening of a
clinical investigation center in the Quinze-Vingts national ophthalmology hospital in Paris. The
development of new imaging devices to ease the diagnostic and the study of eye pathologies has
been encouraged. In this context, two digital holographic setups have been settled: a digital
holographic FF-SSOCT and a laser Doppler holography device.
As far as the OCT is concerned, FF-SSOCT seems to be the most promising technique to

decrease acquisition and computation times [27]. Indeed, full fields are acquired by the sensor
array of a camera, and the sweep of the laser source ensures a fast depth scanning. The choice of
digital holography has been made for several reasons. Holography setups are quite simple: they
consist in an interferometric setup. Then, they do not require lots of adjustments and space.
The camera records interferences between two waves and a computer processes data. Acquiring
these interferograms gives access to the whole field and allows the image to be reconstructed at
different reconstruction distances from the camera. Besides, it gives much more possibilities for
post-processing. However, interferograms represent a lot of data (in some cases, giga voxels per
second to process). Optimizing calculations on GPU is the solution we have chosen to handle
these huge amounts. Hologram reconstruction is completely carried by Holovibes1.
In the following, both setups are presented, as well as image reconstruction techniques and

first processes to enhance image quality.
In this chapter, some parts are directly extracted from the article Motion compensation in

digital holography for retinal imaging attached at the end of the manuscript in appendix B.

2.1.1 Setups
The instruments that we used during this project have been settled by Michael Atlan and Léo
Puyo at the Quinze-Vingts national ophthalmology hospital [111]. They are very similar Mach-
Zehnder interferometers. Both setups are illustrated in fig. 2.1. For the holographic OCT setup

1http://holovibes.com

http://holovibes.com
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Figure 2.1 – Schemes of the holographic off-axis OCT (first image) and in-line laser Doppler (second
image) setups. In both cases, the reference wave from the source interferes with the object
wave which has been reflected on the sample.

(first setup in fig. 2.1), the beam is emitted by a tunable laser whose wavelength varies from
λ1 = 870 nm to λ2 = 820 nm with a sweep time T = 0.5 s. For the laser Doppler setup (second
setup in fig. 2.1), it is a laser of wavelength λ = 785 nm. In the first setup, the camera records
1024× 1024-pixel images at a frame rate of ωS/(2π) = 512 Hz with 16 bit/pixel quantization.
In the second setup, the camera records images corresponding to the (x, y) plane, at a frame
rate depending on the speed of the blood flow to observe (this point will be explained in the
section 2.3).

2.1.2 Acquisition of interferograms
Mach-Zehnder interferometer consists in making interfere two beams from the same laser source.
The source is split between reference arm and object arm. The light wave from the object arm
is backscattered once the sample is reached and intereferes in the camera plane with the beam
in the reference arm.
The rest of this section explains the image formation process in more detail. The explanation

is based on the second scheme of fig. 2.1. This reasoning can be applied in the same way on
the first scheme of fig. 2.1.

Formalism

E0(x, y) is the reference field from the laser source, such as E0(x, y) = Aδ(x, y), with A a
constant and δ(x, y) the dirac distribution, defined as:

{
δ(x, y) = (0, 0), if(x, y) 6= (0, 0),∫∫+∞
−∞ δ(x′, y′)dx′dy′ = 1 else. (2.1)

To simplify the explanations, we divide the setup (fig. 2.1) in three parts: the pink optical
path, from reference to retina, the blue optical path, from retina to camera, and the green
optical path, from reference to camera. The fig. 2.2 zooms in these different parts.
In the pink wave direction of propagation, image focal plane related to the lens L1 is the



2.1. Holographic imaging 27

Lc
d

Lc
d

(a) (b)

(c)

Figure 2.2 – Zooms on the pink optical path from reference to retina (a), green optical path from reference
to camera (b), and blue optical path from retina to camera (c). The pink optical path includes
L1, L2 and Lc lenses. The green optical path includes L3 lens. The blue optical path includes
Lc and L2 lenses.

same as object focal plane of the lens L2. Image focal plane related to the lens L2 is the same
as object focal plane of the lens Lc (cornea + crystalline lens). The retina is in the object plane,
which is the same as image focal plane of the lens Lc.
In the blue wave direction of propagation, z is the distance between camera plane and image

plane, defined as the image focal plane of the lens L2.
In the green wave direction of propagation, d is the distance between camera plane and the

image focal plane of the lens L3.
In the following, fields are expressed in 2 dimensions (x and y). The 2-dimension Fourier

transform is noted FT2D. The symbol ∝ means "proportional to" and ∗ stands for the con-
volution. We consider the retina as a plane locally. We will use formulas of field propagation
between planes recalled in the next paragraph, to describe the light path in our system.

Wave propagation formulas

This part presents the formulas used to compute the propagation of the waves, deriving from
the theory of Fourier optics [112].
Let us denote M and N the number of pixels of lateral dimensions (x and y respectively),

d the pixel pitch in meters and λ the wavelength. The first plane is located at z = 0 and the
second one at z (fig. 2.3). E0(x, y) is the field in the plane z = 0 and Ez(x, y) is the field in the
plane z.
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Figure 2.3 – Schemes of two planes spaced by z.

For z ≥ Nd2

λ
, which is the condition to avoid an undersampling [111], the Fourier-Fresnel

formula (from Huygens-Fresnel theorem) is used to propagate waves from plane z = 0 to plane
z:

Ez(x, y) = e2iπz/λ

iλz
eiπ(x2+y2)z/(λz)FT2D{E0(x′, y′)eiπ(x′2+y′2)z/(λz)}( x

λz
,
y

λz
). (2.2)

For z ≤ Nd2

λ
, the angular spectrum formula (from Huygens-Fresnel theorem) is used to

propagate waves from plane z = 0 to plane z:

Ez(x, y) ∝ FT2D−1{FT2D{E0(x, y)} ×Kz(x′, y′)}, (2.3)

where Kz(x, y) is the kernel defined by:

Kz(x, y) = exp

2iπz
λ

√√√√1−
(
xλ

Md

)2

−
(
yλ

Nd

)2
 . (2.4)

The Fraunhoffer diffraction to infinity is:

Ez(x, y) = e2iπz/λ

iλz
FT2D{E0(x′, y′)}( x

λz
,
y

λz
). (2.5)

In order to explain the components of the image recorded by the camera, we explicit field
propagation through object arm (pink and blue paths) and the reference arm (green path) in
the next parts.

Pink optical path, from reference to retina

To get the field E1(x, y) in the image focal plane of L1 lens, Fraunhoffer diffraction (proportional
to 2-dimension Fourier transform) is computed from E0(x, y), as for E2(x, y) in the image focal
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plane of L2 lens, from E1(x, y):

{
E1(x, y) ∝ FT2D{E0(x′, y′)}(x, y),
E2(x, y) ∝ FT2D{E1(x′, y′)}(x, y). (2.6)

Then, E2(x, y) is the mirror image of E0(x, y): E2(x, y) ∝ E0(−x,−y). In the same way,
from E2(x, y), Ec(x, y) in the image focal plane of the cornea can be expressed as:

Ec(x, y) ∝ FT2D{E0(−x′,−y′)}(x, y) = FT2D{Aδ(−x′,−y′)}(x, y) = A. (2.7)

Once reflected on the retina, Er(x, y) in retina plane becomes:

Er(x, y) = Ec(x, y)×O(x, y)eiφ(x,y) ∝ O(x, y)eiφ(x,y). (2.8)

O(x, y)eiφ(x,y) is the information to extract to form holographic images of the retina. From
here, the retina is considered as a new punctual source. Aberrations created by the cornea in
the pink path are neglected. Therefore, we only have to express aberrations in the blue path.

Aberrations

We consider that aberrations φa(x, y) are created in the infinity plane of the retina whose field is
Er∞(x, y). They are added to the phase of the wave in this plane. Thus, we use the Fraunhoffer
diffraction to calculate the field:

Er∞(x, y) ∝ FT2D{Er(x′, y′)}(x, y)eiφa(x,y). (2.9)

Then, the reverse propagation is carried out from Er∞(x, y) to get the aberrated field in the
retina plane:

Era(x, y) ∝ O(x, y)eiφ(x,y) ∗ FT2D−1{eiφa(x′,y′)}(x, y). (2.10)

Blue optical path, from retina to camera

In the image plane (corresponding to the image focal plane of the lens L2), by applying the
same reasoning as before:

Ec2(x, y) ∝ Era(−x,−y). (2.11)

To obtain the field Ez(x, y) in the camera plane, angular spectrum or Fourier-Fresnel prop-
agation must be used, depending on the distance between camera and image planes. In the
laser Doppler holography setup, angular spectrum method is used to propagate Ec2(x, y):



30 Chapter 2. Digital holography: OCT and Laser Doppler

Ez(x, y) ∝ FT2D
{
FT2D−1{Era(−x,−y)} ×Kz(x′, y′)

}
, (2.12)

where Kz(x, y) is a kernel of propagation, defined previously in Wave propagation formu-
las subsection. In the case of OCT setup, Fourier-Fresnel propagation is used, but that does
not change the overall purpose of these explanations.

Green optical path, from reference to camera

Using Fraunhoffer diffraction and Fourier-Fresnel propagation, we get in the camera plane:

E0d(x, y) ∝ e
−iπ(x2+y2)

λd E0(−x,−y) ∗ FT2D−1{e
−iπ(x′2+y′2)

λd }( x
λd
,
y

λd
) = 1. (2.13)

The field from the reference projected in the camera plane does not depend on x and y.

Recorded intensity

The camera records the intensity I(x, y) of the sum of the fields, called interferogram:

I(x, y) = |Ez(x, y) + E0d|2

= |Ez(x, y)|2 + |E0d|2 + Ez(x, y)E∗0d + E∗z (x, y)E0d. (2.14)

Laser Doppler and OCT images can be created from the phase difference between both optical
fields, noted φ (see section 2.1.3, section 2.2 and section 2.3). The fig. 2.4 shows recorded
interferograms from OCT and laser Doppler setups. The OCT has an off-axis configuration:
the beam from the reference arm is slightly deviated from the object beam. It is well-visible on
the first image of fig. 2.4 where the brighter beam (reference) has not the same center as the
other ray.

Figure 2.4 – Interferograms of off-axis FF-SSOCT (left) and laser Doppler imaging (right). The off-axis
configuration is well-visible with the delimitation of the smallest diameter beam on the first
image.
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Camera plane

Image plane

Figure 2.5 – Sketch of the process of image propagation. In the case of the swept-source, pixels of the
interferograms I(x, y, t) have not the same size for each t (1). Thus, rescaling is performed
(2). The data I(x, y, t) in the camera plane are propagated in the image plane and become
holograms H(x, y, t) (3). Frequency dependency is expressed with a time Fourier transform
on H(x, y, t) (4). Eventually, amplitude of the block is taken to obtain images (5).

2.1.3 Digital processing of optically-acquired interferograms

From the recorded interferogram I(x, y), we perform several processes to obtain final images in
OCT or laser Doppler holography. The different processing steps are detailed in the following,
and illustrated by the fig. 2.5.

Interferogram rescaling with wavelength

In order to avoid the distortion of the signal, the impact of the sweep in OCT needs to be
considered. In fact, the size of the pixels in the image plane depends on the wavelength of the
beam and of the distance between camera and image planes [113,114]:

d′ = λz

Nd
, (2.15)
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where d and d′ are the lateral size of a pixel from camera plane and from image plane,
respectively, z is the hologram distance of reconstruction (distance between both planes) and
N is the number of pixels in one lateral dimension. Because of the sweep of the source, the pixels
of the image plane shrink with wavelength (see arrow (1) of fig. 2.5). To circumvent lateral
field variation with wavelength, each interferogram is resampled by linear interpolation of the
calculation grid with a different pitch (see arrow (2) of fig. 2.5). The rescaled interferogram is:

I ′(x, y, t) = I(xλ/λ1, yλ/λ1, t), (2.16)

where λ is the current wavelength. In the case of laser Doppler imaging, the optical wave-
length λ is kept constant, hence the interferogram does not need to be rescaled: I ′ ≡ I.

Hologram computation

The propagation of the interferogram from camera to image plane, which is equivalent to the
retina plane, is carried out by an angular spectrum propagation integral for laser Doppler
holography setup (see arrow (3) of fig. 2.5), which gives the hologram H(x, y):

H(x, y) ∝ FT2D−1 {FT2D{I ′(−x,−y)} ×Kz(x′, y′)}
= Hconst(x, y) +Hobj(x, y) +Hconj(x, y), (2.17)

where Hconst(x, y) is the constant part based on |Ez(x, y)|2 + |E0d|2, Hobj(x, y) is the interest
part composed from Ez(x, y)E∗0d and Hconj(x, y) is made from the conjugate E∗z (x, y)E0d. As
it has been noticed in section 2.1.2, for OCT setup, the Fourier-Fresnel transform is applied
to propagate fields between camera and image plane, instead of the angular spectrum method.
Though that does not change the decomposition of H(x, y) in three parts.
In the case of swept-source OCT, its off-axis configuration creates a spatial separation between

the constant term and the cross-beating interferometric contributions [115] (fig. 2.6). Then,
parts of interest can be spatially filtered.
For the laser Doppler setup, constant part is removed by filtering low frequencies (section 2.3).

Conjugate part Hconj(x, y) is out of focus in the reconstruction plane. Thus, it does not affect
significantly image quality. The object part Hobj(x, y) is:

Hobj(x, y) ∝ Era(x, y) ∝ O(x, y)eiφ(x,y) ∗ FT2D−1{eiφa(x′,y′)}(x, y). (2.18)

Therefore, we get the part of interest O(x, y)eiφ(x,y) which constitutes the object, and the
aberration part FT2D−1{eiφa(x′,y′)}(x, y).

Image formation

The phase φ, which is also the phase difference between object and reference fields, contains
different information about the sample. In swept-source OCT, the instantaneous beating fre-
quency ∂φ/∂t = ω scales up linearly with axial depth z [13], whereas in laser Doppler, it
describes local velocities of the scatterers [48]. In both cases, frequency must be expressed to
get to the desired information (depth for OCT and velocities for laser Doppler).
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Figure 2.6 – En-face image of 1.5 mm glass beads by off-axis FF-SSOCT. The off-axis configuration
allows a spatial separation between the object part, its conjugate and the constant part of
the interference signal. The image of interest is on the top left side of the image. It is the
image of the beads. Its conjugate is on the bottom right side of the image. The reconstruction
is done in the image plane. The conjugate part is not well-focused on this plane, which causes
its blurring. The constant part is located at the four corners of the image.

By acquiring stream of interferograms in time, we can express I(x, y) as a function of time
I(x, y, t). Then, interferograms are transformed into holograms H(x, y, t). Short-time Fourier
transform (STFT) (see arrow (4) of fig. 2.5) is performed to get spectrograms H̃(x, y, t, ω)
depending on frequency:

H̃(x, y, t, ω) =
∫
H(x, y, τ)gT (t− τ)e−iωτ dτ, (2.19)

where gT (t) is a time gate of width T at time t. Then, the intensity image |H̃|2 is formed
(see arrow (5) of fig. 2.5).
Different information is extracted from eq. (2.19), depending on whether OCT or laser

Doppler holography setup is used. The next sections develop the final steps to obtain im-
ages with these two technologies.

2.2 Optical coherence tomography
We form OCT images by calculating eq. (2.19) with a time gate gT of 256 points (T = 0.5 s).
Taking |H̃(x, y, t, ω0)|2 at a precise frequency ω0 provides an en-face image at the corresponding
depth. For given x or y, we obtain depth profiles. The fig. 2.7 shows typical images provided
by our setup.
After being able to acquire those images, we have studied properties of our OCT system.

Experimental tests were fundamental to determine the performance of the OCT, and to verify
lateral and axial resolution, as well as the axial range. To carry out these experiments, we used
numerous volume samples (glass beads of different sizes wrapped in tape, resolution targets,
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Figure 2.7 – OCT images of glass beads of 1.5 mm of diameter at two different depths. (x, y) represents
the en-face plane, and z is the depth. The green dashed lines indicate the cuts of the planes.
Bright objects on images show high reflection, which means they belong to the corresponding
z plane.

tangerine quarters...) which allowed us to evaluate the improvements to be made.

2.2.1 Calculation of the axial range

In swept-source OCT, the phase φ between object and reference waves can be defined as:

φ(t) = βz

c
t, (2.20)

where z is the detuning pathlength, c the light speed and β the constant sweep speed defined
as β = (ω2 − ω1)/T . It follows that the instantaneous beating frequency between object and
reference waves scales linearly with the depth [13]:

ω = ∂φ

∂t
= βz

c
. (2.21)

Hence the short-time Fourier transform is necessary to get this frequency dependency from
H(x, y, t), which means also the depth of imaging. With the Shannon theorem, we know the
bandwidth is bounded by the sampling frequency ωs, which is equal to ωs = 2β∆z

c
thanks to

eq. (2.21), where ∆z is the axial range. Then, it follows:

∆z = ωsc

2β = ωscT

2(ω2 − ω1) = ωscT

2× 2πc
1

( 1
λ1
− 1

λ2
) = ωs

2ωsweep
λ1λ2

∆λ , (2.22)

with ωsweep = 2π/T . We can simplify this equation by writing:

∆z = N

2 Λ, (2.23)
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where Λ = λ1λ2/∆λ, andN = ωs/ωsweep is the number of interferograms measured during one
frequency sweep. For tunable lasers with non-Gaussian output spectra [116], the theoretically
limiting axial resolution is the round-trip coherence length λ̄2/∆λ = 14.3µm, where λ̄ =
(λ1 + λ2)/2 is the central frequency of the sweep. This round-trip coherence length is about
the same length as the axial pitch: λ̄2/∆λ ' λ1λ2/∆λ.
Thus, eq. (2.23) can be written such as:

∆z = N

2 Λ ≈ N

2
λ̄2

∆λ. (2.24)

In our case, λ̄ = 845 nm and N = 256. Therefore, we have a direct relation between the
axial range and the sweep range. We can verify this relation by measuring the axial field of
view for different wavelength tuning ranges. The fig. 2.8 represents the axial field of view of
a sample for ∆λ = 50 nm, ∆λ = 25 nm and ∆λ = 12.5 nm. We can observe the axial fields
of view are close to the theoretical values calculated from eq. (2.24), namely 1.8 mm, 3.7 mm
and 7.3 mm respectively.

(b)

(a)

(c)

Éõ = 50 nm

Éõ = 25 nm

Éõ = 12:5 nm

1 mm

1 mm

1 mm

Figure 2.8 – Axial range ∆z for a wavelength tuning range ∆λ of 50 nm (a), 25 nm (b), and 12.5 nm
(c). The sample is composed of three scales of tape layers. Each scale is ∼ 313µm height,
which was measured with a numerical calliper and confirmed by full-field OCT. The axial field
of view ∆z of 1.8 mm (a), 3.7 mm (b), and 7.3 mm (c) is in agreement with the theoretical
value from Eq. 2.24 for N = 256. Axial scalebar : 1 mm.

2.2.2 Image resolution
By calculating the axial resolution of our device, we obtained :

δz = ∆z
N

= λ1λ2

2∆λ = 7.5 µm, (2.25)
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where N = 256 is the number of acquisitions in time for one sweep, ∆z = N λ1λ2
2∆λ is the

axial range, and ∆λ = λ1 − λ2 = 50 nm is the sweep range. We were able to confirm this
value experimentally by constructing a calibrated sample. The sample used for this calibration
consists in three scales of around 313 µm each of tape layers. They have been visualized with
the OCT (fig. 2.8). Each step of the fig. 2.8 (a) consists of about 42 pixels, which corresponds
to the resolution calculated in eq. (2.25). Likewise, the axial resolution corresponds to the
number of pixels for fig. 2.8 (b) and fig. 2.8 (c), with other values of the sweep range.
In digital holography, lateral resolution is limited by optical aberrations created by the eye.

By compensating these aberrations, we could bring that resolution close to the diffraction limit.

As a comparison, one can currently find commercial devices with an axial resolution of 4 µm
and a lateral resolution of 3 µm.

2.2.3 Improvement of image resolution with rescaling
One of the first improvement we have realized has been explained in the section 2.1.3, namely
the rescaling of interferograms. It allows us a significant gain, specially in lateral resolution.
The fig. 2.9 represents en-face view of a target we have imaged with the OCT. The rescaling
improves lateral resolution of the image. This correction has also an impact on the axial
resolution. The fig. 2.10 shows that the rescaling allows even a better separation between
depth planes: in image (a), beads on the right seem almost at the same elevation than beads
on the left, because the depth accuracy is low, while in image (b), right beads clearly belong to
a different layer. The fig. 2.11 also shows an improvement in depth sectioning. The rescaling
is necessary to obtain a much better image quality. This functionality has been implemented
in real-time on Holovibes.

(b)(a)

Figure 2.9 – En-face image of a USAF resolution target by SSOCT, before (a) and after (b) rescaling of
the acquisitions.

2.2.4 Conclusion on holographic OCT setup
We have built an holographic OCT setup, verifying its main parameters and improving its
resolution. Several tests on phantoms (glass beads of different sizes, mandarin orange peel, tap
layers, plastic objects...) have been performed.
OCT rendering time has improved a lot during the past decades. With devices like the

Spectralis OCT, from Heidelberg Engineering (see fig. 1.1 and fig. 1.4), 2D-images (B-scans)
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(b)(a)

Figure 2.10 – En-face image of glass beads of 1.5 mm of diameter, before (a) and after (b) rescaling of
the acquisitions.

(b)(a)

Figure 2.11 – Profile image of glass beads of 1.5 mm of diameter, before (a) and after (b) rescaling of
the acquisitions.

are rendered in real-time. Conversely, holographic swept-source OCT has the potential to
perform 3D imaging in real-time.
With a rendering of 10 Giga voxels per second, Holovibes makes possible the visualization of

the evolution of samples in real-time. Improvements like the rescaling or the motion compen-
sation techniques we will see further are implemented gradually, making the software evolving.
Real-time movies of several samples observed with our OCT and Holovibes are available on our
Youtube channel Digital Holography2.
However, for now, we have not been able to observe a living eye yet for several reasons.

