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Abstract 

Gravity shapes liquids and play a crucial role in their internal balance. Creating new 

equilibrium configurations irrespective of the presence of a gravitational field is challenging 

with applications on earth as well as in zero-gravity environments. Vibrations are known to 

alter the shape of liquid interfaces and to also to change internal dynamics and stability in 

depth. Here, we show that vibrations can also create an “artificial gravity” in any direction. We 

demonstrate that a liquid can maintain an inclined interface when shaken in an arbitrary 

direction. A necessary condition for the equilibrium to occur is the existence of a velocity 

gradient determined by dynamical boundary conditions.  However, no-slip boundary condition 

and incompressibility can perturb the required velocity profile leading to a destabilization of 

the equilibrium. We show that liquid layers provide a solution and liquid walls of several 

centimeters in height can thus be stabilized. We show that the buoyancy equilibrium is not 

affected by the forcing. 
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Vibrations can have a dramatic effect on a fluid equilibrium inducing a slow global 

reorientation of the fluid toward a new quasi-static equilibrium. Faraday was the first to observe 

this phenomenon called vibro-equilibrium in 1831 with the flattening of a droplet submitted to 

vertical vibrations1. Since then, the effects of vibrations on the shape and stability of liquid 

interfaces have been studied in various configurations2,3. In the case of vertical oscillations, it 

can lead either to stabilization as for upside-down interfaces with the suppression of the 

Rayleigh-Taylor instability2,4,5 or to instability with the parametric excitation of waves 

(Faraday instability)1,6,7. In the horizontal direction, the interface shape differ from the unforced 

equilibrium with the excitation of frozen-like waves2,8,9. Vibroequilibria and interface 

stabilization have been analyzed starting from its solid analog with the Kapitza’s pendulum 

model10. This approach is based on the decoupling of the dynamics into a fast motion at the 

vibration frequency and a slow time-averaged motion. Various variational approaches with 

functionals including terms associated with potential energy as well as vibrational energy also 

have been developed to obtain a more precise description of the shape of the interface11–14. 

Beyond shaping the liquid interface, vibrations have also a strong effect on the dynamics and 

equilibria taking place inside the fluids or heterogeneous systems. It has been shown that 

vibrations can promote mixing and favor chemical reactions15,16, induce Bjerknes forces17 on 

bubbles and immersed bodies18–23 or stabilize upside-down buoyancy equilibria24. 

In most typical situations, the effect of vibrations is negligible compared to the more familiar 

effects of gravity. Many studies have thus been performed in microgravity25. Beyond interface 

modifications, vibrations induce changes in the fluid dynamics creating an “artificial gravity” 

in space26–29. 

Here, we investigate the ability for strong vibrations to create a controlled “artificial gravity” 

in an arbitrary direction in the presence of gravitation. We show that slanted liquid interfaces 

can be stabilized in all directions.  The vertical pressure gradients due to gravity are balanced 

by a kinematic pressure term created by a velocity gradient at the interface. Tilted liquid baths 

are limited by volume conservation while liquid walls surrounded by compressible air layers 

can be stabilized by lifting this non-compressibility constraint. Buoyancy equilibria are 

recovered on each interface.  

The experimental setup is composed of a plexiglass container mounted on an electromagnetic 

shaker. The whole system can be rotated freely to change the angle of the excitation 𝜃 to the 



vertical axis. All the experiments were performed with silicon oil with dynamic viscosity 𝜂 = 

1000 cSt and density 𝜌 = 920 kg/m3.  

 

Figure 1. Liquid vibro-equilibria in arbitrary forcing directions. a, Snapshots of the 

liquid container of width 𝐿 = 9 cm shaken in at various angles 𝜃 (Supplementary Video 1). 

The liquid is silicon oil with dynamic viscosity 𝜂 = 1000 cSt and its height is 𝑒 = 3.4 cm. 