The first reason is the sensitivity of our device to motion, that we have improved with motion
compensation techniques as we will explain in the section 2.4. The second is aberrations, also
impacting too much our system. The third and most important issue is the signal acquisition
time. In order to perform accurate holographic swept-source OCT, the total wavelength sweep
time set to record one volume should be lower than about 5 ms. This wavelength sweep time
is 100 times longer in our case, which makes rendering impossible. We have concentrated our
work on motion and aberrations compensation, that we have applied on the holographic device
which was already able to image human eye (the laser Doppler holography), which is the reason
why the OCT has not got other improvements.

2https://www.youtube.com/channel/UC_DamX84B2Y375nANrD_Tjw

https://www.youtube.com/channel/UC_DamX84B2Y375nANrD_Tjw
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2.3 Laser Doppler imaging
In laser Doppler case, |H̃(x, y, t, ω0)|2 obtained with eq. (2.19) represents the image of the
fluctuations into blood vessels whose speed corresponds to the ω0 frequency. However, the
amount of information contained in this spectrogram alone is not sufficient to reconstruct an
image with a satisfying signal-to-noise ratio. Thus, spectrograms need to be integrated over
frequency. This zero-order moment is the Doppler image (see example in fig. 2.12) corresponding
to the acquisition I(x, y, t):

M0(x, y, t) =
∫ ω2

ω1
|H̃(x, y, t, ω)|2dω, (2.26)

where [ω1, ω2] is the frequency range for the integration of the spectrum, with ω1 > 0. The
choice of ω1 and ω2 is very important. First, as we have seen in section 2.1.3, this frequency range
selection makes possible the filtering of the constant part of the interferograms. Then, because
of the high speed of blood cells circulation, the integration is made on very high frequencies
of the spectrum. Besides, taking high frequencies allows also a motion filtering: the motion
provoked by respiration, heart beats and other often constitutes the lowest frequency part of
the spectrum. However, in some cases, the frequency bandwidth of the motion overlaps some
lower speed vessels, which spoils their visualization. Finally, the blood in the vessels visible on
Doppler holography images has a flow velocity that depends directly on this frequency interval.
If the integration is done on lower frequencies, the visible vessels are the ones with the lowest
blood flow velocity. If the integration is done on the highest frequencies, the apparent vessels
are the ones with the highest blood flow velocity.

Figure 2.12 – Image of retina vessels by laser Doppler holography. This corresponds to the zero-order
moment of the spectrum.

The maximum frequency ωm of this interval of integration is related to the sample frequency
ωs by the Shannon-Nyquist theorem: ωs must be at least twice ωm. For example, if the frequency
of acquisition of the camera is equal to 60 kHz, ωm will be inferior or equal to 30 kHz, which
means only vessels whose blood flow is lower than 30 kHz will be revealed by laser Doppler
holography. Hence, the faster the camera, the faster the observable vessels are.
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2.4 Motion compensation
As we said previously, movement is a significant barrier to good imaging. It is responsible for
blurring images and spoils their visualization. It has also heavier consequences on holograms.
For laser Doppler holography, motion frequency can be confused with blood cells circulation.
For OCT, signals can be misencoded by axial shifts. For these reasons, work on motion com-
pensation is required.

(a) Off-axis digital hologram (b) Region of interest

(c) Time-average of raw im-
ages

(d) Time-average of stabi-
lized images

Figure 2.13 – Retinal image stabilization by lateral (x, y) motion compensation of intensity holograms.
The white scale bars indicate 200 µm.

2.4.1 Lateral movement compensation
To compensate lateral motion (in (x, y) plane), we use a cross-correlation-based stabilization
algorithm. Even though feature-based methods have proved their efficiency in classical eye-
fundus imaging [56–58], it is difficult to use them on our images because of the noise which
can be significant. Besides, the movement we are trying to compensate is a translation, so a
rigid registration method like correlation-based algorithms is sufficient. In the following, the
algorithm of lateral motion compensation is detailed, and the results obtained on laser Doppler
holographic images are presented.

Algorithm

A reference image M01(x, y, t) is made by integrating the spectrogram on 10 frequencies, and
compared to a moving average M02(x, y, t + τ) of 10 frequencies in the neighborhood of the
current image. The quantitative comparison is performed with a normalized and centered
cross-correlation [117]. The correlation matrix γ takes the form:
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γ(u, v) =
∑

(x,y)∈Du,v M
′
01(x, y, u, v)M ′

02(x, y, u, v)√∑
(x,y)∈Du,v M

′
01(x, y, u, v)2M ′

02(x, y, u, v)2
, (2.27)

where:

M ′
01(x, y, u, v) = M01(x, y)−M01,u,v,

M ′
02(x, y, u, v) = M02(x− u, y − v)−M02,u,v,

and where Du,v is the region of overlap of images and M01,u,v and M02,u,v are the average of
M01(x, y) and M02(x − u, y − v) respectively, in the region Du,v. The difference between the
position of the maximum value and the center of the correlation matrix γ gives the displacement
between the two images. The resulting shifts describe the lateral motion of the retina.

Time

Figure 2.14 – Displacements of the eye with time. Drifts are observable each time the points follow each
other. They are separated by saccades. The two first saccades take away the focus from
the center. The third and the fourth one try to refocus on the center. The total time for
these movements is 4 seconds.

Results

The fig. 2.13 shows retinal vessels acquired by laser Doppler imaging. The fig. 2.13(a) is the
whole 2048 × 2048 image. The cross-beating interferometric contribution, which is the object
of interest in the right bottom side of the image, is spatially separable from the other parts
because of the off-axis configuration. The fig. 2.13(b) shows the focus on retinal vessels. Vessels
are moving in the image and sometimes disappear during several frames. Then, vessels do not
appear clearly on the time-averaged image of 324 consecutive frames (fig. 2.13(d)). After
lateral stabilization, vessels are more visible on the time-averaged image: motion compensation
is efficient. Although motion compensation is less efficient when the image changes too often,
it improves overall image quality.
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We did not go further by comparing the results obtained with other methods because this
correlation-based algorithm is sufficient for our imaging system. The aim is just to get the
image stabilized so we can work on it with resolution enhancement algorithms.
With the shifts calculated from correlations, a map of displacements can be computed. The

map corresponding to the displacements of the fig. 2.13 is represented on the fig. 2.14, where
the fixation movements (specially drifts and saccades) are well-visible.

Lateral motion compensation has been implemented in real-time by optimizing the cross-
correlations on GPU. It allows the stabilization of the object of interest in the center of the
image.
We have mainly shown lateral motion compensation method on laser Doppler images. As

laser Doppler and OCT setups are very similar, it can be assumed that this algorithm will be
equally effective for holographic OCT.

2.4.2 Axial movement compensation

As explained previously, OCT is particularly sensitive to axial shifts, which makes axial com-
pensation critical. In the following, we explain the algorithm of axial movement compensation
and show the results obtained on samples.

Figure 2.15 – Extracted from [51]. Underlying principle of the axial motion compensation algorithm.
The ∆z distance, calculated by correlation between the two signals, is proportional to the
derivative of the phase shift with respect to time. Then, integrating the successive ∆z
allows to recover the phase shift provoked by axial motion.
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Algorithm

Axial motion during the recording process has a negative impact on the reconstruction of OCT
images: when an axial drift occurs, the depth information encoded in the beating frequency of
the interferogram is inaccurate, adding an offset phase to the signal and decreasing in-depth
accuracy. The principle of the compensation method, illustrated in the fig. 2.15, is to identify
where the phase shift due to the axial motion occurs by using STFT [51] on 20-point windows.
Indeed, a global axial displacement of the sample during acquisition can be spotted in the time
Fourier domain, where it corresponds to a frequency shift. In the following, frequencies ω and
distances z are considered equivalent as it has been shown in the eq. (2.21).
For y = y0, the reference image |H̃1(x, y0, t

′
0, ω)| and the sliding image |H̃2(x, y0, t0, ω)| are

defined as the modulus of the STFT of H(x, y0, t) whose sub-windows are fixed or moving,
respectively:

|H̃1(x, y0, t
′
0, ω)| = |

∫
H(x, y0, τ)gT (t′0 − τ)e−iωτ dτ |,

|H̃2(x, y0, t0, ω)| = |
∫
H(x, y0, τ)gT (t0 − τ)e−iωτ dτ |,

(2.28)

where gT is a 20-point Hanning window, and t0 and t′0 are the centers of the moving and
the reference windows, respectively. The quantitative comparison between |H̃1(x, y0, t

′
0, ω)|

and |H̃2(x, y0, t0, ω)| is performed by calculating the cross-correlation shown in eq. (2.27). Its
maximum position gives a frequency shift ∆ω(t0) corresponding to ∂φ

∂t
(t0), the derivative of

the phase caused by movement at time t0. Axial motion compensation is then performed
by subtracting the cumulated phase shift

∫ t0
t′0

∆ω(t)dt from the phase φ(t0). This procedure
is repeated for all times t0 in the time gate gT used in eq. (2.19) of width ωST/(2π) = 256
points [51].
Although no test can be done on a human retina, tests on phantoms are able to prove the

efficiency of the method.

Results

The fig. 2.16 and the fig. 2.17 are swept-source OCT images of samples composed of 1.5 mm
diameter glass beads rolled in a single tape layer. The fig. 2.16 shows the in-depth profile
(x, ω) of this sample corresponding to the y-axis represented by dotted lines in the fig. 2.17.
The fig. 2.17 shows the en-face (x, y) images at two different depths corresponding to the dotted
lines in the fig. 2.17. The fig. 2.17(a) and the 2.17(b) correspond to the red dotted line (depth
of 1.1 mm) in the fig. 2.16, and the fig. 2.17(c) and the 2.17(d) correspond to the green dotted
line (depth of 1.5 mm) in the fig. 2.16. In the fig. 2.17(a) and the 2.17(b), the target layer is
located between tape and beads: the beads on the left are at the same elevation as the tape
layer on the right which starts to be sectioned. In the fig. 2.17(c) and the 2.17(d), six beads
are observed in the layer.
A difference of lateral resolution is visible on images of fig. 2.17. The interferogram rescaling

allows the contours of the beads to be cleaner, as we have seen in the section 2.2.3. Com-
paring fig. 2.16(a) and fig. 2.16(b) shows an improvement in axial resolution. Axial motion
correction can be seen in fig. 2.16(c): the accuracy is improved and the different layers are
better separated.
The cause of the axial motion visible on these images is the setup. We have also tried
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(a) (b) (c)

Figure 2.16 – Axial motion compensation in swept-source holographic OCT of glass beads rolled in a tape
layer. The registered holograms are slices in the (x, ω) plane, for the y-cut in fig. 2.17.
Figures represent the sample: (a) without any correction, (b) with interferogram rescaling
(eq. (2.16)), and (c) with interferogram rescaling and axial motion compensation. The
white scale bars indicate 0.2 mm.

(a) Before processing (b) After interferogram
rescaling (eq. (2.16))

(c) Before processing (d) Likewise (b)

Figure 2.17 – (a,b) En-face (x, y) images of glass beads for the first red z-cut in fig. 2.16, and (c,d) for
the second green z-cut in fig. 2.16. The white scale bars indicate 1.5 mm.
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(a) Without tapping the sample. (b) Gently tapping the sample.

(c) Tapping the sample harder. (d) Tapping the sample even harder.

Figure 2.18 – OCT profile images of glass beads wrapped in tape without any correction (first image of
the three), with rescaling (second image) and with rescaling and axial motion compensation
(third image), for fixed y. The fig. 2.18(a) represents the tape layer and the surface of the
beads with the only movement provoked by the noise of the setup. For the fig. 2.18(b),
fig. 2.18(c) and fig. 2.18(d), the sample was tapped stronger and stronger to provoke axial
motion.

to provoke more movement by tapping on the sample. The sample constituted by beads of
1.5 mm of diameter wrapped into tape has been tapped periodically at more or less strong
intensity. The results are shown in fig. 2.18 and fig. 2.19. The fig. 2.18 represents 3 images of
the same sample without any correction, with rescaling and with rescaling and axial motion
compensation, at four levels of axial movement: with the setup noise only (fig. 2.18(a)), with
a light tapping (fig. 2.18(b)), with a stronger one (fig. 2.18(c) and with an even stronger one
(fig. 2.18(d)). The fig. 2.19 represents the cut on normalized profiles of the fig. 2.18 at row
x = 220, which corresponds approximately to the central row of the images. It compares the
cut before any correction with the image after rescaling and axial motion compensation.

We can see a clear improvement after the axial motion compensation: the contours of the
tape layer and the beads are more precise than without correction. Even in the worst case
with motion which provokes important blurring of the image (fig. 2.18(d)), the axial move-
ment compensation improves a lot the image quality. Axial motion compensation reduces the
background noise and enhances the edges, improving the resolution by a factor of 2.
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(a) Without tapping the sample. (b) Gently tapping the sample.

(c) Tapping the sample harder. (d) Tapping the sample even harder.

Figure 2.19 – Normalized depth profiles of the intensity images of the fig. 2.18 for fixed x and y. They
correspond to x = 220, which is the cut located approximately on the center of the images
of the fig. 2.18. The blue curve represents the profile without any correction, and the red
curve stands for after rescaling and axial motion compensation. In all cases, the corrections
improve the resolution.

2.4.3 Conclusion on motion compensation
We have presented lateral and axial motion compensation algorithms in laser Doppler holog-
raphy and holographic OCT respectively, with cross-correlation stabilization methods. These
methods are suited to our images and cancel efficiently the effects of motion. Besides, the
reported results are non-iterative and compatible with real-time processing at high throughput
on GPU. A real-time version of lateral motion compensation has been implemented, not yet
for axial motion compensation. The reported results in motion compensation pave the way to-
wards the design of high resolution computational imaging for the retina in real-time by digital
holography.
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CHAPTER 3

Estimation of aberrations with a digital wavefront sensor

3.1 The Shack-Hartmann wavefront sensor

After making the first corrections mentioned in the previous chapter, we started working on
improving the resolution of the images. The main point to be improved is the handling of
aberrations. The objective of this work is to estimate the aberrated phase of the field which
has been caused by a deformation of the cornea, the lens and the tear film [67]. This optical
system in the eye is considered to be located in the pupil plane, in the Fourier plane of the
retina. The method detailed in this chapter is based on the Shack-Hartmann wavefront sensor.

3.1.1 General principle

Plane wavefront Tilted wavefront Aberrated wavefront

Figure 3.1 – Illustration of the Shack-Hartmann wavefront sensor principle. When a plane wave goes
through the micro-lenses network, each lens focuses the light on its optical axis. If the
wavefront is tilted, the focus points are moved in the same direction. If the wavefront is
aberrated, the focus points are shifted in different ways. From these shifts, the wavefront
slope can be estimated.

The Shack-Hartmann wavefront sensor is the most used wavefront sensor in adaptive optics
[76,77]. It uses a micro-lens network to focus different parts of the wave on the sensor. The shift
observed between the focus point and the optical axis is recorded and allows the evaluation of
the wavefront distortions. The principle of Shack-Hartmann wavefront sensor is illustrated on
fig. 3.1.
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We will first study the optical configuration of this wavefront sensor, to adapt it in a second
step to our setup and implement it digitally.

3.1.2 Theoretical study

Figure 3.2 – Scheme of the optical configuration for using a Shack-Hartmann wavefront sensor. In this
configuration, the pupil is in the Fourier plane of the object plane and the image plane is in
the Fourier plane of the pupil. Thus, the fields in the image plane and in the object plane are
considered identical (the only transform between them is a flip). We consider the setup as a
“black box”, and the image of a point source is a point in the object plane. h is a pupillary
transmittance, here represented by a window.

In this part, we study theoretically how the wavefront sensor works. The calculation presented
in the following has been classical and well known for several years, but it remains interesting
to develop it further in order to understand how it can be applied to our imaging system.
We will rely on the configuration of the fig. 3.2. The Shack-Hartmann sensor is based on

the partition of the pupil plane by a network of lenses. We will study the theoretical effect of
the partitioning of the pupil plane on the field intensity in the image plane. For this purpose,
we first establish a relationship between the intensities in the image plane (Ii) and the object
plane (Io).
In the following, r, r’ and r” stand for the vectors of coordinates in the object plane, in

the pupil plane and in the image plane, respectively. For any transformation f , we note
f−(r) = f(−r). To lighten the notations, only in this part, FT2D{E} is replaced by Ẽ and
the time dependency of the fields in object and image planes does not appear (Eo(r, t) = Eo(r)
and Ei(r”, t) = Ei(r”)).
The field intensity in the image plane is expressed as follows:

Ii(r”) =< |Ei(r”)|2 >t

=< Ei(r”)E∗i (r”) >t,

where <>t is the time average of the signal.
We can express Ei from the field Eo of the object plane:
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Ei(r”) = FT2D{Ẽo × h}(r”)
= (E−o ∗ h̃)(r”)

=
∫
r1
Eo(−r1)h̃(r”− r1)dr1, (3.1)

where h is the pupillary transmittance. Likewise,

E∗i (r”) =
∫
r2
E∗o(−r2)h̃∗(r”− r2)dr2. (3.2)

Hence,

Ii(r”) =<
∫∫

Eo(−r1)E∗o(−r2)h̃(r”− r1)h̃∗(r”− r2)dr1dr2 >t

=
∫∫

< Eo(−r1)E∗o(−r2) >t h̃(r”− r1)h̃∗(r”− r2)dr1dr2. (3.3)

For a conventional use of a Shack-Hartmann wavefront sensor, the source is spatially incoher-
ent, which means that it is composed of independent source points that do not interfere with
each other. With this assumption, we can simplify the expression of the mutual intensity in
the object plane:

Jo(r1, r2) =< Eo(r1)E∗o(r2) >t= δ(r1 − r2)Io(r1), (3.4)

where δ(r) is the Kronecker function.
With this hypothesis, the eq. (3.3) can be simplified:

Ii(r”) =
∫∫

δ(r2 − r1)Io(−r1)h̃(r”− r1)h̃∗(r”− r2)dr1dr2.

=
∫
Io(−r1)h̃(r”− r1)h̃∗(r”− r1)dr1

= (I−o ∗ |h̃|2)(r”). (3.5)

With the assumption of spatially incoherent source, the intensity of the field in the image
plane is expressed as the convolution of the intensity of the field in the object plane and the
square of the pupillary transmittance.
For the Shack-Hartmann wavefront analysis, the pupil plane is parsed into several sub-

apertures. First of all, let us consider the pupillary transmittance h1 which delimits one of
these sub-apertures, such as h1(r’) = ΠR(r’), where ΠR(r’) is a window of size R. Let us take
another transmittance h2 shifted by ∆r’, such as h2(r’) = h1(r’) ∗ δ(r’−∆r’). With a Fourier
transform, we get h̃2(r”) = h̃1(r”)× e−2iπr”∆r’. Then, |h̃2(r”)|2 = |h̃1(r”)|2.
Hence with the eq. (3.5), we notice the intensity of the field in the image plane is not modified

by a translation of the transmittance h. The image intensity is always reconstructed in the same
way regardless of the position of the sub-aperture. This means the parsing in sub-apertures



50 Chapter 3. Estimation of aberrations with a digital wavefront sensor

does not have any impact on the reconstructed image for each sub-aperture.
This property is a consequence of the spatially incoherent source assumption. If this hypoth-

esis is not validated, then, for h1 and h2 previously defined:

Iih1(r”) =
∫∫

< Eo(−r1)E∗o(−r2) >t h̃1(r”− r1)h̃∗1(r”− r2)dr1dr2, (3.6)

and

Iih2(r”) =
∫∫

< Eo(−r1)E∗o(−r2) >t h̃1(r”− r1)h̃∗1(r”− r2)e2iπ(r1−r2)∆r’dr1dr2. (3.7)

In this case, Iih1 6= Iih2, and each sub-aperture cannot be treated the same way. Thus, the
assumption made on the source is essential for the proper functioning of the wavefront analyzer.
In the rest of this part, this hypothesis will be kept.

Now let us suppose the transmittance h is no longer just a window, but is composed of an
amplitude P and a phase φa as follows:

h(r’) = P (r’)× eiφa(r’). (3.8)

|h̃(r”)|2 is the image of h in the image plane, and it is one of the object of interest of the
eq. (3.5). |h̃(r”)|2 can also be seen as the image of a point source through the system. Let us
consider the centroid of |h̃(r”)|2:

b =
∫+∞
−∞ r”|h̃(r”)|2dr”∫+∞
−∞ |h̃(r”)|2dr”

=
∫+∞
−∞ r”h̃(r”)h̃∗(r”)dr”∫+∞
−∞ h̃(r”)h̃∗(r”)dr”

. (3.9)

We will develop this expression of the centroid.
With Parseval theorem, for two functions f and g belonging to L2(R) (vector space of square-

integrable functions), we have:

∫ +∞

−∞
f(r’)g∗(r’)dr’ =

∫ +∞

−∞
f̃(r”)g̃∗(r”)dr”. (3.10)

We replace g̃ by h̃ in this expression, so we get also g = h. Noting f̃(r”) = r”h̃(r”), and
using the property on the derivative of the Fourier transform, we have:

f(r’) = FT2D−1{r”h̃(r”)} = − i

2π
∂

∂r’
FT2D−1{h̃(r”)} = − i

2π
∂h(r’)
∂r’

. (3.11)

We can simplify this expression:
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∂h(r’)
∂r’

= ∂(P (r’)eiφa(r’))
∂r’

= ∂P (r’)
∂r’

eiφa(r’) + i
∂φa(r’)
∂r’

h(r’). (3.12)

Therefore, we have f and g:

{
f(r’) = − i

2π
∂P (r’)
∂r’ e

iφa(r’) + 1
2π

∂φa(r’)
∂r’ h(r’),

g(r’) = h(r’). (3.13)

Using the eq. (3.10), we deduce that the numerator
∫+∞
−∞ r”h̃(r”)h̃∗(r”)dr” of eq. (3.9) is

equal to
∫+∞
−∞ f(r’)g∗(r’)dr’. By replacing f and g, this numerator can be written as:

∫ +∞

−∞
r”h̃(r”)h̃∗(r”)dr” = − i

2π

∫ +∞

−∞

∂P (r’)
∂r’

eiφa(r’)h∗(r’)dr’ + 1
2π

∫ +∞

−∞

∂φa(r’)
∂r’

|h(r’)|2dr’.

(3.14)

Finally, by replacing h by its expression in eq. (3.8), we get:

∫ +∞

−∞
r”h̃(r”)h̃∗(r”)dr” = − i

2π

∫ +∞

−∞
P (r’)∂P (r’)

∂r’
dr’ + 1

2π

∫ +∞

−∞
|P (r’)|2∂φa(r’)

∂r’
dr’

= − i

2π

∫ +∞

−∞

1
2
∂P 2(r’)
∂r’

dr’ + 1
2π

∫ +∞

−∞
|P (r’)|2∂φa(r’)

∂r’
dr’. (3.15)

In this study, the support of the pupil P is finite. Thus, the value of P 2 at +∞ and −∞ is
equal to 0. Then, the numerator in eq. (3.15) can be simplified:

∫ +∞

−∞
r”h̃(r”)h̃∗(r”)dr” = 1

2π

∫ Nsubap

0
|P (r’)|2∂φa(r’)

∂r’
dr’, (3.16)

where Nsubap is the sub-aperture size. Using Parseval theorem, the denominator of eq. (3.9)
can be written as:

∫ +∞

−∞
h̃(r”)h̃∗(r”)dr” =

∫ Nsubap

0
|P (r’)|2dr’. (3.17)

Eventually, the centroid is:

b =
1

2π
∫Nsubap

0 |P (r’)|2 ∂φa(r’)
∂r’ dr’∫Nsubap

0 |P (r’)|2dr’
. (3.18)

Therefore, the centroid is the average of the derivative of the aberrated phase weighted by
the sub-aperture intensity. In other words, it is the average of the weighted phase slope over
the sub-aperture.
Thus, the position of the centroid differs from one aberration to another, since the slope of

the sub-apertures is different. Then, the focus point in sub-aperture images (or sub-images)
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moves depending on these slopes. From eq. (3.5) and the previous analysis on the centroid,
we can deduce that the intensity in the image plane can be assimilated to the flipped intensity
in the object plane, shifted according to the centroid displacement, and to which is added the
diffraction by the sub-aperture of transmittance h.
With this reasoning, a fundamental property of the Shack-Hartmann wavefront sensor is

obtained: under the assumption of spatial incoherence of the source and with the configuration
of the optical planes in fig. 3.2, the image of each sub-aperture is the field intensity in the
object plane, which has been flipped, translated and diffracted. From the translations, we can
estimate the approximate shape of the aberrated phase.

3.1.3 Estimation of simulated aberrations
We have explained the theoretical operation of the Shack-Hartmann wavefront sensor. In this
part, we test its behavior on simulated data. We simulate aberrations on a point source, then,
on an extended object represented by an image. The estimation of the aberrated wavefront is
calculated from the translations of the sub-aperture images.

Simulation with a point source

For this simulation, the configuration of the fig. 3.2 is taken. Besides, we suppose that a point
as a source provides exactly a point in the object plane, so we consider only the object plane,
the pupil plane and the image plane. We also suppose the pupil is circular.
Let us consider a point in the object plane. It is projected in the pupil plane by a 2D Fourier

transform and an aberrated phase φa = 2π
λ

∑nmodes
i=1 aiZi is added. Then, an image is produced

in the image plane by propagating the field from the pupil plane to the image plane. The
fig. 1.15 of Chapter 1 illustrates the shape of the amplitude of the field in the image plane for
each Zernike mode.
To realize the digital Shack-Hartmann wavefront sensor, the field in the pupil plane is parsed

in nsubap × nsubap sub-apertures, where nsubap is the number of sub-apertures in lateral size.
As explained in the section 3.1.2, the intensity of each sub-aperture image (or sub-image) is a
point, like the object field.

x

y

Figure 3.3 – Illustration of parsing into 5 × 5 sub-apertures for a point source without any aberration,
with astigmatism and with defocus (from left to right). For each part of the illustration, the
first image represents the point source in the image plane. The second image represents the
sub-images in the image plane. Every focal spot is in the center of each sub-image when
there is no aberration. Each aberration is associated to a set of sub-image shifts.

Let dx and dy be vectors of size n2
subap × 1, containing the horizontal and vertical pixel

displacements of the points relative to the reference sub-image (usually one of the central sub-
image). Each Zernike mode provides one pair (dx, dy). For example, the fig. 3.3 shows the shifts
corresponding to oblique astigmatism and defocus.
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The vector d of size 2n2
subap × 1 is defined as the concatenation of dx and dy. Each mode of

Zernike results in a unique d. So, if we set the value of the ith Zernike coefficient ai to a constant
aref while the other Zernike coefficients are null, we get a displacement vector di corresponding
to one aberration. For i ∈ [1, nmodes], we get a set of di vectors corresponding to ai = aref and
∀j 6= i, aj = 0. We can gather these vectors in a reference matrix Mref of size 2n2

subap× nmodes:

Mref = (d1, d2, ..., dnmodes) . (3.19)

Each d provoked by an aberrated phase can be decomposed as:

d = Mref × a, (3.20)

where a is the vector of Zernike coefficients ai of size nmodes× 1, with ai ∈ R. As a reminder,
the aberrated phase φa is equal to 2π

λ

∑nmodes
i=1 aiZi. Therefore, the main goal is to compute the

estimate of a, with d and the Moore-Penrose inverse of Mref :

â = M †
refd. (3.21)

Important remarks:

• Because of the circular pupil, when parsing the pupil plane, some sub-apertures in the
corners contain little or no information. We have decided to suppress sub-apertures with
less than 50% information. It is done on the fig. 3.3, where sub-apertures in the four
corners have been removed. Then, when we consider n2

subap sub-apertures, in reality some
of them have been removed. But to make it easier, we will keep n2

subap sub-apertures
notation.

• While only 1 × 1 parsing is necessary to see tip and tilt, and 2 × 2 for astigmatisms
and defocus, more sub-apertures are required to estimate high-order aberrations. More
generally, for detecting nth radial order aberrations, it is necessary to have at least n× n
sub-apertures: nsubap ≥ n.

• For tip and tilt, the sub-images are moving exactly in the same way. Then, the shift
between sub-images and the central sub-image is null: tip and tilt cannot be detected.
Therefore, from now the first estimated aberration order is the oblique astigmatism.

Simulation with an extended object

Let us consider an image in the object plane. As for a point source, aberrations can be
added, and parsing into sub-apertures provides a grid of shifted images. With normalized
cross-correlations [117] between each sub-image and the reference, the displacements d can be
computed, which gives an estimation of a with the eq. (3.21).
We have implemented sub-pixel correlation by fitting the maximum of the correlation matrix

and its surroundings with a parabola. The coordinates xm_subpix and ym_subpix are computed
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Figure 3.4 – The grid in the top left represents the parsing into 10 × 10 sub-apertures. Cross-out boxes
stand for the sub-apertures which contain less than 50% information. Due to the circular
pupil, the corner sub-apertures are not taken into account. Each curve is associated to a
number corresponding to a sub-aperture in the grid. The curves represent the evolution of
the horizontal position of the focus spot in regard to the reference sub-aperture (number 1)
depending on the amplitude of a defocus. For this aberration, the farther from the pupil
center the sub-aperture is, the more the focal spot shifts away from the center.
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from the coordinates (xm, ym) of the peak of the correlation matrix C with this parabolic
interpolation:

xm_subpix = xm + 0.5× (C(xm−1, ym)− C(xm+1, ym))
C(xm−1, ym) + C(xm+1, ym)− 2C(xm, ym) ,

ym_subpix = ym + 0.5× (C(xm, ym−1)− C(xm, ym+1))
C(xm, ym−1) + C(xm, ym+1)− 2C(xm, ym) , (3.22)

where xm−1 and xm+1 are the coordinates in x before and after the position of the maximum
xm (likewise for ym−1 and ym+1). The displacement vector d is the difference with the center
of C and (xm_subpix, ym_subpix). Then, â can be calculated from Mref and this measured d with
eq. (3.21).

Preliminary checks

Several tests must be performed in order to check some basic properties of the system.
First, we have verified that the shifts are the same for a point source and a extended object,

when the same aberration is applied. For this purpose, we have measured the absolute error
between estimated shift with a point source and with an extended object, for several random
aberrations. For 1000 measurements, we have obtained a mean error of 0.7 pixels with a
standard deviation of 1.5 pixels. Therefore, we can conclude that the shifts are the same with
an accuracy of the order of a pixel.
Secondly, the linearity of the system must be tested: for the same Zernike mode, the dis-

placement within a sub-image must scale up linearly with the amplitude of the mode. This is
illustrated by the fig. 3.4: successive defocus with increasing amplitude have been applied on a
point source. The curves represent the horizontal shift between the central reference sub-image
and the others. The reference sub-image is the sub-image 1.
For a defocus, the central sub-images do not move. The closer to the edges the sub-image

is, the steeper the slope of the curve must be. The movement of the sub-image 1 is negligible
(10−12 pixels) as expected since it is the reference. The horizontal displacement for sub-images
2 and 3 is also small (10−2 pixels). In fact for these sub-images, only the vertical displacement
(not represented here) is higher for a defocus. Similarly, the sub-images 4 and 5 have only a
horizontal displacement. The slope of the curve of the sub-image 5 is almost twice steeper than
the sub-image 4, as expected. Similarly, the slope of the curve of the sub-image 7 is almost
twice steeper than the sub-image 6. Because the sub-images 4 and 7 are located at the same
horizontal position, they should have the same horizontal displacement curve, which is well
verified on the curves. The same verification has been be also successful for vertical shifts.
Therefore, the linearity of the system is well respected.
Eventually, since the Moore-Penrose inverse of the matrix Mref is calculated, care must be

taken to ensure that the matrix conditioning is not too high. Conditioning is defined as the
ratio of the maximum singular value to the minimum singular value of the matrix. If it is too
high, inversion of the matrix may create instability in the resolution of the system. We can
check the consistency ofMref by studyingM †

refMref . If this product is not equal to the identity
matrix, then, it will bring uncertainty in the calculation of â. Respecting nsubap ≥ n, with n the
radial order of the highest considered order aberration, we have verified M †

refMref = Inmodes,
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with Inmodes the identity matrix of size nmodes. The fig. 3.5 represents an example of the result
of this product for 10× 10 sub-apertures and 27 Zernike modes.
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Figure 3.5 – Product between M †ref and Mref for 27 Zernike modes, from the 4th (first astigmatism) to
the 30th.
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(d)

(f)

Figure 3.6 – Estimation of the phase for a point source, with a Shack-Hartmann using 10 × 10 sub-
apertures. (a) Source. (b) Aberrated PSF. (c) Corrected PSF. (d) Amplitudes of the Zernike
coefficients of the added phase in radians (blue) vs estimated amplitudes (orange). (e) Added
phase shape. (f) Estimated phase shape.
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Estimation of the aberrated phase

Tests have been realized by applying an aberrated phase to point source and extended object
in the pupil plane. Random sequences of Zernike coefficients following a normal distribution
N(0, 1) (average of 0 and standard deviation of 1) have been generated and have constituted
aberrated phases. We have used our digital wavefront sensor in order to estimate these random
coefficients. The errors (absolute value of the difference between ground truth and estimation)
have been computed for each coefficient. Then, we have repeated this estimation 100 times,
for both types of source, and using 6 × 6, 7 × 7, 8 × 8, 9 × 9, and 10 × 10 sub-apertures. We
have gathered the corresponding mean error and standard deviation over these 100 iterations
on tables, in the appendix A.

(a) (b) (c)

(e)

(d)

(f)

Figure 3.7 – Estimation of the phase for an extended object, with a Shack-Hartmann using 10× 10 sub-
apertures. (a) Image without aberration. (b) Aberrated image. (c) Corrected image. (d)
Amplitudes of the Zernike coefficients of the added phase in radians (blue) vs estimated
amplitudes (orange). (e) Added phase shape. (f) Estimated phase shape.

On these tables, we can see that in general, mean error and standard deviation decrease while
the number of sub-apertures increases. Indeed, by increasing the number of sub-apertures, the
accuracy of the estimation is improved as there are more observations to solve the problem and
perform the estimation. We can also notice that the error seems slighty more important for the
first Zernike modes. In any case, the mean error and the standard deviation never exceed 1 and
0.7 rad, respectively. They are more between 0.2 and 0.3 rad, which is satisfying, particularly
in view of the qualitative results.
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The fig. 3.6 shows an example of estimation for a point source. The source and the aberrated
image are represented on (a) and (b) respectively. The estimation of the Zernike coefficients
allows the estimation of the aberrated phase. The figure (c) has been obtained by subtracting
the estimated aberrated phase. The point has almost been completely recovered with the
successful estimation.
The fig. 3.7 illustrates the estimation for an extended object. The image (a) is in the object

plane, and the image (b) represents the intensity of its projection in the image plane. The
estimation of Zernike coefficients is close to the real aberrated phase, which makes possible the
correction in the image (c).

3.1.4 Conclusion on the simulations

In this section, we have studied the theoretical properties of a typical Shack-Hartmann wave-
front sensor, and adapted it into a digital version. We have been able to successfully estimate
phase on simulated data with this method. The results are promising for point source and
extended object.
Now, the challenge is to verify theoretically if the digital Shack-Hartmann wavefront sen-

sor can be used with our setup of laser Doppler holography. Then, if that is the case, the
implementation will be discussed and further tests will be performed.

3.2 Adaptation to the laser Doppler holography

3.2.1 Theoretical modelling with the setup

For this part, we base our work on the holographic data provided by the laser Doppler holo-
graphic setup to illustrate theoretical modelling. As seen in the previous section, some hy-
potheses are necessary to apply the Shack-Hartmann wavefront sensor. The most critical one
is the spatial incoherence of the field in the object plane.
Due to the poor signal to noise ratio, we have seen that the moment needs to be computed to

obtain laser Doppler images. Thanks to this operation, we are able to neglect the speckle in the
signal of the object plane, and then, to fulfill the conditions for the use of the Shack-Hartmann
wavefront sensor. It remains to check if a digital wavefront sensor can work with this moment
instead of the only intensity, to estimate the slope of the wavefront.

Hypotheses

The first hypothesis formulated to apply the Shack-Hartmann wavefront sensor concerns the
spatial coherence of the source. In the previous case, it was assumed that the source was
spatially incoherent, allowing us to admit the spatial incoherence of the field in the object
plane. In reality, the field in the retina is not spatially incoherent. Because of the propagation
of coherent light in a scattering media, the intensity I of this field can be decomposed as:

I = E[I] + σI . (3.23)
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E[I] is the statistical mean value of the intensity over time and σI the standard deviation of I
which has the same amplitude as E[I]. The speckle provoked by σI can be observed in the final
images. However, by calculating the moment to obtain the Doppler images, we average several
images of the data blocks. Then, the speckle effect is less visible than the average E[I] which
forms the image. In that case, we can consider E[I] as an incoherent part which predominates
over coherent part. Therefore, the hypothesis of incoherence of the field in the retina plane can
be applied on the incoherent part of the field, knowing the coherent part can be neglected with
the final processes.
The second hypothesis concerns the arrangement of the planes. In our case, as we have seen

in the section 2.1.2, we consider that the plane of aberrations is the Fourier plane of the retina
plane. Then, it is the same situation as in section 3.1.2.

The wavefront sensor for laser Doppler holography

As we have seen in the section 2.1.3, the interferograms I(x, y, t) are propagated in the image
plane to get holograms H(x, y, t). The configurations in section 2.1.3 and section 3.1.2 are
slightly different. In the case of the section 2.1.3, the holograms are propagated from the
image plane rather than the object plane. For this study, we will note Eio(r”, t) = H(x, y, t)
the original field in the image plane, Iio(r”) =< |Eio(r”, t)|2 >t the corresponding intensity,
Ep(r’, t) = FT2D{Eio(r”, t)(r’)} the field in the pupil plane, and Ei(r”, t) = FT2D−1{Ep ×
h}(r”, t) the field in the image plane after propagation from the pupil plane. Repeating the
calculations of the section 3.1.2 with these slight changes, we reach the equation:

Ii(r”) = Iio(r”) ∗ |FT2D−1{h}(r”)|2. (3.24)

By taking into account the parsing of the pupil and the effect of aberrations, we come to
the same conclusion we had in section 3.1.2 for the centroid displacement. Therefore, with this
configuration, each sub-image corresponds to the shifted Iio(r”).
However, in this setup of laser Doppler imaging, the computation of Ii(r”) or Iio(r”) is not

sufficient to get proper image. Several steps which are explained in the section 2.3 must be
performed to obtain the final Doppler images: Mio(x, y, t) =

∫ ω2
ω1
|H̃(x, y, t, ω)|2dω. In the rest

of this section, we will study the effect of these successive operations on the wavefront analysis.

First, we consider the moment Mi in the image plane of the fig. 3.2 such as

Mi(r”, t) =< |FTt{Ei(r”, t)}|2 >ω

=< FTt{Ei(r”, t)}FTt{Ei(r”, t)}∗ >ω

=
∫
ω
FTt{Ei(r”, t)}FTt{Ei(r”, t)}∗dω. (3.25)

With a window h in the pupil plane, we get:

Ei(r”, t) = Eio(r”, t) ∗ FT2D−1{h(r”)} =
∫
r1
Eio(r1, t)FT2D−1{h}(r”− r1)dr1, (3.26)
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and

FTt{Ei(r”, t)} =
∫
r1
FTt{Eio(r1, t)}FT2D−1{h}(r”− r1)dr1. (3.27)

Then,

Mi(r”, t) =<
∫∫

r1,r2
FTt{Eio(r1, t)}FTt{Eio(r2, t)}∗FT2D−1{h}(r”− r1)FT2D−1{h}∗(r”− r2)dr1dr2 >ω .

(3.28)

Because of the hypothesis of spatial incoherence of the source, we can show that we have:

< FTt{Eio(r1, t)}FTt{E∗io(r2, t)} >ω= δ(r1 − r2)
∫
|FTt{Eio(r1, t)}|2dω. (3.29)

Then, the eq. (3.28) can be simplified:

Mi(r”, t) =< |FTt{Eio(r”, t)}|2 >ω ∗|FT2D−1{h}(r”)|2 = Mio(r”, t) ∗ |FT2D−1{h}(r”)|2.
(3.30)

As we said previously, by taking into account the parsing of the pupil and the effect of
aberrations, the centroid of |FT2D−1{h}(r”)|2 moves with the sub-aperture phase slope.
Therefore, in each sub-image, we will be able to observe the displacements of the moment

Mio(r”, t) which is equal to < |FTt{Eio(r”, t)}|2 >ω=
∫ ω2
ω1
|H̃(x, y, t, ω)|2dω. The vector d

representing the displacements can be measured from cross-correlation between the moments,
and the phase can be estimated with eq. (3.21).

3.2.2 Implementation

The main processing steps to get sub-images are summed up in the fig. 3.8.
All these processes are implemented with Matlab. In this part, I give some details about

implementation options we have added. The critical point concerns the correlations between
sub-images: it has to be done properly to compute the right phase.
First we apply a gaussian filter to the sub-images before the correlation, like in the sec-

tion 2.4.1. We can also apply a filtering with a singular value decomposition (SVD) to remove
specular reflections and artifacts related to the movement for example.
In order to avoid as many errors as possible, we set several pixels of the correlation matrix

to zero so as to keep only the pixels in the center: even with high amplitudes of aberration,
the displacement of the maximum remains small, as illustrated by the fig. 3.9. We generally
remove at least 80% of the pixels on each lateral dimension. This precaution prevents us from
having too high displacement values, caused by local maxima due to artifacts or side effects.
The fig. 3.10 shows another problem related to the sub-images. On the left figure, not to

mention edge effects on the four corner sub-images, a circular limiting aperture is well visible
on each sub-image. We suspect this is due to the size of the patient’s pupil since it is not visible
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Figure 3.8 – Summary of the main steps to get sub-images. The interferograms I(xc, yc, t) are propagated
from camera plane to image plane to get holograms Eio(x′′, y′′, t) = H(x′′, y′′, t). The steps
on the top after Eio(x′′, y′′, t) sum up the usual processing to get images. To compute sub-
images, the holograms are propagated in the pupil plane with a 2D Fourier transform. The
holograms in the pupil plane Ep(x′, y′, t) are parsed into sub-apertures Epk(x′, y′, t), with
k ∈ [1, n2

subap]. Each sub-aperture Epk(x′, y′, t) is transferred in the image plane. Then,
every sub-image Eik(x′′, y′′, t) is processed to get images.

Figure 3.9 – Examples of correlation matrices. The red cross is located at the center of the matrix.
The maximum of the correlation maps is represented by the white value. The displacement
remains small even to describe high amplitude aberrations.

Figure 3.10 – Example of sub-images and corresponding cropped correlation matrices, for 5 × 5 sub-
apertures.
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in the same way for every person. However, this disturbs the result of the correlations: the
correspondence between sub-images due to the limiting aperture produces a high-energy peak
in the correlation map which covers the peak related to the intended displacement. In order to
hide this phenomenon, we have decided to do the same we did with the correlation matrix: we
keep only the center of the image, removing about 60% of the pixels on each lateral dimension
of the image. Even if it seems to be a substantial part of the image, only a little with several
vessel structures is required to spot movement.