The forcing is at frequency 𝜔/2𝜋 = 100 Hz and velocity amplitude 𝑉exc = 1.4 m.s-1. b, 

Angle 𝛽 between the liquid interface to the forcing direction (inset) as a function of the 

excitation angle 𝜃 for two liquid depths 𝑒 = 3.8 cm (red crosses) and 𝑒 = 5.8 cm (blue 

circles) with the same forcing. The error bars were evaluated experimentally at ±2°. The 

Kapitza’s pendulum model (dashed line) is taken with 𝜔0~√𝜋𝑔/𝐿 = 18 rad/s 

(Supplementary Information). c, Angle 𝛽 as a function of the forcing velocity amplitude 𝑉exc 

in a container of width 𝐿 = 5 cm. Experimental data (circles) and Kaptiza’s pendulum model 



(dashed lines) in the same experimental conditions as a for an horizontal shaking direction 

𝜃 = 90°. 

 

We first study the influence of the excitation angle on the liquid vibroequilibrium. Figure 1a 

shows snapshots of the container of width 𝐿 = 9 cm filled with a liquid depth 𝑒 = 3.8 cm for 

several excitation angles 𝜃. The vibration frequency is chosen at 
𝜔

2𝜋
= 100 Hz and the container 

velocity amplitude 𝑉exc = 1.4 m/s. The liquid interface is approximately flat and can be 

characterized by its average angle 𝛽 between the normal to the interface and the direction of 

vibration (Fig. 1b). This angle is slowly increasing from 𝛽 = 0 in the standard upright position 

(𝜃 = 0°) to approximately 𝛽 = 20° at the angle 𝜃 = 100° for which the liquid interface is 

approximately vertical. Upon further increasing the excitation angle, the interface destabilizes, 

leading to the fall of the liquid. However, since it takes a finite time for the liquid to destabilize, 

it is possible to explore higher angles 𝜃 by a fast rotation the container. An equilibrium is 

recovered above 𝜃~130° up to the upside-down position (𝜃 = 180°). The angle 𝛽 decreases 

in this interval from 20° to 0°. The variation of 𝛽 is independent of the liquid depth for 

sufficient large depths (Fig. 1b).  

When an equilibrium is observed, the vibration induces a reorientation of the liquid toward a 

new quasi-static equilibrium. The periodic oscillations at the  liquid surface set by the forcing 

frequency on the fast timescale drive a slower reorientation of the fluid toward a new quasi-

steady equilibrium distinct from the hydrostatic one oriented toward the direction of the 

excitation30. This resemble the Kapitza’s pendulum for which a pendulum is vibrated vertically 

and stabilized in the upside-down position with, in this case, a forcing in an arbitrary 

direction 𝜃. The dynamic of the pendulum can also be separated in two time scales10. The angle 

𝛽 between the pendulum of angular frequency 𝜔0 and the forcing direction 𝜃 when shaken 

with a velocity 𝑣exc(𝑡) = 𝑉exccos (𝜔𝑡) in the direction 𝜃 can be written as the sum of a fast 

component 𝛽f at the forcing frequency and a slow averaged one 𝛽s. For a strong forcing, 𝛽𝑠 

takes the simple following form (see general case in Supplementary Information) 

�̈�𝑠 + 𝜔1
2𝛽𝑠 = 𝜔0

2 sin 𝜃  with  𝜔1
2 = 𝜔0

2 [cos 𝜃 +
𝑉exc

2 𝜔0
2

2𝑔2 ]                          (1) 

and 𝑔 being the acceleration of gravity . The average equilibrium angle is thus given by 𝛽eq =

𝜔0
2

𝜔1
2 sin 𝜃 which defines two diametrically opposed equilibrium angles. The observed 



experimental solution results from a slow variation of 𝜃. The analog of the pendulum’s angular 

frequency 𝜔0 for the liquid must be determined. The scaling should be 𝜔0~√𝑔/𝐿i with 𝐿i 

being the characteristic length of the fluid interface. For small  𝛽eq, 𝐿i~𝐿  taking the expression 

given by the wave dispersion relation 𝜔0~√𝜋𝑔/𝐿. This value gives a very good agreement 

with the measured angles 𝛽eq as a function of the excitation direction 𝜃 without any fitting 

parameter (Fig. 1b). In addition, the variations of 𝛽eq with the forcing velocity 𝑉exc for a 

horizontal excitation (𝜃 = 90°) also agrees very well with the model (Fig. 1c). Upon increasing 

the excitation, the fluid surface reorient itself in the orthogonal direction.  