The fig. 3.11 illustrates a parsing with these zero margins in sub-images and correlation
matrices. From these views, we can remove some extra sub-apertures if it is needed. Indeed,
on the figure, it is noticeable vessels of interest within sub-images are fading as they are farther
from the central sub-apertures. It attenuates the corresponding correlation peaks. In some
cases, it is necessary to remove from calculations some other sub-apertures in addition to the
four corners. Besides, it also highlights that the more sub-apertures there are, the more off-
center sub-apertures we will have to suppress because of the fading. For this reason, we have
decided to work with only 4 or 5 lateral sub-apertures, removing the four corner sub-apertures
by default.

Nevertheless, sometimes, removing only four sub-apertures is not sufficient because of fading
as explained before, but also due to other artefacts. In some acquisitions, the shape of the pupil
is still visible even with the zero-margin mask, as it is illustrated in the fig. 3.12. In those cases,
more sub-apertures have to be removed, even though it can reduce drastically the precision of
the estimation or the maximum possible number of modes.

Default parameters have worked pretty well for most of the tested cases as it is shown in
the section 3.3: the masks for sub-images and correlations, and 4 or 5 lateral sub-apertures.
However, for some patients, it is necessary to take a closer look to settings.

Figure 3.11 – Example of cropped sub-images and corresponding cropped correlation matrices, for 5× 5
sub-apertures.
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Figure 3.12 – Example of cropped sub-images and corresponding cropped correlation matrices, for 4× 4
sub-apertures. Here all the sub-images on the right column show a limiting aperture, which
spoils the correlation: the corresponding peaks in the correlation matrices are barely or even
not visible.

3.3 Tests and results
All the laser Doppler images from this section have been obtained by averaging consecutive
frames of registered computed moments.

Figure 3.13 – Photo of the verification experiment. Astigmatic glasses are placed and adjusted in front of
the emmetropic eyes using holders.

3.3.1 Experimental verification
The experimental checks have been performed on a emmetropic eye. Astigmatic glasses are
placed just in front of the eyes. We can change the intensity of the astigmatism (expressed
in diopters) and its orientation. With the algorithm, we can visualize images before and after
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Figure 3.14 – Correction of a laser Doppler image of the model retina, where 6-diopter oblique astigmatism
has been added. The first figure represents the image before aberration compensation, while
the second one represents the corrected image. The third figure illustrates the shape of
the wavefront. The graph stands for the amplitude of the coefficient for Zernike modes,
corresponding to this phase estimation. Amplitudes are expressed in radian and Zernike
mode numbering starts with oblique astigmatism.

correction, with the shape of the estimated phase and the amplitude of Zernike coefficients.
An example of the rendering is shown on fig. 3.14. On this example, it can be seen that the
estimated phase is indeed an astigmatism: the first coefficient which represents the oblique
astigmatism is equal to 9 radians. When the absolute value of coefficients is lower than 1
radian, we consider them as null as their effects are not significant.
A clear improvement of the image resolution is well-visible on the first tests. For fig. 3.15,

6-diopter horizontal astigmatism has been added. The figure show profiles before and after
aberration compensation. The resolution of the vessels has been improved and it even reveals
other vessels which were barely visible before the correction.
One of the first test performed concerns the increase of the amplitude of Zernike coefficient

with the increase of the diopter number. Then, we put successively, in the same conditions of
test, astigmatic lenses of 0.25, 0.5, 1, 2, 3, 4, 5 and 6 diopters, oriented to obtain a vertical
astigmatism. For 0.25 diopters, the results were not meaningful (not visible with our device)
so we removed them from the study. We gather results in the fig. 3.16 which represents the
variation of the mean amplitude of the vertical astigmatism with the number of diopters. The
average has been computed on 25 images, extracted from a few seconds recording. The red
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0.5 mm 0.5 mm

Figure 3.15 – Correction of a laser Doppler image of the model retina, where 6-diopter horizontal astigma-
tism has been added. The first figure represents the image before aberration compensation.
The gray-level profiles corresponding to red and blue lines are shown just below. The second
one represents the corrected image. The gray-level profiles corresponding to red and blue
lines are shown just below. The third figure illustrates the shape of the wavefront.

Figure 3.16 – Evolution the amplitude of the second astigmatism in radian for several values of vertical
astigmatism. The blue curve stands for the average value of 25 samples representative of
a few seconds of acquisition. The minimum and maximum values of this 25 samples are
represented in red. They are representative of the dynamic aberrations which have occured
during this time. The green dotted curve is the linear regression of the blue curve.
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points stand for the minimum and maximum amplitude values among these 25 frames.
The curve is linear as we expected. The slope which is about 1 rad.m−1 is the same for

all astigmatisms we have tested. Adding other aberrations affects a bit this slope, but we
have not quantified this modification yet. The minimum and maximum values reflect dynamic
aberrations: the value of the astigmatism can vary during the acquisition due to dynamic
aberrations. However, here the variation can reach almost 4 radians. It seems to be due to an
error of measurement that we have not quantified yet. It could be caused by the variation of
other modes of Zernike, as we said previously.
As for the link between amplitude coefficients and diopters for astigmatism, we have been

able to measure a relationship between reconstruction distance z and amplitude coefficient for
defocus, validated not only on the model eye, but also on each case we have tested so far. Then,
we have been able to digitally compensate the defocus by reconstructing images at precise z
distance, so we did not take the risk to influence the other aberrations during the estimation.

0.5 mm 0.5 mm

Figure 3.17 – Correction of a laser Doppler image of the model retina, where 6-diopter vertical astigmatism
has been added. The first figure represents the image before aberration compensation, while
the second one represents the corrected image. The third figure illustrates the shape of the
wavefront.

0° (reference) 45° 90° 135°

Figure 3.18 – Estimated shape of the wavefront for different orientations of the astigmatism.

For another test, we have modified the orientation of the astigmatism. On fig. 3.15, the
astigmatism provokes a blurring effect horizontally oriented, as we can see on the aberrated
image. On the other side, the vertical astigmatism is also visible with the orientation of the
blurring in the fig. 3.17.
To check the orientation of the aberration, we have set and measured a 4-diopter astigmatism

as a reference (first illustration of the fig. 3.18). Then, we have rotated it 45◦, 90◦ and 135◦.
The fig. 3.18 shows the shape of the wavefront in each case, which corresponds to the rotation
we applied.
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Figure 3.19 – Correction of a laser Doppler image of a patient’s retina. The first figure represents the
image before aberration compensation. The gray-level profile corresponding to the red line
is shown just below. The second one represents the corrected image. The gray-level profile
corresponding to the red line is shown just below. The third figure illustrates the shape of
the wavefront.

3.3.2 Results on patients

With this method, we have been able to improve resolution on several images of patients. The
finest vessels are more accurate and sometimes even appear where there were none. The edges of
the large vessels are more resolved. In the following of this part, several examples are presented
to illustrate the results.

On the fig. 3.19, the algorithm corrects a defocus and an oblique astigmatism. It makes some
vessels’ edges be more accurate, as we can observe with the profiles: the correction improves
the resolution of the two vessels by a factor of two. The algorithm estimates mainly a defocus
and an oblique astigmatism.

On the fig. 3.20, the separation between the blood vessels is more pronounced. Besides, the
larger vessel’s walls are more defined: we can see two peaks at around 37 and 48 pixels of the
distance scale, while it is more difficult on the first profile. The graph shows a vertical astigma-
tism of about 4 radians, which corresponds approximately to 2 diopters. Otherwise, the other
modes are under 1 in absolute value (so not significant), except the number 5 corresponding to
the vertical coma which is slightly above −2 radians.
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0.5 mm 0.5 mm

Figure 3.20 – Correction of a laser Doppler image of a patient’s retina. The first figure represents the
image before aberration compensation. The gray-level profile corresponding to the red line
is shown just below. The second one represents the corrected image. The gray-level profile
corresponding to the red line is shown just below. The third figure illustrates the shape of
the wavefront. The graph stands for the amplitude of the coefficient for Zernike modes,
corresponding to this phase estimation. Amplitudes are expressed in radian and Zernike
mode numbering starts with oblique astigmatism.

In the fig. 3.21, the field of view is more extended than the previous examples. The algorithm
estimates mostly astigmatism (approximately 1 radian of oblique and 2 radians of vertical).
This time, it has a slight impact on the image. This can be explained by the width of the field
of view. For now, we apply the same correction for the whole reconstruction plane. However,
some parts of the image do not belong to the reconstruction plane and may not have the
same aberrations. It is well understandable by considering the defocus: the retina is in relief,
then, the defocus of each part of the image can be different. Then, if we consider a large field
of view, the estimation is less impacting. In the future, we will develop this algorithm with
anisoplanatism.
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Figure 3.21 – Correction of a laser Doppler image of a patient’s retina. The first figure represents the
image before aberration compensation, while the second one represents the corrected image.
The third figure illustrates the shape of the wavefront. The graph stands for the amplitude
of the coefficient for Zernike modes, corresponding to this phase estimation. Amplitudes
are expressed in radian and Zernike mode numbering starts with oblique astigmatism.

3.3.3 Conclusion and perspectives
We have been able to implement a digital wavefront sensor adapted to laser Doppler holography.
First tests on patients are encouraging. It paves the way to the increase of image resolution, and
may improve the understanding of some pathologies with a better observation of the vessels.
Several perspectives have been already evoked. We must better quantify the errors of mea-

surement. For now, because we just get first results, we have not worked on it yet. We must
also get more data on even more patients, and the knowledge of their aberrations could help us
to compare to our algorithm’s response. We could decrease the computation time by optimizing
the code. For now, to get corrected images from a batch of 16 interferograms, it takes around
6 min. But this time is compressible by working on the structure of the algorithm. Finally,
we must work on anisoplanatism in order to apply different compensations for each part of the
image. It could improve the quality of our estimation.
This method is a step in the processing chain to produce high-resolution holographic images.

An evolution of this system could be to include everything in a single process, to obtain high-
resolution holographic images directly from interferograms. The aim would be to simplify and
speed up the processing chain. With the rapid emergence of neural networks, this possibility
does not seem so far away.
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CHAPTER 4

Aberration compensation by deep learning

4.1 About the use of deep learning for holographic imag-
ing and phase estimation

Beyond correcting the wavefront, we would consider using a neural network to replace the whole
processing chain of holographic image rendering in the future. For now, however, we need to
start studying the aberration compensation step, which we will focus on in this chapter.
Wavefront estimation by deep learning is getting more and more studied, as seen in the

Chapter 1. Its interest comes, among other things, from the fact that the networks are able to
find characteristics of the system that have not been noticed yet, by inducing empirically the
resolution of the problem. Besides, it has a very low computation time once the network has
been trained. This seems to be an interesting approach to consider, with a view to possibly
boosting performance and find new features to our system.
The principle of deep neural networks [118–120] is conceptually simple, inspired by the human

brain. The network learns a transformation to apply to input data in order to get the expecting
result, by training itself on a lot of examples and learning from its errors. This highlights one
of the major limitation of networks: they need to be trained on enough data representative of
the system. Collecting huge amounts of clean data is not always easy, specially in biomedical
field. Besides, a with large database, training can be long, which makes it difficult to set the
large number of parameters required for the model.
In this chapter, we first test the use of a network to correct aberrations. In a second part,

we are getting slightly off topic by working on another aspect of the training, which could
nevertheless be useful for aberration correction.

4.2 Correction of aberrated eye-fundus images

4.2.1 Context
The goal is to be able to correct aberrations on our holographic images. However, for now, we
do not have enough diversified holographic data to train a network. Thus, we have decided to
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work first on simulated data based on eye-fundus images.

Figure 4.1 – Examples of images extracted from the database.

4.2.2 The database
To respect the constraints of deep neural networks, we must have a substantial database. We
could have used an existing database like ImageNet. However, we wanted to be as close as
possible to our objective which is the correction of aberrations on holographic retina images.
Therefore, we have worked on a database of eye-fundus images, acquired with Spectralis device
of the company Sanotek. For the training, we have gathered 28685 images that we have selected,
cropped at the same size (256×256 for the first tests, then, 512×512), centered and normalized
between 0 and 1. Some images of the database are represented on fig. 4.1.
The images of the database are supposed to be in the retina plane, and the aberrations are

considered in the Fourier plane of this object plane. Then, the input of the network is the
aberrated image in the retina plane, and the ground truth is the image without any aberration.

4.2.3 The network
Organization of a deep neural network

Neural networks that we note f , are composed of several layers of linear and non-linear func-
tions. What is called a neuron is at the very least made up of one linear function (combination
function) and one non-linear function (activation function). The combination function used
to be a simple linear combination. For several years, convolutions have become widespread as
combination functions thanks to the improvement of computation time and performances they
provide: rather than treating each element of the input data separately, convolution processes
together several inputs within its kernel. For example, if the input is an image, rather than
processing pixel by pixel, the convolution uses clusters of pixels. It is considered to be a filter.
The size of its kernel needs to be adapted to the size of the information: kernels that are too
large may over-average the information contained in the clusters while smaller ones reduce the
interest of convolution. As far as activation functions are concerned, they bring non-linearity to
the network, and are often thresholding functions. Classical examples are sigmoid, hyperbolic
tangent, Heaviside step function and rectified linear unit (ReLU). Some of these functions are
represented on fig. 4.2.
Each layer of a network aims at expressing the input data into another space or under

different dimensions. This is performed with undersampling and oversampling layers added to
the neurons.
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Figure 4.2 – Some of the most used activation functions: sigmoid (sig), hyperbolic tangent (tanh) and
rectified linear unit (ReLU). The derivative of sig and tanh is considered as non-zero only
around 0, while the derivative of ReLU is non-zero on half of the real domain.

The network’s inputs X are vectors, matrices or tensors, on which the layers are applied. If
we note (f1, f2, ... fN) the N layers of the network, the output of the network is:

Ŷ = f(X) = fN(...f2(f1(X))), (4.1)

where each layer is composed of neurons, which in turn are composed of combination, acti-
vation, and possibly sampling functions. The output of the network Ŷ has not necessarily the
same size as the input.

Choosing the most suitable network

To choose a network, it is necessary to keep in mind its aim, and the shape of the data in input
and in output. The state of the art in deep learning is often divided into several categories
depending on the networks function: classification, image segmentation, reconstruction, gen-
eration... But sometimes, some networks used for one task can be also used for another one.
That is the case of the network that we have decided to use.
The task that we would like to perform is akin to image reconstruction, with images as input

and output. As we have seen in the Chapter 1, several teams are working on phase recovery
from speckle pattern [105–109]. Barbastathis team [107–109], whose work is very close to our
case, is using a network derived from the UNet [110]. Therefore, we have decided to use a UNet
to perform our tests.

General structure of the UNet

The UNet is a convolutional neural network whose primary use is the segmentation of biomedical
images. Since then, its use has been extended to fields other than segmentation, such as image
reconstruction.
The UNet is composed of two parts: an encoder and a decoder, with what is called a “bottle-

neck” between them. In the encoding part, the resolution of the features (results of the blocks)
decreases while their number of channels increases. In the decoding part, the resolution of the
features increases while their number of channels decreases. The name of the network comes
from the symmetry between these two parts facing each other.
Increasing the number of layers can be beneficial for solving more complex problems. How-

ever, when the network has too many layers, a phenomenon known as the vanishing gradient
problem is more often seen. Each neural network’s weight is updated proportionally to the gra-
dient of the error function, following the principle of the gradient-based optimization methods
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Figure 4.3 – Scheme of the UNet structure used for aberration compensation. The feature maps are
represented by parallelepipeds, with their size above (vertical × horizontal × channels).
The input is 256× 256× 2 image for real and imaginary part of the initial gray-scale image.
The output is a 256 × 256 gray-scale image. The blocks, which are composed of layers,
are represented by the black arrows below the features. The network is composed of 1
convolution block and 7 downsampling blocks in the encoding part, and 1 convolution block
and 7 upsampling blocks in the decoding part.

used in the backpropagation step of the learning (the algorithm is detailed in section 4.2.4). In
some cases, the gradient becomes smaller and smaller and even vanishes, which prevents the
weights from updating, and stops the learning. The UNet has two elements to combat gradient
vanishing.
First, the UNet uses ReLU as activation function of each layer. ReLU is defined as y =

max(0, x) (fig. 4.2). Comparing to other activation functions like sigmoid or hyperbolic tangent,
the derivative of ReLU is non-zero over a much larger area: for the sigmoid and the hyperbolic
tangent, their derivative is near 0 everywhere in the real domain, except around 0, while the
derivative of ReLU is non-zero for half of the real domain. Then, it propagates the gradient
during backpropagation step on a much larger area, which limits the vanishing gradient effect.
Secondly, the features of the encoding part are propagated in the decoding part through skip

connections: the features of the downsampling part are concatenated to the features of the
upsampling part. It allows the missing context to be added to the second part, and improve
the propagation of the gradient during the backpropagation step.

Organization of the blocks

The architectures of the UNet can differ from one problem to another: several layers can be
added or removed, their size can be changed, as well as their parameters. The configuration
that we use is illustrated in the fig. 4.3, and the composition of each block is detailed in the
fig. 4.4. Let us note xin × yin × chin and xout × yout × chout the dimensions of the input and
output features of a block respectively.
Each convolutional layer is a sequence of 2D convolution, 2D batch normalization and ReLU.
The 2D convolution is the basic module of convolutional neural networks. In practice, convo-

lutions are filters applied to the input feature maps. In our UNet, chout filters of size 3×3×chin
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Figure 4.4 – Composition of each block of the UNet (fig. 4.3): down, up, inconv and outconv. Input chan-
nels and output channels are arguments of each block, representing the number of channel
of the input and the output feature maps. Down block is composed of one MaxPooling and
two convolution layers. Up block is composed of one ConvTranspose and two convolution
layers. The input feature map of the convolution layers is the concatenation of the output of
the ConvTranspose and the feature map of the corresponding skip connection. Inconv block
is composed of two convolution layers. Outconv is only one 2D convolution.

are applied (it can also be considered as a kernel of size 3 × 3 × chin × chout), with no stride
(the kernel is moved from pixel to pixel). The parameters chin and chout are arguments of the
convolution we choose. A zero-padding is used to keep xin = xout and yin = yout: the input is
surrounded by one layer of zeros for the first two dimensions x and y. Then, applying the 2D
convolution layer on xin × yin × chin features, we get xin × yin × chout by using chout filters of
size 3× 3× chin.
As it has been explained previously, the activation function used in the UNet is ReLU.

The 2D batch normalization, as the name suggests, performs the normalization of each batch
between blocks, allowing the use of higher learning rates, without taking too much care of the
initialization of the data. It also adds some regularization to the network to struggle against
overfitting [121].
The first block of transformations is noted inconv. It is composed of two convolutional layers.

The arguments of the first convolution are chin = 2 and chout = 8. The arguments of the second
convolution are chin = 8 and chout = 8. Then, from 256 × 256 × 2, we get a 256 × 256 × 8
feature by using a 3× 3× 2× 8 kernel for the first convolution, and 3× 3× 8× 8 for the second
convolution.
After inconv, the first part of the network is a sequence of 7 down blocks. A down block is

composed of one MaxPool2D and two convolutional layers. The MaxPool2D is a downsampling
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function. It divides the dimensions of the input feature map by taking the maximum value over
a moving patch of pixels in (x, y) dimensions. In our UNet, the size of this patch is 2 × 2
(with no stride, no padding). We choose the output channel size of the down block to be
the double of the input channel size (chout = 2 ∗ chin) except for the last down block, where
chout = chin. Then, if the size of the input of a down block is xin × yin × chin, the output size
is xin/2× yin/2× 2 ∗ chin (xin/2× yin/2× chin after MaxPool2D, xin/2× yin/2× 2 ∗ chin after
the first convolution and still xin/2× yin/2× 2 ∗ chin after the second convolution).
After the encoding part, the decoding part begins, including 7 up blocks. Each is composed of

one ConvTranspose2D and two convolutional layers. The ConvTranspose2D is an upsampling
function. It doubles the dimensions of the input feature map with a bilinear interpolation over
a moving patch of pixels in (x, y) dimensions. This is a weighted upsampling: the weights
are learned by the network. Thus, it has a kernel of weights, like a 2D convolution. In our
network, the size of this kernel is 2 × 2 × chin × chout, applied with a stride of 2. We choose
the output channel size of the up block to be half of the input channel size (chout = chin/2)
except for the last down block, where chout = chin. Then, if the size of the input of a up block
is xin × yin × chin, the output size is 2 ∗ xin × 2 ∗ yin × chin/2.
The particularity of this part is the concatenation of previous features with skip connections.

Therefore, the first argument of up blocks (input channel size) is twice the channel size of
the input feature map: its dimensions are xin × yin × chin/2 before ConvTranspose2D and
2 ∗ xin × 2 ∗ yin × chin/2 after. With the concatenation, the feature map is concatenated (over
the channel dimension) with a previous one with the same dimensions: its dimensions are
xin × yin × chin after concatenation. Then, the two convolutions are applied which provide an
output feature map of dimension 2 ∗ xin × 2 ∗ yin × chin/2.
As the up block is more complex, here is an example of the dimensions of a feature, at each

step from before to after the block up1. The dimensions of the feature before this block are
2 × 2 × 512. The first step of ConvTranspose2D transforms the feature into another one of
dimensions 4 × 4 × 512. Then, it is concatenated to the output of the block down6, of shape
4 × 4 × 512, with respect to the last dimension. The result is a 4 × 4 × 1024 feature. Then a
first 2D convolution is applied, and we obtained a 4 × 4 × 256 feature. The final result after
the second convolution is a 4× 4× 256 feature.
Finally, the last block is outconv, which is simply a 2D convolution, reducing the number of

channels from 8 to 1, to get the final gray-scale image.