In the case of the pendulum, the equilibrium is stable if 𝜔1
2 > 0 and only inverted pendulums 

(cos 𝜃 < 0) can be unstable. The instability increases with the increasing downward direction 

but all directions can be stabilized upon sufficient forcing above a critical speed 𝑉K
∗~√2𝑔𝐿𝑖/𝜋. 

In  liquid analog, the instability also occurs for inverted interfaces but the stabilization is 

recovered in the lower inverted quadrant (𝜃 > 130°)24,31. 

 

 Figure 2. Dynamic and stability of the slanted interface. a, Typical snapshot of the liquid 

shaken in the horizontal direction 𝜃 = 90° b, Profiles of the liquid interface measured from 

images like in a at various times during a forcing period (Supplementary Video 2). The 

interface is oscillating in phase with the container for the upper part (see close-up) and -

shifted for the lower part (see close-up) at the forcing frequency in the container frame. The 



two thick lines are associated to the extremal positions of the container. c, Experimental 

profile of the velocity amplitude 𝑉exp as a function of the height 𝑦 in the lab frame deduced 

from b (solid blue curve) together with the one obtained from Kapitza’s model 𝑉K (dashed 

red line) and that from the dynamical model 𝑉B (dashed yellow line). The velocity amplitude 

of the container is 𝑉exc = 0.8 m/s (vertical dotted Z line). The upper part of the curve is noisy 

due to the presence of Faraday waves. The profiles obtained from the models are linked with 

the non-slip conditions using the Stokes equation (Supplementary Information) d, Pressure 

contributions along the interface as a function of the height 𝑦: hydrostatic pressure 𝑃w =

−𝜌𝑔𝑦, experimental dynamic pressure 𝑃dyn =
1

2
𝜌(𝑉exp/√2)

2
 and the sum 𝑃w + 𝑃dyn which 

must be approximately constant at equilibrium. e, Snapshots of the drainage of the liquid in a 

container of width 𝐿 = 5 cm shaken in the horizontal direction (Supplementary Video 3). The 

time interval between 2 snapshots lasts several seconds. The liquid reaches a final symmetric 

vibro-equilibrium state shown in the last snapshot. 

In contrast to rigid pendulums, the forcing must also ensure the equilibrium of the interface in 

the liquid case. The slanted liquid interface must be stabilized. Figure 2a shows a typical 

snapshot of the liquid vibrated horizontally. It is possible to extract the fast dynamics of the 

interface profile in the oscillating frame (Fig. 2b). The interface undergoes a global oscillation 

at the excitation frequency locked in phase with the forcing. The lower part of the interface 

being -shifted while the upper part is in phase with a fixed point just below the middle of the 

interface’s height. By observing the motion of small particles, the velocity near the interface is 

found to be mostly normal to the surface (Supplementary Videos 2 and 3). In the lab frame, the 

amplitude of the velocity 𝑉exp(𝑦) at the forcing frequency can thus be deduced by simply 

looking at the motion of the interface. This amplitude is increasing with the height 𝑦 (Fig. 2c). 

At the boundaries, a no-slip condition imposes an inversion of the velocity gradient over a 

boundary layer of a few millimeters. The presence of Faraday waves in the upper part of the 

interface is a signature of the higher velocity amplitude as the instability threshold is crossed 

(Fig. 1a). The same type of velocity profiles are observed for all the liquid equilibria with 

slanted interfaces whatever the excitation direction.  

The stability of the slanted interface can be understood by the inhomogeneous velocity 

amplitude along the interface which provides a kinetic potential to counteract the hydrostatic 

equilibrium. This dynamical term appears by writing that the pressure should be constant at the 

interface. The correlation between the fast oscillating pressure in the fluid and the interface 



motion generates an extra stabilizing term that depends on the interface velocity8. In the large 

forcing regime, the equilibrium satisfies (Supplementary Information) 

𝑑

𝑑𝑦
(

1

2
< 𝑣B(𝑦, 𝑡)2 > −𝑔𝑦) = 0       (2) 

with <. > being the time averaging operation over the forcing period of the instantaneous 

velocity 𝑣𝐵(𝑦, 𝑡) at time 𝑡 and height 𝑦. The velocity amplitude at the forcing frequency thus 

satisfies 𝑉B(𝑦) = 𝑉exc√1 + 4𝑔(𝑦 − 𝑦0)/𝑉exc
2  with 𝑦0 being a fixed point in the container’s 

frame. The position of the fixed point is given by the constraint imposed by volume 

conservation. In addition, because of the non-slip condition at the interface, the velocity profile 

must be modified near the walls. Using the Stokes equation in the co-moving frame for the 

boundary layer (Supplementary Information), we obtain the velocity profile plotted in Fig. 2c 

which is in good agreement with the experimental one. This analysis yields a critical excitation 

velocity for a given interface height required by the existence of a minimum velocity along the 

entire profile.  

It is interesting to compare this result with the one obtained from Kapitza’s pendulum. In this 

latter case, the pendulum is oscillating at the forcing frequency around an equilibrium position 

𝛽eq. For an intense forcing (cos 𝜃 ≪
𝑉exc

2 𝜔0
2

2𝑔2 ), the instantaneous velocity 𝑣K(𝑦, 𝑡) along a plane 

orthogonal to the pendulum coincident with that of the liquid interface satisfies 𝑣K(𝑦, 𝑡) =

𝑉K cos 𝜔𝑡 with 𝑉K = 𝑉exc + 2𝑔(𝑦 − 𝑦0)/𝑉exc and 𝑦0 = 𝐿/2 (Supplementary Information). 

Figure 2c shows the linear profile associated to the average value of the velocity with Stokes-

type linking for the non-slip condition to the boundaries in the case of a horizontal shaking. 

This profile is in good agreement with the experimental data. It corresponds to the first-order 

approximation of the non-linear velocity profile deduced from the boundary condition at the 

interface.  The velocity gradient results from the phase-locked oscillation of the pendulum with 

its forcing motion. Figure 2d shows the various contributions to the pressure along the interface 

as a function of the height 𝑦. The sum of the hydrostatic pressure 𝑃w = −𝜌𝑔𝑦 and the dynamic 

pressure 𝑃dyn =
1

2
𝜌(𝑉exp/√2)

2
 are nearly constant along the interface as expected at 

equilibrium.  

At the bottom of the interface the model imposes 𝑉B < 𝑉exc from volume conservation while 

the no-slip boundary condition imposes 𝑉B = 𝑉exc at the wall. As a result, the velocity gradient 

along the interface changes sign (Fig. 2c), breaking the equilibrium condition. The liquid is 

drained slowly at the lower interface in the shape of a liquid finger of a few millimeters in 



height (Fig. 2e and Supplementary Video 3). Hence, interface effects produce an unstable range 

of excitation angles around 100° < 𝜃 < 130°. Surface tension provides a stabilizing effect on 

the liquid drainage over the capillary length size at the interface. The drainage seems to be 

triggered when the typical width of the inversed velocity gradient layer exceeds the capillary 

length. This agrees with the observed instability angles 𝜃 for which the height of the liquid 

interface is the largest. Hence, in contrast to solid pendulums, the stability of vibrated liquids 

is hindered by non-slip boundary effects in forcing directions associated to the largest liquid 

heights. 