This network accumulates a total of 14 767 768 weights to learn: almost 15 billions of degrees
of freedom, which illustrates pretty well the complexity of the system, and then, the difficulty
of the optimisation problem. This network used to compute the results of the section 4.2.5
has been implemented with the Pytorch library of Python. Despite its impressive size, the
network delivers on its promise of speed, with a computation time of around 30 ms to produce
an output image from an input image.
The network of Barbastathis team is based on a UNet. The only difference is the use of dense

connections, linking the features together within each block [122]. This is a way to propagate
easier the gradient during the backpropagation step, but also increases the complexity of the
network. Thus, we have decided to start with a “simple” UNet.
In the following, we explain how we have trained this network and give some details about

several parameters.
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4.2.4 The training step

Once the network has been implemented, the training can begin. For the supervised networks
that we will deal with in this chapter, the output of the network Ŷ = f(X) is compared
to the ground truth Y with a loss function L(Ŷ,Y). The problem is to find the weights
that minimize the error function L(Ŷ,Y), so that the output of the network Ŷ is as close
as possible to the ground truth Y. The gradient of this error is backpropagated through
the network by an optimization algorithm (gradient descent type) to modify the weights that
govern the combination transformations within the network. The networks are thus multi-scale
optimization algorithms, trained with multiple iterations on the database to modify the weights
to fit the transformation to the system.
The weights of each layer of the network are initialized according to a uniform distribution

described in [123]. It is directly implemented on the modules in Pytorch (Conv2D, ConvTrans-
pose2D...) and we have not changed these default parameters. For our training, the weights
are updated following the stochastic gradient descent algorithm, detailed in the next part.
The training is launched on a batch of images B randomly extracted from the database.

The length of the batch depends on the performance of the CPU/GPU. Of course, with larger
batches, the training is faster because all the processes are performed in parallel on the images
of the batches. However, the CPU/GPU RAM (Random Access Memory) is not infinite and
batch length need to be adapted, also depending on the input images size, to avoid computer
memory problem. Besides, parallelization on GPU instead of CPU increases drastically the
speed of data processing.
Then, the batch of data is sent through the network (direct way), and the error over this

batch is calculated. We have decided to work with the mean-square error (MSE) as loss function
on the batch of data B:

LB(Ŷ,Y) = E
[
(Ŷ−Y)2

]
, (4.2)

where E designates the expectation. This error is backpropagated through the network,
updating the weights by using the stochastic gradient descent algorithm. Once all random
batches have been sent to train the network, the mean error corresponding to one iteration over
the database (called epoch) is computed. The network is trained during several epochs, and
corresponding mean errors over the training database are computed to check that training is
running properly.
In the following, we explain the mechanisms of the stochastic gradient descent during the

backpropagation, which is very important to understand the update of the weights. Next, we
mention several problems that can occur during training.

Stochastic gradient algorithm

First, here are some notations. Let us consider a network with N layers. We will use only linear
combination as combination function rather than convolution. It does not change the aim of
the explanation, it is only to simplify calculations. Let us note X(n) the network’s feature map
at the nth layer. For example, X(0) is the input, and X(N) is the output (Ŷ = X(N)). To
simplify the computation, we will consider only X as a vector, but it is also generalizable to
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matrices or tensors. For the following and to make notations clearer, we will note the matrices
in bold and capital letters, the vectors in bold and lower case letters, and the real values in
lower case letters.
We note z(n) = W(n)x(n) the result of the linear combination of the nth layer, with W(n) the

weights at the same layer. We suppose that the first component x0 of x is equal to 1, in order to
have a bias. Weights are the parameters the network has to learn. We can also write without
vectors: z(n)

j = ∑
iw

(n)
ij x

(n)
i . We note g the activation function such as g(n)

(
z(n)

)
= x(n+1).

Without vector notation: x(n+1)
j = g(n)

(
z

(n)
j

)
.

Similarly, we can write the loss function:

LB(ŷ,y) = LB(x(N),y) = E
[
(x(N) − y)2

]
. (4.3)

The aim of the stochastic gradient descent is to update the weights of the network by prop-
agating this loss LB. The parameters will be updated with the partial derivative of the loss
with respect to the parameters of the concerned layer:

w
(n)
ij ← w

(n)
ij − λ

∂LB(ŷ,y)
∂w

(n)
ij

, (4.4)

where λ ∈ R is the learning rate.
Let us compute the error we will use for the update of the last layer corresponding to w(N−1)

ij .
The partial derivative of interest can be written as:

∂LB(ŷ,y)
∂w

(N−1)
ij

= ∂LB(ŷ,y)
∂z

(N−1)
j

∂z
(N−1)
j

∂w
(N−1)
ij

= ∂LB(ŷ,y)
∂z

(N−1)
j

x
(N−1)
i = δ

(N−1)
j x

(N−1)
i , (4.5)

with the previous definitions, and with δ(N−1)
j = ∂LB(ŷ,y)

∂z
(N−1)
j

.

We can explicit δ(N−1)
j :

δ
(N−1)
j = ∂

∂z
(N−1)
j

[
1

2M

M−1∑
i=0

(x(N)
j − yi)2

]

=
x

(N)
j − yj
M

∂g(N−1)(z(N−1)
j )

∂z
(N−1)
j

=
x

(N)
j − yj
M

g′(N−1)(z(N−1)
j ), (4.6)

where M is the size of x(N) and y, and g′ is the derivative of g.
Therefore, the weights of this first layer can be updated:

w
(N−1)
ij ← w

(N−1)
ij − λδ(N−1)

j x
(N−1)
i . (4.7)
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Now let us see for the next layer (N − 2).

∂LB(ŷ,y)
∂w

(N−2)
ij

= ∂LB(ŷ,y)
∂z

(N−2)
j

∂z
(N−2)
j

∂w
(N−2)
ij

= ∂LB(ŷ,y)
∂z

(N−2)
j

x
(N−2)
i = δ

(N−2)
j x

(N−2)
i . (4.8)

We can decompose δ(N−2)
j :

δ
(N−2)
j =

∑
k

∂LB(ŷ,y)
∂z

(N−1)
k

∂z
(N−1)
k

∂z
(N−2)
j

. (4.9)

The second factor in the sum of eq. (4.9) can be calculated with the definition of z:

∂z
(N−1)
k

∂z
(N−2)
j

= w
(N−1)
jk g′(N−2)(z(N−2)

j ). (4.10)

We can notice the first factor is simply δ(N−1)
k . Then, eq. (4.9) is:

δ
(N−2)
j = g′(N−2)(z(N−2)

j )
∑
k

δ
(N−1)
k w

(N−1)
jk . (4.11)

We can go on iteratively. Thus, the update of the weights for the layers from n = N − 1 to
n = 0 is:

w
(n)
ij ← w

(n)
ij − λδ

(n)
j x

(n)
i , (4.12)

where, for n = N − 1:

δ
(N−1)
j =

x
(N)
j − yj
M

g′(N−1)(z(N−1)
j ), (4.13)

and for n ∈ [0, N − 2]:

δ
(n)
j = g′(n)(z(n)

j )
∑
k

δ
(n+1)
k w

(n+1)
jk . (4.14)

In our case, all the activation functions are the same (ReLU), so g(n) = g. The derivative of
g appears in the expressions of δ(N)

j and δ(n)
j . Here, the phenomenon of disappearance of the

gradient discussed in section 4.2.3 is well visible: if g′(z(n)
j ) is close to zero, δ(n)

j is close to zero
too. Then, the weights of the corresponding layer n are not updated. Moreover, if δ(n)

j is close
to zero, the (n− 1)th layer is also impacted, because one of the term in its sum disappears (see
eq. (4.14)), which causes a progressive fading of the gradient from layer to layer. Therefore,
the selection of an appropriate activation function is essential to reduce this effect.
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Difficulties in training

Apart from gradient vanishing, several other problems can happen during the training.
Monitoring the curve of the loss on the training database over the epochs helps identifying

problems. Indeed, the network learns when the loss decreases on average (see example on
fig. 4.6). First, a compromise has to be found to set the value of the learning rate. If the value
is too high, the loss will skyrocket. If it is too low, the curve of the loss will decrease very
slowly, almost always stagnating, which means the network does not learn a lot. Of course,
when the curve stagnates after falling, it means that the learning process is over. For our case,
we have used a learning rate of 0.1 to obtain the results of the section 4.2.5.
One of the main problem which can occur in the training is overfitting. Overfitting appears

when the network learns “too well” from the training: it fits exactly to the training database,
and cannot generalize at all when a new data is presented to it. It is illustrated by the simple
example of the fig. 4.5. In this example, in order to decrease again and again the training error,
the algorithm fits the solution too well to the training data. Therefore, the training error in
the second image is lower than the first one, but it cannot handle the new points as well. The
principle is exactly the same for more complex systems as the network.

Figure 4.5 – Illustration of overfitting. The sets of points are divided into two classes: red and blue.
Learning from these sets, an algorithm compute the limit between the two sets. After two or
three iterations, the algorithm computes the limit of the image on the left. After more and
more iterations, it gives the limit of the second image. The green point is an additional data,
not used for the algorithm’s learning, and which belongs to the blue points. The first state
of the algorithm can well classify it, when the second one makes a mistake.

A simple way to verify that overfitting does not occur is to use a validation dataset. Usually,
the initial database is divided into two parts in order to do this test: 90 − 85 − 80% of the
database for training, and 10 − 15 − 20% for validation. We have divided our database of
28685 images into 24383 images for training (85% of the initial database) and 4302 images for
validation (15% of the initial database). The training database is used to modify the weights
(direct propagation and backpropagation in the network), while the validation data is just used
to test the network (only direct propagation) and does not affect the weights. The losses for
training and validation datasets are monitored epoch by epoch. If the validation loss begins
to increase in average, it means the network begins to fit too much to the training data: the
training must be stopped (see fig. 4.6).
It exists several ways to fight against overfitting. First and quite intuitively, the smaller the

database, the faster the network begins to fit to the data. Then, gathering huge databases
prevent from overfitting. In our case, with the 24383 images used for training, the validation
loss has not increased during the training. Other ways to counter overfitting, that we will
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Figure 4.6 – Losses during training and validation. The first figure illustrates an example when there is
overfitting: the validation loss increases from the red dotted line while the training loss goes
on decreasing. The training must be stopped at the dotted line level. The second figure
illustrates an example where the training is going well: both losses are decreasing.

not detail here, are data augmentation (applying geometric transformations to the database to
increase its size), regularization (applying a regularization on the weights or the loss function to
constraint the possible responses of the network) and dropout (randomly ignoring some paths
of the network during the training). We did not need to use them for the results presented in
section 4.2.5.
The last important parameter we will discuss here is the momentum. Sometimes, the loss

falls within local minima. In order to get out of it, a momentum β is added, which is a moving
average of the gradient:

(δ(n)
j x

(n)
i )t ← β(δ(n)

j x
(n)
i )t−1 + (1− β)(δ(n)

j x
(n)
i )t, (4.15)

where (δ(n)
j x

(n)
i )t means δ(n)

j x
(n)
i computed at the time t (tth iteration). We have settled the

momentum to 0.9.

What makes difficult the training is the amount of parameters to set, for the training and the
network. Besides, with large dataset like ours, the training can be long (on the order of a day)
even though it is optimized on GPU (we set the batch size to 16 for 256 × 256 images). The
results of the next section have been obtained with the network and the parameters discussed
in the previous parts. These are preliminary results that pave the way for further study.

4.2.5 Results
As seen in the previous sections, the input is two 256 × 256 gray-scale images. They are real
and imaginary parts of the aberrated image. As a reminder, the basic images composing the
databases are intensity images of the retina to which aberrations have been added. Therefore,
they have real and imaginary parts. This was our starting point.
We began with a simple case at first, applying a single aberration (defocus, the 5th Zernike

mode, with a fixed coefficient) to all the training images. The loss functions corresponding to
this training are represented on fig. 4.7. One value of the validation loss is abnormally high,
which may be due to high errors for some images of the database. However, both losses decrease
in average.
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This training gave good results on the test images, to which the same aberration has been
applied. An example is shown on three of the test images on fig. 4.8. The resolution of the
U-Net reconstruction is slightly lower than the reference image, but the result remains very
close to the reference and most of the blood vessels are well represented. The MSE between
the output of the network and the reference (computed on normalized images, whose values are
between 0 and 1) is equal to 5.0 × 10−4 for the first case, 5.1 × 10−4 for the second case and
5.6× 10−4 for the last case.

Figure 4.7 – Loss functions over the number of epochs, for training and for validation with one defocus.

Figure 4.8 – Result of the network on three 256×256 test images for a defocus. First input of the network,
real part of the aberrated image (first column), second input of the network, imaginary part of
the aberrated image (second column), output of the network, corrected image (third column),
and reference image (fourth column). The MSE between the images of the third and fourth
columns is 5.0× 10−4 for the first row, 5.1× 10−4 for the second row and 5.6× 10−4 for the
last row.
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Figure 4.9 – Loss functions over the number of epochs, for training and for validation. A stronger defocus
has been applied to all the database images.

Figure 4.10 – Result of the network on three 256× 256 test images for a very high defocus. First input of
the network, real part of the aberrated image (first column), second input of the network,
imaginary part of the aberrated image (second column), output of the network, corrected
image (third column) and reference image (fourth column). The MSE between the images
of the third and fourth columns is 2.6 × 10−3 for the first row, 2.3 × 10−3 for the second
row and 2.3× 10−3 for the last row.
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For a higher defocus applied to the training and test bases, the reconstruction is done, but the
resolution is lowered. The losses are represented on fig. 4.9 and the fig. 4.10 gives an example
of the correction on the same images than the previous case. Both losses decrease in average.
However, for last epochs, they are higher than the losses of the previous case (fig. 4.7), which
shows that the results are worse than before. The MSE calculated on the images of the fig. 4.10
are also higher than previously, by a factor 10: 2.6× 10−3 for the first case, 2.3× 10−3 for the
second case and 2.3×10−3 for the last case. The results seem encouraging for the future though:
this was a test and the amplitude of aberration applied here is about 1000 times stronger than
the aberrations we can find in human eye. And even with this strong defocus, the network is
able to give some excellent results.
We performed the same experiments by training the network with astigmatisms (one by one)

of one amplitude and the same kind of results have been observed. We then decided to study
the results of the correction on images on which we had applied the same mode of aberration
but at different amplitudes than those learned. To do this, we randomly picked amplitudes over
a bounded interval following a uniform law, which we applied to the same aberration (defocus).
Thus, the defocus of the images varied from one image to another, for training and testing
databases.
The losses are represented on fig. 4.11. Both losses rapidly decrease at the beginning, and

then, much more slowly, reaching a value just below 2 × 10−2, which is way higher than the
previous cases of training. Therefore, lower resolution results are expected. Indeed, the results
on the same model images (fig. 4.12) show an estimation with a low accuracy. The computed
MSE is equal to 7.9×10−3 for the first case, 2.7×10−3 for the second case and 1.3×10−2 for the
last case. The network did not learn enough cases for each of the randomly drawn amplitudes,
and therefore, provides an approximate answer, based on what it thinks is most likely.

Figure 4.11 – Loss functions over the number of epochs, for training and for validation. A random defocus
has been applied to all the database images.
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Figure 4.12 – Result of the network on three 256 × 256 test images for a defocus. The amplitudes of
the defocus were randomly drawn over a bounded interval following a uniform law. First
input of the network, real part of the abberated image (first column), second input of the
network, imaginary part of the aberrated image (second column), output of the network,
corrected image (third column) and reference image (fourth column). The MSE between
the images of the third and fourth columns is 7.9 × 10−3 for the first row, 2.7 × 10−3 for
the second row and 1.3× 10−2 for the last row.

After several tests, we have decided to work only with the intensity image in input (one
channel instead of two for the input data, and appropriate settings for inconv). Indeed, after
our first results, we noticed that since the original image had no phase, writing with a real part
and an imaginary part was not very useful. However, it proves it can work and we will be able
to use real and imaginary parts on our digital holograms in the future.
We also tried to extend the size of the input images. We tried successfully on 512 × 512

images, by doing slight changes of blocks size. The network used is represented on the fig. 4.15
of the section 4.4. The results on a test image are shown on fig. 4.13. Here, like before, the
network has been trained only on one amplitude defocus, with 512×512×1 gray-scale intensity
images. The results are similar to those obtained with 256 × 256 × 2 images: for a not high
defocus, the network reconstruction is satisfying.
The last test we have performed in this thematic has been to train the network with only

one aberration, and to test on images with an aberration which “fluctuates” around the learned
aberration. We used the data of [67], regrouping the aberrated phase φa(t) (which contains
several modes of aberration) of 50 people over time. We have chosen one eye among the 50, and
applied the average over time < φa > of its phase to all the images of our training database.
Then, we have applied successively all the φa(t) to the images of the testing database. The
fig. 4.14 shows one image from the testing database, on which one φa(t) has been applied. The
correction of the network improves a lot the image quality. However, it makes some important
mistakes, like adding vessels in the right center of the image.
The overall computation time is about 30 ms on average to get a batch of output images
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Figure 4.13 – Result of the network on a 512× 512 test image for a defocus. The first image is the input
of the network, which is the intensity of the aberrated image, the second one is the output,
the corrected intensity image, and the third one is the reference image.

Figure 4.14 – Result of the network trained with one aberration < φa >, on a 512 × 512 test image on
wich one aberration φa(t) has been applied. The first image is the input of the network,
which is the intensity of the aberrated image, the second one is the output, the corrected
intensity image, and the third one is the reference image.

from a batch of input images. The promise of a short computing time is therefore respected.

4.3 Conclusion and perspectives of eye-fundus correc-
tion

This work on the correction of aberrations with deep learning is a preliminary work. We have
tested a lot of sets of parameters, more or less conclusive, but still many other tests must be
achieved to strengthen the study. However, we can already draw several conclusions.
Even though the studied cases were simple, the first results show it is possible for a network

to deduce a phase from an intensity image, which is quite promising. Nevertheless, a UNet
may not be sufficient to solve our problem. We got a glimpse of it by training the network
with a multitude of amplitudes of defocus, which has not been a success. One solution would
be to expand the database with as many examples of aberrations and amplitudes as necessary.
However, there is an infinite number of combinations between amplitude and modes of aber-
ration to be taken into account. Variations of the UNet or even other architectures could be
investigated. We could also work with a classification network, and rather than directly correct
images, estimate the aberrated phase as a wavefront sensor does.
In any case for now, because of the instability and the “black box” effect that is created by
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deep learning and is still work in progress in the mathematical community, it might not be
easy to use it to reconstruct biomedical images. There is still an important risk of error, like
creating vessels that do not exist like in fig. 4.14, that physicians cannot afford to take.
Besides, this work was just effective on eye-fundus images, while we want to use it on digital

data. It is more complicated for now with our setup because we would need a huge amount
of a large representative panel of data from our digital holography setup. However, we have
started to do some tests on holographic data for hologram reconstruction, which are presented
in the next section.

4.4 Digital Gabor hologram rendering
In this part, we show the reconstruction of so-called Gabor holograms using a UNet trained
on an image database containing random amplitude points at random positions. The imaging
model is based on propagation from the object to the camera, and vice versa, using the angular
spectrum method (see section 2.1.2). We teach the network to infer this transformation from
images of interference between several points. The learning on these simulated data allows
to get rid of the constraint of the possibly insufficient number of experimental data. Once
the network is trained, it is tested on synthetic interferograms simulated from images, and on
interferograms of experimental data.
This work differs slightly from correcting aberrations. However, it may be possible to use the

results for that aim, as it is explained in the section 4.5.
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Figure 4.15 – Scheme of the UNet structure which has been used for hologram reconstruction. It is very
similar to fig. 4.3. However, the input and output sizes are different (512×512×1 for input
and 512× 512 for output), which changes the successive feature sizes.

4.4.1 Synthetic interferograms
UNet

We use the same type of network than previously (UNet). The network used for this part is
illustrated in fig. 4.15. The only differences are in the number of layers and the dimensions of
some features. It is composed of 7 down blocks and 7 up blocks. The size of the input image
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is 512 × 512 × 1, same as the output. The first block inconv generates 16 channels from the
input. The last block outconv provides the output from a 512 × 512 × 8 feature. For the rest
of the network, the parameters are similar.
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Figure 4.16 – Steps to create a synthetic image database. I can be observed from A and H is calculated
from I: this is the direct problem. The inverse problem consists in estimating A (Â) from
I. This is an ill-posed problem, because several Â can correspond to one I, due to the
magnitude calculation to get I from the originate A.

Training database

The fig. 4.16 illustrates the construction of the database. A 512 × 512 real positive image is
generated to represent an object consisting of N source points of random brightness, randomly
localised on a black background. The light emitted by these sources in the object plane is
spatially filtered through a circular aperture in the Fourier plane of the object, constituting an
image A in the image plane. A then describes the amplitude of the transmission function of
the object (see first image in fig. 4.16).
The field described by A is then propagated using angular spectrum propagation (see ??) at

a distance −z from the image plane. The amplitude of this field constitutes the image which
is called a synthetic Gabor interferogram I :

I(x, y) =
∣∣∣∣∫∫ Ã(kx, ky)e−ikzzeikxxeikyydkxdky

∣∣∣∣ , (4.16)

where (x, y) are the coordinates of the image pixels, and Ã(kx, ky) is the 2D Fourier transform
of A(x, y). kx, ky, and kz are the projections of the wave vector k = 2π/λ (with λ the wavefront)
on x and y (lateral) and z (axial) axes respectively, such as k2

z = k2 − k2
x − k2

y.
I is measured experimentally by the camera, and the corresponding hologram H is calculated

by propagating I to a distance +z with the angular spectrum method, and taking the amplitude
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.17 – Example of triplets (A, I,H) from the database: generates A images (1st column), synthetic
interferograms I (2nd column) and amplitude of synthetic holograms H (3rd column). The
number of random point sources is N = 1 (1st row), N = 58 (2nd row) and N = 26214
(3rd row).

of the field thus obtained :

H(x, y) =
∣∣∣∣∫∫ Ĩ(kx, ky)e+ikzzeikxxeikyydkxdky

∣∣∣∣ , (4.17)

where Ĩ(kx, ky) is the 2D Fourier transform of I(x, y).
At the end of this process, we obtain a triplet of positive images (A, I,H) of size 512×512 as

illustrated in the fig. 4.17. The aim of the study is to teach the UNet the transformation to go
from the interferogram I to the hologram H, with only this database of points.

Results on synthetic data

For the training, 50000 pairs (I,H) have been generated. The number of point sources N over
this database varies on a logarithmic scale from 1 to 10% × 5122 ≈ 26214. The distance of
propagation z = 0.065 m is the same during all the training. 15% of the database has been used
only for validation. The cost function used for training is the mean-square error, computed
between the estimated hologram Ĥ, which is the network output, and the expected hologram
H.
The network has been trained on 70 epochs with a learning rate of 0.1. The training and the

validation losses are presented in the fig. 4.18. Both curves tend to decrease in general, with
only a few bumps, that always end up going back down. The decrease is slower and slower. We
decided to stop the training when the validation loss seemed to stagnate.
Tests have been performed on simulated interferograms: the process described on the fig. 4.16

has been applied on images A (this time, not points, but representing several objects like blood
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Figure 4.18 – Loss functions over the number of epochs, for training and for validation.

(a) (b)

(c) (d)

(e) (f)

(a) (b)

(c) (d)

(e) (f)

Figure 4.19 – Tests on simulated data: image A (top image), amplitude of the interferograms I calculated
with eq. (4.16) (a), amplitude of the hologramsH calculated with eq. (4.17) (b), and output
images Ĥ from the network after training over 10 (c), 40 (d), 50 (e) and 70 (f) epochs.
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Figure 4.20 – Holographic in-line microscope setup used to acquire images. Interferograms I are recorded
by the sensor.

vessels or even cats), with z = 0.065 m, to get (I,H) pairs to test. Some examples of the results
of the related tests are shown on fig. 4.19.
The network is reconstructing the holograms well, as we can see in the table below: the MSE

values are quite close to those in the section 4.2.5, which reflects a good accuracy. The network
seems to have learned well the propagation process based only on the example of source point
propagation, even at the earliest epochs. As we go through the epochs, some artefacts disappear
(in general the saturated parts, the four corners in the first image...).
However, we can also notice that some elements of the images seem less well represented in

further epochs: it is the case of some vessels on the right in the first set of images for example.
By aiming at minimizing the cost function, the network considers some elements less important,
depending on the image, which can be a problem. This is reflected in the MSE values, which
are not all decreasing with the number of training epochs. Therefore, it is necessary to test and
choose carefully the versions of the network, with respect to the number of training epochs,
before using it.
In any case, this example shows that by learning from PSFs, the network is able to assimilate

physical properties of the system and apply them to more complex images.

MSE between Ĥ and H
Number of training epochs 10 40 50 70
Blood vessels (fig. 4.19) 4.9× 10−3 6.6× 10−3 1.6× 10−2 1.2× 10−2

Cat (fig. 4.19) 3.0× 10−2 2.7× 10−2 3.8× 10−2 2.7× 10−2

Roundworms (fig. 4.21) 2.6× 10−2 1.5× 10−2 1.7× 10−2 7.7× 10−3

4.4.2 Experimental results
After obtaining results on synthetic images, we have tested the network on experimental in-
terferograms. The fig. 4.20 illustrates the setup we have used to acquire interferograms. The
object is placed on a sample holder. A laser of wavelength λ = 658 nm illuminates the sample
from below. The light transmitted through the sample is focused by a lens, and a Gabor in-
terferogram of size 2048 × 2048 is measured by a camera located at a reconstruction distance
z = 0.065m from the focal plane (image plane). A region of interest of size 512×512 is isolated
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(a) (b)

(c) (d)

(e) (f)

Figure 4.21 – C. elegans roundworms images: recorded interferograms I (a), amplitude of holograms H
calculated with eq. (4.17) (b), output images Ĥ after 10 (c), 40 (d), 50 (e) and 70 (f)
training epochs.

to form the I interferogram that will be processed by the network.
We have measured Gabor interferograms of roundworms C. elegans. The fig. 4.21 shows the

results obtained by performing the classical hologram calculation (eq. (4.17)) and with the net-
work. As for the synthetic images, the network produces a very good hologram reconstruction.
The granular aspect of the images reconstructed by neural networks is due to the training:

by having learned the transformation on points, the network treats the image as independent
points that interfere with each other, and not as correlated sets to propagate. By varying the
size of the numerical aperture, which is responsible for the filtering of the field in the Fourier
plane to form A, the size of the elementary “grains” of the image can be changed.

4.4.3 The inverse problem

Artifacts around the roundworms can be seen in the image H in the fig. 4.21b. They are due
to the superposition of a twin image [124–126]. The beating wave between the field of the
diffracted object and the reference wave is summed to its conjugate which creates artifacts in
the holographic reconstruction. Since the network has learned with (I,H), the reconstruction
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Figure 4.22 – Estimation Â of the network (first row) trained with (I, A) pairs formed with random points,
for test images of blood vessels from fig. 4.19 (first image), cat from fig. 4.19 (second image)
and roundworms from fig. 4.21. The second row are the corresponding A images (the third
image has no A because it has not been simulated). The MSE between A and Â is equal
to 3.9× 10−2 for the first image, and 3.2× 10−1 for the second one.

Ĥ also includes this superposed twin image. So, the next step is to train the network with
(I, A) couples, in order to remove this twin image.
The removal of the twin image using neural networks has already been demonstrated [127].

In this study, the network receives as input a hologram of a reconstructed real image with
the twin image, and produces as output a corrected hologram. This output is compared to a
hologram from which artifacts have been removed using an iterative algorithm [128].
Our training approach would allow us to train the network with A images, devoid of twin

image, and independently of the database. With the training on (I,H) couples, the eq. (4.17)
transformation has been taught to the network. With the training on the (I, A) couples, we
could thus teach it directly the problem of image formation, without intermediary, possible
source of perturbations.
For now, training only with (I, A) pairs does not give any conclusive result. By learning

on (I, A) pairs, the network tries to retrieve source points, but in small quantities, which is
reflected in the results of the fig. 4.22: the output images are only dark background with only
few points. The MSE between A and Â is equal to 3.9 × 10−2 for the first image of fig. 4.22,
and 3.2 × 10−1 for the second one. These are higher than the values observed in the table of
section 4.4.1.
In reality, the problem is ill-posed. The difficulty lies in the surjectivity of the transformation

from I to A: for one I, there exists several A that can correspond. Therefore, the system must
be constrained to help the network to find the right solution, for example by adding a penalty
to the cost function. However, it is difficult to find the right penalty to apply: we tried some of
them like L0, L1 and L2 norms, without success. Then, we had the idea of using the Generative
Adversarial Networks (GAN) system to constrain our images.
Generative Adversarial Networks (GAN) [129] are a system of two networks working together:
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the generator and the discriminator. The role of the generator is to generate images that could
fool the discriminator in its task. The discriminator classifies images in two categories (like true
or false). As both networks are trained, they become better and better: the generator provides
images closer and closer to the real images, and the discriminator is more and more difficult to
fool. We would like to use this system to add a constraint to our network.
The principle of the GAN that we would want to use is summarized in the fig. 4.23. The

generator is the previously used UNet, which estimates an A for a given I. The cost function
E1 is a mean-square error (MSE) between A and Â.

E1 = MSE(A, Â) = E
[
(A− Â)2

]
. (4.18)

Then, the image Â is sent to the discriminator. The discriminator is a classifier which aims
at differentiating true A images from false ones. It will provide a constraint to our system.
Its response R1 is a vector of 2 components: R10 which corresponds to the false image class
and the component R11 corresponding to the true image class. The purpose of the generator
is to produce an image that would deceive the discriminator. Thus, during the training of the
generator, we try to minimize the E2 error (eq. (4.19)).

E2 = −log
(

exp(R11)
exp(R10) + exp(R11)

)
= −log (A) , (4.19)

Indeed, we want R11 >> R10, which would mean that the output of the discriminator is
classified as a true image. In this case, A tends towards 1, and thus E2 tends towards 0.
Conversely, if R10 >> R11, our goal is not reached because the output is considered false, and
therefore, A tends towards 0, and E2 tends towards infinity.
The total cost function Egenerator used to train the UNet is composed of E1, the attachment

to the data, and E2, the constraint brought by the discriminator.

Egenerator = E1 + αE2, (4.20)

where α is a coefficient used to weight the impact of the constraint.
For generator training, cost functions E3 and E4 are computed:

E3 = −log
(

exp(R10)
exp(R10) + exp(R11)

)
, (4.21)

and

E4 = −log
(

exp(R21)
exp(R20) + exp(R21)

)
, (4.22)

where R2 is the response from the discriminator to the image A. This time, the aim is to
train the discriminator to differentiate between true and false images. Thus, the minimization
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Figure 4.23 – Scheme of the GAN we use. The interferogram I, calculated from A, is at the input of the
generator. It outputs the estimated image Â, which is sent to the input of the discriminator.
The output of the latter is a response R1. Likewise A is sent as an input to the discriminator,
which returns a R2 response. The comparison between A and Â is E1. The comparison
between R1 and “True” class is E2. These two comparisons are used to train the generator.
The comparison between R1 and “False” class is E3. The comparison between R2 and
“False” class is E4. These two comparisons are used for the training of the discriminator.

of E3 allows to improve its recognition of false images, while the minimization of E4 allows to
learn to recognize the true A images. The total cost function Ediscriminator used to train the
discriminator is

Ediscriminator = (E3 + E4)/2. (4.23)

Thus, the generator and the discriminator are trained in turn, minimizing the cost functions
corresponding to each by gradient descent.
In this model, the required constraint would be provided by the discriminator, which would

force the UNet to produce the right images. The discriminator that we have used until now
is a simple combination of 3 linear layers, each separated by one Leaky ReLU layer, which is
a ReLU layer authorizing a small positive gradient for negative values. The output of the last
linear layer goes through a sigmoid layer which provides the final classification.
Unfortunately for now, we have not yet obtained satisfying results. The error functions E1

and E2, and E3 and E4 are difficult to control together: when one is convergent and decreases
for each iteration, the other is often divergent. This may be due to the classifier which could be
too simple compared to the generator (UNet). We are testing the system with more complex
classifiers such as VGG [130] and ResNet [131], which could more easily compete, at least in
terms of complexity, with the UNet.
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4.5 Conclusions and perspectives on the use of deep
learning in correction of aberrations

We have shown in the previous section that it is possible to teach the network a simple transfor-
mation through learning based on the system impulse response. Tests on experimental images
have been conclusive, opening up many possibilities to be explored to improve the quality of
holographic reconstructions and to increase the variety and complexity of problems that the
network can solve with this learning method.
The transformation that the network is learning is a propagation from one plane to another

plane further away. We can consider this transformation as a defocus. In this way, the network
could also learn other types of aberrations. That would avoid the database problem of our
holographic setup: we would not need a lot of various holographic data to learn the correction
of an aberration. The learning on simulated PSF would be sufficient.
Still it remains the problem of the learning of only one aberration. We have seen in the

section 4.2.5 that it is difficult for a network which has learned several amplitudes of the same
aberration, to correct images with these amplitudes of aberrations, due to their variety. So, it
is hard to imagine that the network, as it is, could compensate several modes of aberration.
However, the simplification of the database could suggest that the number of degrees of freedom
of aberrations might be increased. Indeed, more weights of the network would be devoted to
the transformation itself instead of the effect of the transformation on features specific to each
image. Then, the network would have less difficulty to learn more aberrations. But it remains
an hypothesis as it has not been tested.
In any case, the accuracy of the results obtained in this chapter suggests that the com-

pensation of aberrations will be difficult with current means: the direct correction of images
may lack of the necessary precision to be used in the field of biomedical imaging. However,
other approaches could be investigated, through other UNet-type architectures for aberration
compensation, or classification architecture for the estimation.



Conclusions and perspectives

The aim of this PhD thesis was to find a way to improve holographic image quality, in particular
by compensating aberrations. After having highlighted of the state of the art to compare with
other existing retinal imaging techniques, this manuscript provides an overview of our setups
located at the Quinze-Vingts national ophthalmology hospital in Paris: holographic swept-
source optical coherence tomography and laser Doppler holography. As a first step, we have
made some improvements in the image rendering, with the rescaling of interferograms, and
axial and lateral motion compensation. Then, for the same purpose of improving the image
resolution, we have mainly studied two methods for the correction of aberrations in images of
the Doppler holographic setup.
The estimation of aberrations with a digital Shack-Hartmann wavefront sensor is well adapted

to our optical system as its mathematical model has been developed on its basis. It provides
good results on tests and even on the first retina images of patients. The computation time is
reasonable and bodes well for the future: the computation of the wavefront sensing algorithm
increases only by a factor 2 the image rendering of laser Doppler holograms. This time may
be compressed by further parallelization and optimization of the algorithm. Therefore, this
technique is very well suited to our system and improves the resolution of the images.
The deep learning method is promising in terms of computation time. Indeed, the network

provides corrected images from aberrated images in 30 ms. However, the results remain far from
being exploitable for the moment. And this will certainly remain the case for a “simple” UNet
which does not sufficiently remember the variety of training cases, and which then provides
a general and average image of the possible solutions. In this case, perhaps we should rather
look at another use of deep learning, to estimate aberrations rather than correcting the images
directly.
This work has nevertheless identified several interesting points that deserve to be raised.

The network is able to estimate and compensate phase from an intensity image. Even in the
hardest cases, when the network has learned multiple phases, it provides an improvement of the
image quality. Finally, the last study on the database suggests opportunities for learning that
could be adapted to our case. Thus, this work on deep learning remains an introduction, which
nevertheless brings interesting perspectives that can be explored later, such as the compensation
of scattering effects provoking a twin-image in holography.
Both methods have been developed for use on Doppler holography images. The great simi-
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larity between laser Doppler and OCT setups allows us to think that it will be possible to apply
these methods to holographic OCT, once the latter is able to image the retina.
In conclusion, we have introduced several methods for image quality improvement in digital

holography, and validated them experimentally. The resolution of holographic images has been
improved by robust non-iterative methods: lateral and axial tracking and compensation of
translations, and measurement and compensation of optical aberrations. The digital wavefront
sensor can be considered as a very well adapted method. The use of a neural network has
provided interesting results, even though its performance is not sufficient for now. This allows
us to be optimistic that structures on holographic images of the retina will be more visible and
sharper, which could ultimately provide very valuable information to clinicians.
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APPENDIX A

Statistics for the simulation of a Shack-Hartmann wavefront sensor

For a point source, on 100 iterations
Mean error Standard deviation

sub-apertures 6× 6 7× 7 8× 8 9× 9 10× 10 6× 6 7× 7 8× 8 9× 9 10× 10
4th mode 0,61 0,62 0,74 0,58 0,70 0,48 0,47 0,55 0,45 0,49
5th mode 0,63 0,56 0,55 0,43 0,42 0,50 0,46 0,36 0,31 0,31
6th mode 0,72 0,70 0,62 0,64 0,70 0,52 0,52 0,44 0,46 0,50
7th mode 0,49 0,48 0,38 0,37 0,45 0,37 0,35 0,28 0,27 0,31
8th mode 0,87 0,68 0,54 0,44 0,59 0,64 0,49 0,44 0,31 0,44
9th mode 0,96 0,64 0,53 0,43 0,54 0,66 0,44 0,44 0,36 0,39
10th mode 0,47 0,44 0,33 0,34 0,38 0,37 0,35 0,29 0,25 0,29
11th mode 0,55 0,42 0,36 0,28 0,29 0,39 0,35 0,28 0,23 0,22
12th mode 0,44 0,35 0,27 0,16 0,20 0,37 0,28 0,26 0,15 0,16
13th mode 0,42 0,40 0,27 0,20 0,20 0,34 0,33 0,21 0,16 0,16
14th mode 0,57 0,40 0,29 0,28 0,15 0,40 0,31 0,26 0,24 0,13
15th mode 0,53 0,45 0,31 0,35 0,30 0,41 0,35 0,23 0,28 0,22
16th mode 0,62 0,52 0,38 0,32 0,30 0,54 0,45 0,25 0,29 0,21
17th mode 0,32 0,19 0,19 0,14 0,10 0,21 0,13 0,14 0,12 0,09
18th mode 0,24 0,19 0,11 0,13 0,09 0,20 0,16 0,09 0,10 0,09
19th mode 0,22 0,16 0,11 0,12 0,08 0,19 0,11 0,10 0,10 0,07
20th mode 0,28 0,17 0,12 0,11 0,10 0,24 0,13 0,12 0,09 0,08
21th mode 0,28 0,23 0,19 0,21 0,20 0,20 0,18 0,14 0,15 0,15
22th mode 0,23 0,23 0,21 0,24 0,12 0,19 0,16 0,17 0,18 0,09
23th mode 0,21 0,15 0,08 0,13 0,06 0,21 0,12 0,07 0,09 0,05
24th mode 0,21 0,16 0,09 0,10 0,09 0,19 0,13 0,08 0,08 0,07
25th mode 0,20 0,13 0,07 0,10 0,06 0,16 0,10 0,05 0,08 0,05
26th mode 0,20 0,14 0,09 0,12 0,06 0,17 0,11 0,08 0,10 0,06
27th mode 0,30 0,20 0,18 0,16 0,12 0,26 0,15 0,15 0,13 0,10
28th mode 0,39 0,23 0,23 0,15 0,15 0,30 0,17 0,18 0,12 0,11
29th mode 0,27 0,27 0,16 0,18 0,13 0,24 0,22 0,12 0,12 0,13
30th mode 0,33 0,21 0,14 0,13 0,08 0,27 0,17 0,12 0,11 0,07
Average 0,43 0,35 0,28 0,25 0,25 0,33 0,27 0,22 0,20 0,19
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For an extended point source, on 100 iterations
Mean error Standard deviation

sub-apertures 6× 6 7× 7 8× 8 9× 9 10× 10 6× 6 7× 7 8× 8 9× 9 10× 10
4th mode 0,44 0,57 0,69 0,60 0,76 0,33 0,40 0,46 0,42 0,52
5th mode 0,43 0,42 0,43 0,36 0,41 0,33 0,33 0,30 0,26 0,28
6th mode 0,55 0,63 0,69 0,62 0,79 0,43 0,50 0,47 0,46 0,55
7th mode 0,38 0,41 0,40 0,33 0,42 0,31 0,30 0,27 0,24 0,30
8th mode 0,72 0,52 0,45 0,48 0,47 0,47 0,43 0,38 0,33 0,36
9th mode 0,72 0,54 0,42 0,39 0,48 0,56 0,39 0,31 0,28 0,35
10th mode 0,35 0,35 0,31 0,33 0,39 0,30 0,27 0,22 0,24 0,27
11th mode 0,39 0,32 0,27 0,23 0,27 0,28 0,24 0,18 0,16 0,20
12th mode 0,31 0,21 0,09 0,07 0,07 0,23 0,16 0,08 0,06 0,07
13th mode 0,27 0,20 0,15 0,10 0,08 0,20 0,17 0,14 0,10 0,06
14th mode 0,37 0,26 0,18 0,11 0,07 0,27 0,24 0,16 0,10 0,07
15th mode 0,43 0,32 0,25 0,25 0,25 0,32 0,27 0,18 0,18 0,17
16th mode 0,33 0,35 0,28 0,21 0,20 0,26 0,30 0,23 0,16 0,14
17th mode 0,30 0,15 0,10 0,08 0,06 0,22 0,11 0,09 0,07 0,06
18th mode 0,21 0,12 0,06 0,09 0,06 0,15 0,11 0,06 0,07 0,04
19th mode 0,23 0,10 0,07 0,06 0,03 0,18 0,08 0,06 0,05 0,03
20th mode 0,24 0,12 0,08 0,06 0,05 0,20 0,10 0,07 0,06 0,04
21th mode 0,24 0,22 0,15 0,17 0,19 0,17 0,17 0,11 0,11 0,13
22th mode 0,22 0,14 0,14 0,15 0,11 0,17 0,10 0,10 0,11 0,08
23th mode 0,14 0,10 0,04 0,08 0,02 0,12 0,08 0,04 0,06 0,02
24th mode 0,20 0,13 0,04 0,06 0,05 0,15 0,09 0,03 0,04 0,03
25th mode 0,16 0,09 0,04 0,07 0,03 0,12 0,08 0,03 0,06 0,03
26th mode 0,13 0,11 0,07 0,05 0,03 0,11 0,09 0,07 0,06 0,03
27th mode 0,23 0,16 0,12 0,08 0,06 0,20 0,14 0,11 0,08 0,06
28th mode 0,28 0,14 0,19 0,13 0,12 0,22 0,11 0,14 0,09 0,08
29th mode 0,18 0,17 0,12 0,16 0,07 0,13 0,13 0,09 0,12 0,06
30th mode 0,20 0,13 0,09 0,06 0,04 0,13 0,11 0,09 0,05 0,04
Average 0,32 0,26 0,22 0,20 0,21 0,24 0,20 0,17 0,15 0,15

These two tables represent the mean error and the standard deviation of the distance between
estimated and true Zernike coefficients (in radians), for simulated data. The first table is for a
point source and the second one stands for an extended source. For each iteration of the sim-
ulation, the coefficients were drawn randomly according to a normal distribution N(0, 1), and
estimated by our implementation of the wavefront sensor. Mean error and standard deviation
have been calculated on 100 iterations, for 6× 6, 7× 7, 8× 8, 9× 9, and 10× 10 sub-apertures.
The last line is the computation of the average value for each column.
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Scientific contributions

In this appendix, the scientific contributions brought during this PhD thesis are presented.
The oral communications performed during this PhD are:

• Motion compensation in digital holography for retinal imaging, at “Journées d’imagerie
optique non conventionnelle“ (JIONC) in Paris in March 2018.