 

Figure 3. Vibro-equilibrium of liquid walls. a, Snapshots of a liquid layer of thickness 𝑒 =  

and width 𝐿 = for various excitation angles 𝜃 (Supplementary Video 4). The liquid layer is 

stable in all the directions. The excitation is set at a frequency of 100 Hz and a velocity 

amplitude of the container is 𝑉exc = 0.45 m/s while the velocity of the layer is 1 m/s. b, 

Angles 𝛽1 and 𝛽2 between each interface of the liquid layer and the forcing direction (see 



inset) as a function of the latter 𝜃. c, Typical snapshot of a vertical liquid wall stabilized by 

horizontal forcing 𝜃 = 90°. d, Profile of the velocity amplitude 𝑉exp for the two interfaces 

(solid lines) as a function of the height 𝑦 in the lab frame compared with the container 

excitation 𝑉exc. These curves are calculated from the oscillations of the interface profiles 

observed in snapshots acquired at a different time of the forcing period (Supplementary 

Video 5). Because of the presence of Faraday waves and of the inward meniscus orientation, 

the interface profiles were approximated by linear fits. Taking into account the non-slip 

condition modifies the velocity amplitude profile at the boundary (colored dashed lines). e, 

Pressure contributions along the interface as a function of the height 𝑦: hydrostatic pressure 

𝑃w = 𝜌𝑔𝑦, experimental dynamic pressure 𝑃dyn =
1

2
𝜌(𝑉exp/√2)

2
 and the sum 𝑃w + 𝑃dyn 

which must be constant at equilibrium. 

 

The destabilizing change of sign of the velocity gradient at the boundary is imposed by volume 

conservation which is a consequence of the non-compressibility of the liquid. A liquid layer 

with compressible air on both sides can alleviate this constraint. Such liquid layers can be 

obtained by injecting air with a needle at the bottom of a vibrating container filled with liquid. 

Since bubbles can sink into a shaken liquid, an air cushion can be created to support the liquid18–

21,24. This liquid layer appears stable for all the excitation angles when the shaker is rotated 

(Fig. 3a and Supplementary Video 4). The measured tilt angles of the two interfaces 𝛽1 and 𝛽2 

as a function of the excitation angle 𝜃 (Fig. 3b) show the same symmetric smooth shape 

increasing in absolute value from zero at 𝜃 = 0° to a maximum value at 𝜃 = 90° and 

decreasing back to zero at 𝜃 = 180°. Note that the stability of the liquid layer is increased 

experimentally by closing the two sides of the container with just one pinhole for the injection 

needle to pass through. The two compressible air layers act as springs to excite the liquid layer 

which has a resulting average velocity 𝑉liq that can be significantly larger than that of the 

container itself24. For the dataset shown in Fig. 3, we measured 𝑉exc = 0.45 m/s and 𝑉liq = 1.0 

m/s. 

Due to the relaxation of the volume conservation in the air layers, the liquid layer can now 

undergo some deformation during an excitation period which make the analogy with a solid 

pendulum less pertinent. The variations of 𝛽 with the excitation direction 𝜃 are similar to that 

of the filled container for the stable excitation directions (Fig. 1). However, the amplitudes of 

the tilt angles appear much smaller in the former case, even if 𝑉liq > 𝑉exc is taken into account 



for the forcing. The velocity profile should still satisfies the dynamical equation (2) to fulfill 

the stability condition of the liquid interface. The interface motion can be obtained from side 

views of a vertical liquid layer of 5 cm in height shaken horizontally (Fig. 3c and 

Supplementary Video 5). To obtain the velocity profile 𝑉exp(𝑦), each interface profile is 

approximated by a linear fit due to the presence of the Faraday waves in the upper part and to 

the inward meniscus orientation which prevent a more detailed analysis (see solid lines in Fig. 

3d). The non-slip condition at each boundary is again taken into account with Stokes equations 

(colored dashed lines). The velocity amplitude 𝑉exp(𝑦) of liquid walls is found always higher 

than the velocity amplitude of the container 𝑉exc (dashed lines). In addition, the velocity profile 

increases continuously up to the upper boundary layer insuring the stability of the layer. Note 

that the two interfaces have nearly equal velocity profiles as expected from the 

incompressibility of the liquid layer.  