• Motion compensation in digital holography for retinal imaging, at Optdiag in Paris in
May 2018.

• Deep neural networks for aberration compensation in digital holographic imaging of the
retina, at SPIE Photonics West in San Francisco in February 2019.

• Motion compensation in digital holography for retinal imaging, at IEEE International
Symposium on Biomedical Imaging (ISBI) in Venice in April 2019.

• Aberration compensation in digital holography of the retina, “ma thèse en 180 secondes“,
at “Journée de l’EDITE“ in Paris in September 2019.

• Aberration compensation in digital holography of the retina, during a seminary at ONERA
in Châtillon in September 2019.

• Compensation numérique d’aberrations en imagerie holographique de la rétine, at “Journées
d’imagerie optique non conventionnelle“ (JIONC) in Paris in March 2020.

The poster presented during this PhD are:

• Motion compensation in digital holography for retinal imaging, at Optdiag in Paris in
May 2018.

• Deep neural networks for aberrations compensation in retinal imaging acquired by digital
holography, Data Science Summer School at Ecole Polytechnique in Palaiseau in June
2018.
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• Deep neural networks for aberrations compensation in retinal imaging acquired by digital
holography, at “Journée de l’EDITE“ in Paris in July 2018.

The publications are:

• Julie Rivet, Guillaume Tochon, Serge Meimon, Michel Paques, Thierry Géraud and
Michael Atlan. Motion compensation in digital holography for retinal imaging. In Pro-
ceedings of the 16th IEEE International Symposium on Biomedical Imaging (ISBI), pages
1428-1431, Venice, Italy, April 2019a. http://dx.doi.org/10.1109/ISBI.2019.8759564

• Julie Rivet, Guillaume Tochon, Serge Meimon, Michel Paques, Thierry Géraud and
Michael Atlan. Deep neural networks for aberration compensation in digital holographic
imaging of the retina. In Proceedings of the SPIE Conference on Adaptive Optics and
Wavefront Control for Biological Systems V, number 10886-34, San Francisco, CA, USA,
March 2019b. SPIE. http://dx.doi.org/10.1117/12.2509711

The articles published, under review or put on arxiv related to this PhD thesis are attached
on the next page. These are:

• Swept-source, off-axis Fresnel transform holographic optical coherence tomography with
an output throughput of 10 Giga voxels per second in real-time

• Motion compensation in digital holography for retinal imaging, published in 2019 IEEE
16th International Symposium on Biomedical Imaging (ISBI 2019).

• Experimental digital Gabor hologram rendering by a model-trained convolutional neural
network

http://dx.doi.org/10.1109/ISBI.2019.8759564
http://dx.doi.org/10.1117/12.2509711
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We demonstrate swept-source optical coherence tomography in real-time by high throughput dig-
ital Fresnel hologram rendering from optically-acquired interferograms with a high-speed camera.
The interferogram stream is spatially rescaled with respect to wavelength to compensate for field-
of-view dilation inherent to discrete Fresnel transformation. Holograms are calculated from an
input stream of 16-bit, 1024-by-1024-pixel interferograms recorded at up to 512 frames per second
with a digital camera. All calculations are performed by a NVIDIA TITAN Xp graphics card on
single-precision floating-point complex-valued arrays (32-bit per quadrature). It allows sustained
computation of 1024-by-1024-by-256-voxel volumes at 10 billion voxel/s, from which three perpen-
dicular cuts are displayed in real-time at user-selected locations, up to 38 frames per second.

Optical coherence tomography (OCT) refers to a wide
range of non-invasive high resolution optical interfero-
metric imaging technologies which have found major ap-
plications in ophthalmology. Point-scanning (flying spot)
OCT allows for confocal gating of the detected photons,
filtering of the out-of-focus light. However, nowadays,
shot noise-limited point scanning confocal OCT modali-
ties [1] have reached a throughput limit due to the max-
imum permissible exposure in ophthalmic applications.
The high complexity of OCT systems that implement
adaptive optics [2] hinders their wide spread use in clini-
cal research. Full-field swept-source OCT (FF-SS-OCT)
is an OCT implementation that can acquire data several
orders of magnitude faster with a sensor array. FF-SS-
OCT allows for acquisition of volumes in a single laser
sweep, eliminating artifacts from imperfect phase repro-
ducibility during laser sweeps [3]. Finally, FF-SS-OCT
allows for off-axis schemes, that improve image quality
by spatial filtering of interferometric terms [4]. Line-field
OCT is a hybrid method, benefiting from the advantages
of confocal and full field detection schemes, while suffer-
ing from their respective limitations. Images are recorded
with a single line camera; a lateral scanning and the laser
sweep allow for three-dimensionnal imaging. The partial
confocal filter of line-field OCT permits high quality and
high-speed imaging at increased illumination levels with
respect to bidimensional scanning schemes [5]. With a
setup complexity slightly lower than its confocal coun-
terparts, line-scanning OCT offers good promises of high
image quality through digital refocusing of in-depth ac-
quisitions [1, 6].

Imaging speed is crucial in optical coherence tomogra-
phy (OCT) systems for imaging of dynamic samples [7].
The presence of motion artefacts deteriorates the resolu-
tion of the OCT images. Consequently, acquisition speed
and spatial resolution are ultimately linked [8]. Holo-
graphic OCT with a swept-source laser on a sensor ar-
ray can acquire data several orders of magnitude faster

than scanning OCT modalities [3]. As the technology of
high-speed cameras, wavelength-swept lasers, and paral-
lel computing improve, holographic OCT should become
a cost-effective alternative to complex OCT systems that
implement adaptive optics [2]. The main advantages of
holographic OCT lie in: 1- a reduced system complexity,
in which no moving parts are involved, 2- the available
detection throughput of high-speed CMOS cameras, 3-
the possibility to perform aberration correction in post-
processing [3], 4- the computation of 3D motion fields [9].
A fast, robust and versatile digital image acquisition and
rendering software is a key requirement for the devel-
opment of digital holographic imaging. Video-rate holo-
graphic image rendering was made possible by streamline
processing of optically-acquired interferograms on graph-
ics processing units (GPUs) [10, 11]. When real-time
performance is required, hardware acceleration of com-
putations is an efficient way of increasing the throughput
[12, 13]. Special-purpose field-programmable gate array
(FPGA) chips were reportedly used for high through-
put holographic image rendering [14], at the price of less
versatility than with general-purpose graphics processing
units. Here, we demonstrate digital hologram rendering
for swept-source optical coherence tomography with an
output throughput of 10 billion voxels per second.

Digitized interferograms were measured with the setup
sketched in Fig. 1. It is an off-axis (angle ∼ 1◦), inter-
ferometer used for optical detection of an object field
E beating against a separate local oscillator field ELO,
in reflective geometry. A tunable laser (Broadsweeper
BS-840-2-HP from Superlum) emits a 40 mW radiation
whose angular optical frequency ω is swept linearly with
time from ω1 to ω2, during a sweep time T = 2π/ωsweep

= 1 s. These bounds are linked to the start wavelength
λ1 = 870±2 nm and the end wavelength λ2 = 820±2 nm
respectively via the relation ω = 2πc/λ, where c is the
speed of light, and define a tuning range ∆λ = |λ2 − λ1|
= 50 nm. As a consequence, the angular wavenumber
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FIG. 1: Sketch of the wavelength-tuning laser holographic
interferometer prototype used for demonstration.

k = 2π/λ of the laser radiation is swept linearly with
time. Interference patterns were recorded with a Adimec
Quartz camera (pixel size d = 12µm), via a CoaXPress
framegrabber Bitflow Cyton CXP4, at a frame rate of
νS = ωS/(2π) = 256Hz, with 16-bit/pixel quantization.
Each raw digitized interferogram of 1024×1024 pixels at
position (x, y) and time t is noted I(x, y, t) = |E + ELO|2,
where the object field is E = E exp(iωt), the reference
field is ELO = ELO exp(iωt − iφ), and φ is the phase
detuning between both optical fields. Off-axis config-
uration allows for spatial separation of the self-beating
|E|2, and |ELO|2 and cross-beating interferometric con-
tribution, EE∗

LO = EE∗
LO exp(iφ), and its complex conju-

gate [15].

In swept-source OCT, a linear variation of the instan-
taneous optical angular frequency ωL = βt with time t
during a sweep results in a phase variation φ = 2kz of
the interferometric beat between the wave backscattered
by a diffuser at axial position z and the reference wave

φ =
2βz

c
t (1)

of the cross-beating part of the interferogram scaling up
linearly with the sweep speed β = (ω2−ω1)/T of the laser
angular frequency and with the detuning pathlength z
between the object and reference waves [16]. Hence, the
instantaneous beat frequency

ω =
∂φ

∂t
=

2βz

c
(2)

of the interferogram encodes the optical reflectivity signal
at a detuning pathlength z of the interferometer. Hence
the Fourier transform of the temporal trace of the beat
signal scales as the optical reflectivity against z [16]. The
total restituted axial range ∆z can be derived from Eq. 2
and the Shannon theorem: beat frequencies measured
for detuning pathlengths are bounded by the sampling
bandwidth: ωS = 2β∆z/c. For a wavelength sweep from

(b)
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Éõ = 50 nm

Éõ = 25 nm

Éõ = 12:5 nm
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FIG. 2: Axial range ∆z vs. wavelength tuning range ∆λ of
50 nm (a), 25 nm (b), and 12.5 nm (c). The height difference
between adjacent scales is ∼ 313µm, which was measured by
full-field OCT. The axial field of view ∆z of 1.8 mm (a), 3.7
mm (b), and 7.3 mm (c) is in agreement with the theoretical
value from Eq. 3 for Nz = 256. Axial scalebar : 1 mm.

λ1 to λ2 during the time T , this translates to

∆z =
Nz

2
Λ (3)

where Λ = λ1λ2/∆λ = 14.3µm is twice the axial pitch
and Nz = ωS/ωsweep = 256 is the number of interfero-
grams measured during one frequency sweep. The varia-
tion of the axial range ∆z versus wavelength tuning range
∆λ is illustrated experimentally in Fig. 2. For tunable
lasers with non-Gaussian output spectra [7], the theoreti-
cally limiting axial resolution is the round-trip coherence
length δz ≈ λ̄2/∆λ = 14.3µm, where λ̄ = (λ1 + λ2)/2
is the central frequency of the sweep. This round-trip
coherence length is about the same length as the axial
pitch: δz ≃ Λ.
The sequence of steps reported in Fig. 3 from the in-

put stream of recorded interferograms to the stream of
tomographies illustrate the image rendering pipeline. A
prerequisite to avoid distortion and loss of resolution
of tomograms calculated from Fresnel-transform holo-
grams is to enforce constant values of pixel dimensions
in the image plane for all sampling wavelengths of the
sweep [17, 18]. In contrast with angular spectrum prop-
agation of the wave field [19, 20], the lateral size of a
reconstructed pixel of a hologram calculated by Fresnel
transformation (Eq. 6)

d′ =
λz

Nxd
(4)

scales up linearly with the wavelength. This chromatic
variation can be counterbalanced by resampling each in-
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FIG. 3: Flowchart of the main data processing steps. Each
interferogram I from the input data stream is rescaled by
linear interpolation to I ′ to compensate for chromatic distor-
tion. Holograms H are calculated by Fresnel transformation
from rescaled interferograms I ′. Temporal short-time Fourier
transforms at each pixel location (x, y) turn holograms H into

spectrograms H̃ . Orthogonal cuts of the magnitude of each
spectrogram |H̃ | are displayed at video rate.

terferogram with a wavelength-dependent pitch dλ. Us-
ing a variable sampling pitch dλ = λd/λ1 makes the re-
construction pixel d′, and hence the lateral field of the re-
constructed hologram, wavelength-independent. In prac-
tice, each interferogram I was resampled by linear in-
terpolation to I ′ onto a calculation grid with the same
number of points (Nx ×Ny) with a pitch dλ.

I ′(x, y, t) = I(xλ/λ1, yλ/λ1, t) (5)

Fig. 3 illustrates experimental chromatic stretching com-
pensation by linear interferogram resampling, and Fig. 4
shows its effect on the lateral resolution of a tomographic
hologram of a resolution target for a wavelength sweep
from λ1 = 870 nm to λ2 = 820 nm. Image rendering of
complex-valued holograms H(x, y, t) from the stream of
rescaled interferograms I ′(x, y, t) was performed by dis-

(b)(a)

FIG. 4: illustration of chromatic compensation by interfero-
gram resampling. Hologram rendering without interpolation
in Vizualization 1.

crete Fresnel transformation [20]

H(x, y, t) =
i

λ1z
exp (−ik1z)

∫∫
I ′(x′, y′, t)

× exp

[−iπ

λ1z

(
(x− x′)2 + (y − y′)2

)]
dx′dy′ (6)

where the parameter z corresponds to the sensor-to-
object distance for a flat reference wavefront and in the
absence of lens in the object path. Eq. 6 is used for recon-
struction parameters z ≥ zb, where zb = Nxd

2/λ1. Eq. 6
is used with parameters k1 and λ1 for the reconstruc-
tion of all the digital holograms throughout the sweep,
regardless of the wavelength to which they correspond,
in consequence of wavelength rescaling (Eq .5). Demod-
ulation of the axial depth z of the tomograms consists in
forming the beat frequency spectrum of the holograms.
For that purpose, temporal short-time Fourier transforms
H̃(x, y, ω, t) are calculated from the stream of holograms
H(x, y, t).

H̃(x, y, ω, t) =

∫
H(x, y, τ)g(t− τ)e−iωτ dτ (7)

where g(t) is a rectangular time gate of Nz = 256 con-
secutive images. Then, the envelope of H̃ is formed,
and axial pathlength detunings z are calculated from
beat frequencies ω via Eq. 2. Three orthogonal cuts
|H̃(x0, y, z, t)|2, |H̃(x, y0, z, t)|2, and |H̃(x, y, z0, t)|2 of
the magnitude of the rendered volume of a static semi-
transparent phantom at arbitrary locations (x0, y0, z0)
are displayed in Fig.5. Swept-source digital holo-
graphic OCT was implemented in the software Holovibes
(www.holovibes.com). The software has five independent
threads dedicated to 1- image acquisition, 2- holographic
rendering (spatial demodulation), 3- time-to-frequency
analysis (temporal demodulation), 4- image display, and
5- image saving. The acquisition of the raw video stream
from the camera is bufferized to avoid any image drop,
in order to ensure the consistency of the temporal de-
modulation (Eq. 7). The propagation integral in Eq. 6 is
computed by the function cufft2d(); the discrete Fourier
transform in Eq. 7 used to create local spectrograms is
computed by the function cufft(). Holovibes is written
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(a) (b)

(c)

FIG. 5: Real-time image rendering and visualization
in swept-source holographic optical coherence tomography.
Vizualization 2. Upper-left window : en-face section. Upper-
right and Bottom-left windows : orthogonal B-scans. The
measured sample is a static phantom made of 400-800 microns
glass beads embeded in several layers of 65 micron-thick tape.

rendering input throughput output throughput

Fresnel 1 GB/s 10 Gvoxel/s

Fresnel + CC 512 MB/s 10 Gvoxel/s

TABLE I: Typical input/output throughput benchmarks with
a Titan Xp card. Input data: 16-bit 1024 × 1024-pixel digi-
tized interferograms. Fresnel : Fresnel transformation (Eq. 6).
Time-frequency short-time Fourier transform on 256 frames
(Eq. 7). CC : Chromatic compensation by interferogram re-
sampling (Eq. 5).

in C++ and compiled with Microsoft Visual Studio 2017
and NVIDIA CUDA toolkit 9.1, all calculations are per-
formed on 2×32-bit single precision floats per complex
value.

In conclusion, we have demonstrated real-time compu-
tation and visualization of off-axis Fresnel transform dig-
ital holograms from an input stream of 16-bit, 1024-by-
1024-pixel interferograms at a rate of 512 frames per sec-
ond. The resulting stream of holograms was further pro-
cessed by short-time Fourier transformation to form lo-
cal spectrograms from 256 frame stacks at the maximum
rate of 38 volumes per second. All calculations were per-
formed on single-precision floating-point complex-valued
arrays with one NVIDIA Titan Xp graphics card. The
resulting software, Holovibes, was used in a swept-source
holographic optical coherence tomography experiment
for image rendering by Fresnel transformation and chro-

matic compensation of the pitch variation with wave-
length. The reported results demonstrate the scalability
of digital holography for high throughput computational
volumic imaging in real-time.

This work was supported by LABEX WIFI (Labora-
tory of Excellence ANR-10-LABX-24) within the French
Program Investments for the Future under Reference
ANR-10-IDEX-0001-02 PSL, and European Research
Council (ERC Synergy HELMHOLTZ, grant agreement
#610110). The Titan Xp used for this research was do-
nated by the NVIDIA Corporation.
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kamp, Gereon Hüttmann, and Dierck Hillmann. Inter-
ferometric detection of 3d motion using computational
subapertures in optical coherence tomography. Optics
express, 26(15):18803–18816, 2018.

[10] Tomoyoshi Shimobaba, Yoshikuni Sato, Junya Miura,
Mai Takenouchi, and Tomoyoshi Ito. Real-time digi-
tal holographic microscopy using the graphic processing
unit. Opt. Express, 16(16):11776–11781, 2008.

[11] Lukas Ahrenberg, Andrew J. Page, Bryan M. Hennelly,
John B. McDonald, and Thomas J. Naughton. Using
commodity graphics hardware for real-time digital holo-
gram view-reconstruction. J. Display Technol., 5(4):111–



5

119, 2009.
[12] Wenjing Gao and Qian Kemao. Parallel computing in

experimental mechanics and optical measurement: A re-
view. Optics and Lasers in Engineering, 50(4):608 – 617,
2012.

[13] ID Reid, JJ Nebrensky, and PR Hobson. Challenges in
using gpus for the reconstruction of digital hologram im-
ages. In Journal of Physics: Conference Series, volume
368, page 012025. IOP Publishing, 2012.

[14] Takashi Kakue, Tomoyoshi Shimobaba, and Tomoyoshi
Ito. High-speed parallel phase-shifting digital holography
system using special-purpose computer for image recon-
struction. 9495:94950N, 2015.

[15] E.N. Leith and J. Upatnieks. Reconstructed wavefronts
and communication theory. JOSA, 52(10):1123–1128,
1962.

[16] AF Fercher, W Drexler, CK Hitzenberger, and T Lasser.
Optical coherence tomography - principles and applica-
tions. Reports of Progress in Physics, 66:239–303, Febru-

ary 2003.
[17] Pietro Ferraro, Sergio De Nicola, Andrea Finizio, Gio-

vanni Pierattini, and Giuseppe Coppola. Recovering im-
age resolution in reconstructing digital off-axis holograms
by fresnel-transform method. Applied Physics Letters,
85(14):2709–2711, 2004.
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ABSTRACT

The measurement of medical images can be hindered by blur
and distortions caused by the physiological motion. Specially
for retinal imaging, images are greatly affected by sharp
movements of the eye. Stabilization methods have been de-
veloped and applied to state-of-the-art retinal imaging modal-
ities; here we intend to adapt them for coherent light detection
schemes. In this paper, we demonstrate experimentally cross-
correlation-based lateral and axial motion compensation in
laser Doppler imaging and optical coherence tomography by
digital holography. Our methods improve lateral and axial
image resolution in those innovative instruments and allow a
better visualization during motion.

Index Terms— Motion Compensation, Cross-correlation,
Digital Holography, Optical Coherence Tomography, Laser
Doppler Holography.

1. INTRODUCTION

Ophtalmology is an ancient science which has benefited from
technological progresses in optics. The first images of eye
fundus in vivo by holographic ophtalmoscopy [1, 2] paved
the way to the development of time-averaged holography for
retinal vessels imaging. This non-invasive and low-exposure
optical interferometric imaging technology has made accessi-
ble the retinal imaging, leading to better diagnosis of several
diseases like glaucoma, macular degeneration and diabetes.
Later, retinal blood flow contrasts were also successfully ren-
dered by narrowband [3] and wideband [4] digital holography.

Digital holography relies on the acquisition and the pro-
cessing of interference images created by the superposition
of two light waves from the same source. The first wave
is a reference, whereas the second is back-scattered by the
retina. Several facets of digital holography have been devel-
opped during the past few years to take maximum advantage
of phase variations between both waves which contain nu-
merous information about the retina. Optical Coherence To-
mography (OCT) [5, 6] permits optical sectioning of retinal
layers. On the other hand, laser Doppler imaging [7] focuses
on the detection of local dynamics.

Digital holography faces several issues altering images
quality. Eye motion during image acquisition distorts the

signal. In order to stabilize images of retinal features, im-
age registration can be used. It consists in finding the geo-
metric transformation to align two images. Medical image
registration techniques have been developped during the past
years [8]. Although most of the literature in this field concerns
radiological modalities, several researches have been led in
retinal imaging. The most widely used technique is feature-
based registration of eye fundus images [9, 10]. However in
our case, feature-based registration is not suitable because ob-
jects of interest can disappear or even be replaced by another
structure if the movement of the eye is too large, which could
bias the search of feature points. This article is focused on
cross-correlation stabilization to compensate lateral and axial
motion of the whole image structure in laser Doppler holog-
raphy and swept-source holographic OCT, respectively.

2. HOLOGRAPHIC IMAGING

2.1. Setup

Optical interferograms are recorded with a laser Doppler in-
strument [3] in human eyes, and with a holographic OCT in-
strument in synthetic phantoms. For the laser Doppler setup,
the source is a laser diode emitting at the wavelength λ = 785
nm. The camera records 2048 × 2048-pixel images corre-
sponding to the (x, y) plane, at a frame rate of ωS/(2π) = 80
Hz with 8 bit/pixel quantization. For OCT, the beam is emit-
ted by a tunable laser and varies from ω1 to ω2, which are
linked to the wavelengths λ1 = 870 nm and λ2 = 820 nm by
ω = 2πc/λ, where c is the speed of light, with a sweep time
T = 0.5s. The camera records 1024 × 1024-pixel images at
a frame rate of ωS/(2π) = 512 Hz with 16 bit/pixel quantiza-
tion. Digitized interferograms from the camera are processed
in real-time with the Holovibes1 software to compute and vi-
sualize holograms, and saved for offline processing.

2.2. Acquisition of interferograms

A Mach-Zehnder interferometer has been used to record inter-
ferogams. It consists in making interfere two beams from the
same laser source. The source is split between reference and
object arms. The light wave from the object arm is backscat-
tered once the sample is reached and intereferes in the camera

1http://holovibes.com



plane with the beam in the reference arm. The interferogram
I acquired in the camera plane (x, y) at time t is expressed
as:

I(x, y, t) = |E(x, y, t) + ELO(x, y, t)|2 , (1)

where the object field is E and the reference field is ELO.
The phase difference between both optical fields is noted φ.
The off-axis configuration of the setups allows a spatial sep-
aration between the constant term, and the cross-beating in-
terferometric contribution, which will produce the image of
interest, and its conjugate [11] (see Fig. 2a).

2.3. Processing of optically-acquired interferograms

Interferogram rescaling with wavelength. In order to avoid
the distortion of the signal, the impact of the sweep in OCT
needs to be considered to propagate the interferograms I from
the camera plane to the retina or image plane. In fact the size
of the pixels in the image plane depends on the wavelength
of the beam and of the distance between camera and image
planes [12, 13]: d′ = λz/(Nd), where d and d′ are the lat-
eral size of a pixel from camera plane and from image plane,
respectively, z is the distance between both planes and N is
the number of pixels in one lateral dimension. Because of the
sweep of the source, the pixels of the image plane shrink with
wavelength (arrow (1) of Fig. 1). To circumvent lateral field
variation with wavelength, each interferogram is resampled
by linear interpolation of the calculation grid with a different
pitch (arrow (2) of Fig. 1). The rescaled interferogram is:

I ′(x, y, t) = I(xλ/λ1, yλ/λ1, t), (2)

where λ is the current wavelength. In the case of laser
Doppler imaging, the optical wavelength λ is kept constant,
hence the interferogram does not need to be rescaled: I ′ ≡ I .

Spatial demodulation by Fresnel transform. The propagation
of the fields from camera to image plane is carried out by a
Fresnel transform [11] (arrow (3) of Fig. 1), which gives the
hologram H(x, y, t):

H(x, y, t) =
i

λz
exp (−ikz)

∫∫
I ′(x′, y′, t)

× exp

[−iπ

λz

(
(x− x′)2 + (y − y′)2

)]
dx′dy′. (3)

The argument of the complex-valued hologram in the cross-
contribution region is the phase difference φ between the
optical fields E and ELO in the image plane.

Temporal demodulation by Fourier transform. In swept-
source OCT, the instantaneous beating frequency ∂φ/∂t = ω
scales up linearly with axial depth z [5], whereas in laser
Doppler, it describes local velocities of the scatterers [7].
Hence for both methods, temporal signal demodulation is
performed by short-time Fourier transform (STFT) (arrow
(4) of Fig. 1). Time-and-space-dependent spectrograms
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Fig. 1: Sketch of the process of image propagation. The raw
data in the camera plane are transferred in the image plane
and are expressed with depth.

H̃(x, y, t, ω) are calculated from the stream of intermedi-
ate holograms H(x, y, t):

H̃(x, y, t, ω) =

∫
H(x, y, τ)gT (t− τ)e−iωτ dτ, (4)

where gT (t) is a time gate of width T at time t. Then, the en-
velope |H̃ | of the STFT of H is formed (arrow (5) of Fig. 1).
The quantities |H̃(x, y, t, ω)| are the images in laser Doppler
and OCT on which motion compensation will be performed.

3. MOTION COMPENSATION METHODS

3.1. Lateral Motion Compensation

We form Doppler-contrast images at the Nyquist frequency
ωS/2 by calculating Eq. (4) with a time gate gT of two points
(T = 25ms). To compensate lateral motion (in (x, y) plane),
we use a cross-correlation-based stabilization algorithm. The
human eye is constantly subject to deviations, saccades and
tremors. Added to heartbeat and respiration motion, those
movements can shift or even remove the object of interest
from the image during several frames. Thus, a processing
chain has been built in order to keep important structures in
the center of the en-face image.

A reference image f1 is made by averaging n = 10 con-
secutive images, and compared to a moving average f2 of



(a) Off-axis digital hologram (b) Region of interest

(c) Time-average of raw images (d) Time-average of stabilized
images

Fig. 2: Retinal image stabilization by lateral (x, y) motion
compensation of intensity holograms (Section 3.1). The white
scale bars indicate 200 µm.

n = 10 images in the neighborhood of the current image:

f1(x, y) =
∑n

t=1 |H̃(x, y, t, ωS/2)| / n,
f2(x, y) =

∑n
t=1 |H̃(x, y, t+ τ, ωS/2)| / n.

(5)

The quantitative comparison is performed with a normalized
and centered cross-correlation [14]. The difference between
the position of the maximum value and the center of the cor-
relation matrix γ gives the displacement between the two im-
ages. Resulting shifts describe retina lateral motion.

3.2. Axial Motion Compensation

We form OCT images by calculating Eq. (4) with a time gate
gT of 256 points (T = 0.5 s). Axial motion during the record-
ing process has a negative impact on the reconstruction of
OCT images: when an axial drift occurs, the depth informa-
tion encoded in the beating frequency of the interferogram is
inaccurate, adding an offset phase to the signal and decreasing
in-depth accuracy. The principle of the compensation method
is to identify where the phase shift due to the axial motion
occurs by using STFT [15] on 20-point windows. Indeed,
a global axial displacement of the sample during acquisition
can be spotted in the time Fourier domain, where it corre-
sponds to a frequency shift.

For y = y0, the reference image f1 and the sliding im-
age f2 are defined as the modulus of the STFT of H(x, y0, t)
whose sub-windows are fixed or moving, respectively:

f1(x, ω) = |
∫
H(x, y0, τ)gT (t

′′
0 − τ)e−iωτ dτ |,

f2(x, ω) = |
∫
H(x, y0, τ)gT (t

′
0 − τ)e−iωτ dτ |,

(6)

where gT is a 20-point Hanning window, and t′0 and t′′0 are
the centers of the moving and the reference windows, respec-

(a) (b) (c)

Fig. 3: Axial motion compensation in swept-source holo-
graphic OCT of glass beads rolled in a tape layer. The reg-
istered holograms are slices in the (x, ω) plane, for the y-
cut in Fig. 4. Figures represent the sample: (a) without any
correction, (b) with interferogram rescaling (Eq. (2)), and (c)
with interferogram rescaling and axial motion compensation
(Section 3.2). The white scale bars indicate 0.2 mm.

(a) Before processing (b) After rescaling (Eq. (2))

(c) Before processing (d) Likewise (b)

Fig. 4: (a,b) En-face (x, y) images of glass beads for the
first red z-cut in Fig. 3, and (c,d) for the second green z-cut
in Fig. 3. The white scale bars indicate 1.5 mm.

tively. The quantitative comparison between f1 and f2 is per-
formed by calculating cross-correlation whose maximum po-
sition gives a frequency shift ∆ω(t′0) corresponding to the
derivative of the phase caused by movement at time t′0. Ax-
ial motion compensation is then performed by substracting
the cumulated phase shift

∫ t′0
t′′0

∆ω(t)dt from the phase φ(t′0).
This procedure is repeated for all times t′0 in the time gate gT
used in Eq. (4) of width ωST/(2π) = 256 points [15].

4. RESULTS

Fig. 2 shows retinal vessels acquired by laser Doppler imag-
ing. Fig. 2a is the whole 2048 × 2048 image. The cross-
beating interferometric contribution, which is the object of
interest in the right bottom side of the image, is spatially
separable from the other parts because of the off-axis con-
figuration. Fig. 2b shows the focus on retinal vessels. Ves-



sels are moving in the image and sometimes disappear dur-
ing several frames. Then, vessels do not appear clearly on the
time-averaged image of 324 consecutive frames (Fig. 2c). Af-
ter lateral stabilization, vessels are more visible on the time-
averaged image: motion compensation is efficient. Although
motion compensation is less efficient when the image changes
too often, it improves overall image quality.

Fig. 3 and Fig. 4 are swept-source OCT images of sam-
ples composed of 1.5 mm diameter glass beads rolled in a
single tape layer. Fig. 3 shows the in-depth profile (x, ω) of
this sample corresponding to the y-axis represented by dotted
lines in Fig. 4. Fig. 4 shows the en-face (x, y) images at two
different depths corresponding to the dotted lines in Fig. 4.
Fig. 4a and 4b correspond to the red dotted line (depth of 1.1
mm) in Fig. 3, and Fig. 4c and 4d correspond to the green
dotted line (depth of 1.5 mm) in Fig. 3. In Fig. 4a and 4b, the
target layer is located between tape and beads: the beads on
the left are at the same elevation as the tape layer on the right
which starts to be sectioned.

A difference of lateral resolution is visible on images
of Fig. 4. The interferogram rescaling allows the contours of
the beads to be cleaner. Comparing Fig. 3a and Fig. 3b shows
an improvement in axial resolution, which is also noticeable
on en-face images: in Fig. 4c, beads on the right seem al-
most at the same elevation than beads on the left, because the
depth accuracy is low, while in Fig. 4d, right beads clearly
belong to a different layer. Axial motion correction can be
seen in Fig. 3c: the accuracy is improving and the different
layers are better separated. Besides, the optical bench will be
strenghtened to reduce mechanical noise, in order to further
improve the axial accuracy of depth images.

5. CONCLUSION AND PROSPECTS

We have demonstrated lateral and axial motion compensation
in laser Doppler holography and holographic OCT by cross-
correlation stabilization, respectively. This method is suited
to our images and cancels efficiently the effects of motion.
Besides, the reported results are non-iterative and compatible
with real-time processing at high throughput on graphics pro-
cessing units. A real-time implementation of lateral motion
compensation has been implemented 2. The reported results
in motion compensation pave the way towards the design of
high resolution computational imaging for the retina in real-
time by digital holography.

Aside from motion, retinal imaging suffers from phase
distortions caused by the eye: the light backscattered by the
retina crosses lenses in the eye, which can cause aberrations.
As a future work, we will try to correct optical aberrations.
Funding: This work has been supported the European Research
Council (ERC Synergy HELMHOLTZ, grant agreement #610110).

2https://youtu.be/RhVPXBnPhXc
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Digital hologram rendering can be performed by a convolutional neural network, trained with im-
age pairs calculated by numerical wave propagation from sparse generating images. 512-by-512 pixel
digital Gabor magnitude holograms are successfully estimated from experimental interferograms by
a standard UNet trained with 50,000 synthetic image pairs over 70 epochs.

Convolutional neural networks already have demon-
strated their potential for digital hologram rendering
from optically-acquired interferograms in free-space
propagation conditions [1–4] and through scattering
media [5–7]. Our aim here is to determine whether an
auto-encoder convolutional neural network, a UNet [8],
can be trained over a synthetic database for digital
hologram rendering from experimental interferograms.
A model of wave propagation is used to create synthetic
Gabor interferograms and synthetic Gabor magnitude
holograms from random images. This image formation
model is based on angular spectrum propagation and
magnitude calculation of the wave field from the ob-
ject to the sensor array, and from the sensor to the object.

In contrast with previously reported computational
image rendering schemes with convolutional neural
networks, where image formation is statistically inferred
through experimental data [1–4], in our approach it
is inferred from synthetic data created by physical
modeling of wave interference and propagation. Since
the UNet training strategy relies on the strong use of
a large and diverse database [8], training on synthetic
data alleviates the need for numerous experimental data
and data augmentation.

The convolutional neural network used in this study is
(sketched in Fig. 1) is a standard UNet [8] with an input
image of 5122 pixels, a depth of 7 down sampling blocks
and 7 up sampling blocks. Convolution kernels are
3-by-3-by-n pixels, where n is the number of channels
of the input feature map. The first set of 16 kernels
generates a feature map of n = 16 channels from the
input image which has only n = 1 channel. In the down
sampling part, the lateral size of the features is divided
by two and the number of channels n is multiplied
by two between blocks. In the up sampling part, the
lateral size of the features is multiplied by two and
the number of channels n is divided by two between

blocks. Mirror features from the down sampling part
are concatenated to their up sampling counterparts.
The UNet is trained with 50,000 image pairs (among
which 15% are used for validation purposes). The
chosen loss function is the mean-square error between
predicted image H ′ and actual training output H during
the validation process. It is used to measure their
inconsistency; the optimization (or deep learning) of the
network consists in finding the set of network weights
for which this loss function is minimum. The learning
rate controls how much the weights of the network are
adjusted with respect to the gradient of the loss function.

We construct a database of training input and output
image pairs by the procedure illustrated in the flowchart
from Fig. 2. A square generating image A of 5122 pixels
that describes the amplitude transmission function of a
synthetic object is constructed by setting a given num-
ber N of source points at random locations with random
brightness on a black background, and spatial filtering by
a circular aperture in the Fourier plane. The diameter of
the aperture is one half of the diagonal of the reciprocal
plane. The values of the array A are positive real num-
bers. A synthetic Gabor interferogram I is calculated
from this generating image A by angular spectrum prop-
agation [10] of the wave field described by the transmis-
sion function A with a distance parameter −z, followed
by a rectification consisting of taking the magnitude of
the complex-valued array points

I(x, y) =

∣∣∣∣
∫∫
FA(kx, ky)e−ikzzeikxxeikyydkxdky

∣∣∣∣ (1)

where (x, y) are the pixels of arrays, and FA(kx, ky) is the
two-dimensional Fourier transform of A(x, y). The wave
vector projections (kx, ky, and kz) along lateral and axial
directions (x, y, and z) satisfy k2z = k2 − k2x − k2y, with
k = 2π/λ, and λ is the optical wavelength. A synthetic
magnitude hologram H is calculated from each synthetic
interferogram I by angular spectrum propagation of the
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FIG. 1: Topology of the convolutional neural networks trained with synthetic, input/output image pairs, and used for experi-
mental hologram rendering. Standard UNet [8] with a positive real input (and output) image of 5122 pixels (width = height =
512 pixels), a depth of 7 down sampling blocks in the encoding part and 7 up sampling blocks in the decoding part. Convolution
kernels are 3-by-3-by-n pixels, where n is the number of channels of the input feature map. The first set of kernels generates
n = 16 channels from the input image. In the down sampling part, the lateral size of the features is divided by two and
the number of channels is multiplied by two between feature maps. Down sampling transitions (noted ”down”) include max
pooling, and two iterations of convolution and rectification (ReLU) [9]. In the up sampling part, the lateral size of the features
is multiplied by two and the number of channels is divided by two between blocks. Up sampling transitions (noted ”up”)
include a convolution transpose, and two iterations of convolution and rectification. Mirror features from the down sampling
part of the network are concatenated to their up sampling counterparts through skip connections that allow feature maps to
pass through the bottleneck. The boxes represent feature maps, the numbers on top of each box are their respective width,
height, and depth n. Flowchart courtesy of http://alexlenail.me/NN-SVG/LeNet.html

wave field described by I with a distance parameter +z,
followed by rectification.

H(x, y) =

∣∣∣∣
∫∫
FI(kx, ky)e+ikzzeikxxeikyydkxdky

∣∣∣∣ (2)

where FI(kx, ky) is the two-dimensional Fourier trans-
form of I(x, y). These operations generate a positive,
real-valued image triplet (A, I,H), displayed in Fig. 3.
We ought to teach wave field propagation to a UNet,
by deep learning over a large training database of M
randomly generated input/output image pairs (I,H).
The number of source points N in each generating image
A is logarithmically-spaced from 1 to one-tenth of 5122.

By following the same construction procedure as for
the generation of the training database, image couples
(I,H) are generated from a set of arbitrary images A for
validation purposes. The training procedure is stopped
after 70 iterations of the optimization process over the
whole training database (epochs), with a learning rate
of 0.1, when the network output H ′ for an input image
I becomes similar to the model-rendered magnitude
hologram H.

Gabor interferograms I measured from a preparation
of C. elegans roundworms with a digital holographic
Gabor microscope, sketched in Fig. 4, are then used to
compare the network output H ′ to magnitude holograms
H reconstructed by angular spectrum propagation
(Eq. 2). In the experiments, the radiation wavelength
λ is 658 nm, the pixel pitch is 5.5 microns, and the
reconstruction distance is z = 0.065 m. 512-by-512-pixel
interferograms I are cropped from 2048-by-2048-pixel
frames in a region of interest of the sensor array. A
database of image couples (I,H) is then constructed
from a set of recorded Gabor interferograms I and their
magnitude hologram counterparts H, reconstructed
by angular spectrum propagation from I, followed by
rectification (Eq. 2). Examples of network estimates
H ′ at several training iterations (epochs) for an input
interferogram I, alongside the calculated magnitude
hologram H (Eq. 2) are displayed in Fig. 5. All the
training dataset (I,H) is calculated for z = 0.065 m.
It is worth remarking that training the network over
several reconstruction distances degrades the prediction
accuracy.
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FIG. 2: Flowchart of the synthetic database creation. An
image pair (I,H) is calculated numerically from a random
generating image A. This process is iterated for each random
generating image to create the whole training database.
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FIG. 3: Examples of database of image triplets (A, I,H).
Generating images A (left column, a,d,g), synthetic inter-
ferograms I (center column, b, e, h), synthetic magnitude
holograms H (right column, c, f, i). The number of random
points in the generating images is N = 1 (top row, a, b, c),
N = 58 (center row, d, e, f), N = 5122/10 (bottom row, g, h,
i). A movie of generated image triplets (A, I,H) illustrating
the distribution of the whole range of number of source points
is displayed in Vizualization 1.
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FIG. 4: Optical arrangement of the Gabor inline holographic
microscope used to image transparent worms. A petri dish
with growth medium placed in the object plane is illuminated
by red laser light. It transmits light collected by a microscope
objective, which creates an image conjugate of the sample in a
plane between the lens and the sensor array of a camera. The
recorded interferogram I (top, right) of a resolution target
placed in the object plane, yields the magnitude hologram H
(bottom, right) via Eq. 2.

Training the network with synthetic interferograms
and reconstructed holograms (I,H) image pairs teaches
the network to estimate the solution of the transforma-
tion of Eq. 2, for a given depth z, which already has
an analytical solution. Yet this solution is cluttered
with a spurious contribution. The quality of single-shot
magnitude holograms reconstructed from Gabor in-line
interferograms is degraded by the superposition of a twin
image [11–13] : the ripples observed in the neighborhood
of the worms in Fig. 5(b) are the twin image of the
roundworms in focus. The sum of the diffracted object
wave beating against the reference wave, and their
conjugate are present in the recorded interferogram I,
hence the object wave reconstructed +z is stained with
an additive diffraction pattern, which creates a twin
image at the reconstruction distance −z. Those ripples
are also present in the image H ′ in Fig. 5(f), estimated
by the neural network.

The convolutional neural network proves capable of
mimicking standard hologram rendering with a high
level of accuracy (Fig. 5(f) vs. Fig. 5(b)). We also
wanted to assess wether it would also provide high qual-
ity estimates of solutions to the twin-image problem.
Twin-image elimination by neural network rendering
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FIG. 5: (a) Optically-acquired digital interferogram I of
transparent worms. (b) Magnitude hologram H calculated
by angular spectrum propagation from I. Output image es-
timate H ′ after 10 (c), 40 (d), 50 (e), and 70 (e) training
epochs, over 50,000 synthetic image pairs (I,H). A movie of
image triplets (I,H,H ′) is displayed in Vizualization 2.

was previously reported for hologram estimation by
a convolutional neural network [3]. In this approach,
the network was trained with interferograms measured
experimentally and with calculated holograms from
which the twin-image was removed by an experimental
and numerical iterative multi-height phase recovery
scheme [14]. This suggests that UNets may be able to
estimate solutions to ill-posed inverse problems beyond
the ones for which the normal operator is a convolu-
tion [15]. The inverse problem that needs to be solved
is to determine the possible positive real-valued images
(object amplitude transmission functions) to reproduce

a given measured Gabor amplitude interferogram. Our
network was also trained with (I, A) pairs instead of
(I,H), ie. onto the inverse problem of image formation
(Fig. 2), switching the calculated magnitude holograms
H for generating images A, naturally devoid of twin
image. Yet it did not enable the neural network to
estimate twin-image-free magnitude holograms H ′ from
inline interferograms inputs I. This approach failed
to reconstruct twin-image-free Gabor holograms. This
problem is most often ill-posed, which means that
many object transmission estimates may produce the
same Gabor amplitude interferogram. Yet the direct
problem, which is the formation of an interferogram
by a given transmission function, has an analytical
formulation. Adding regularization constraints [16] has
emerged as the standard procedure for iterative image
reconstruction algorithms [11–13, 15]. It may be also
prove useful for hologram rendering by convolutional
networks.

In conclusion, digital image rendering in Gabor
holography can be performed by a convolutional neural
network trained with a fully synthetic database formed
by image pairs generated randomly, and linked by a
numerical model of in-line angular spectrum propaga-
tion of a scalar wave field from the object to the sensor
array, and magnitude calculation. Gabor holograms
of microscopic worms are successfully predicted from
experimental interferograms by a UNet trained with
50,000 random image pairs. Two main caveats apply to
the use of a standard Unet for image rendering : the
results were obtained for a fixed reconstruction distance,
and twin-image elimination could not be achieved by
training the network with image pairs from the inverse
problem.
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[11] Löıc Denis, Dirk Lorenz, Eric Thiébaut, Corinne
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