Pressure contributions along the interface as a function of the height 𝑦 (Fig 3e) show that the 

sum of the hydrostatic pressure 𝑃w = 𝜌𝑔𝑦 and the experimental dynamic pressure 𝑃dyn =

1

2
𝜌(𝑉exp(𝑦)/√2)

2
 is approximately constant as needed at equilibrium. Unlike the filled 

container case, the pressure stability is now insured by the absence of inversion of the velocity 

gradient profile 𝑉exp(𝑦) in the lowest boundary. The presence of a compressible air layer in 

liquid walls is necessary to achieve this pressure stability. 

 

 

Figure 4 Buoyancy on slanted liquid interfaces. a, Snapshots of plastic sphere floating on a 

vibrated liquid at various excitation angles 𝜃 (Supplementary Video 6). The fluid is silicon 

oil shaken at 100 Hz and with a velocity amplitude 𝑉exc =. b, Experimentally measured 

immersed volume as a function of the forcing angle 𝜃 for 1.5 cm-diameter spheres with mass 

2.5 g (red crosses) and 1.2 g (blue circles). Dashed lines represent the expected immersed 



volume from classical buoyancy with no fitting parameter. c, 3D printed surfer of 

approximately 2 cm in height at equilibrium on a stable wave for a liquid shaken horizontally 

(Supplementary Video 7). 

It has  been previously shown that vertical shaking could stabilize unstable equilibrium 

positions of objects floating upside-down24. How does shaking affects the buoyancy 

equilibrium in an arbitrary direction? For a filled container, the floating position is measured 

as a function of the excitation angle 𝜃 for 1.5 cm-diameter spheres of various weights (see 

snapshots Fig. 4a and Supplementary Video 6). The immersed part of the sphere remains 

unperturbed for a given object density as the shaking is rotated (Fig. 4b) showing that the 

buoyancy equilibrium is not changed by the forcing and remains normal to the iso-pressure 

interface. Note that secondary flows in the liquid have a slight influence on the transverse 

position of the floaters which tend to drift slowly into preferred positions. The floating objects 

behave as if a gravitational force of constant amplitude was exerted perpendicular to the liquid 

surface whatever the excitation direction. The shaking thus creating a new vibro-equilibrium 

in a sort of “artificial gravity” induced by the dynamic energy provided by the shaking. Hence, 

in this environment, surfer toys can surf on a customized stable wave (Supplementary Video 

7). 

Vibrations can create new dynamical equilibria in an arbitrary direction in which the effect of 

gravity can be neglected. This offer new opportunities to control more complex interactions 

and for new unexplored configurations involving fluid mixture dynamics, in zero gravity 

environments or more complex multiphase systems. 
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1 Summary
We aim to explain quantitatively the experimental results presented in the main
text. We first model our system as a semi-circular solid pendulum shaken in
an arbitrary direction. The velocity of the liquid interface will be identified
with the velocity of the flat part of the pendulum. This model reproduces with
good agreement all experimental data. Moreover, we show that the velocity
found in our solid approach can be interpreted as an equilibrium condition for
a free liquid interface. In the compressible case, the solid approach could not
be carried as the liquid slab is now deformable but the dynamic equilibrium
condition still holds. We will also discuss the velocity near the walls as the
boundary layer plays a major role in our system.

The supplementary material is organized as follow. In §2, we briefly re-
derive the equilibrium positions of a shaken pendulum. The §3 is dedicated
to the mapping of the liquid on the equivalent semi-circular solid and to the
introduction of notations. In particular, we give the correspondence between
the quantities introduced in §2 and the quantity measured experimentally . We
then derive in §4 the velocity field in the solid pendulum. Boundary layers are
introduced in §5 as a perturbation of the velocity profile found for the solid.
In §6, we compute the velocity of the interface starting from Navier-Stokes
equation. When linearized, this expression is shown to be consistent with the
velocity profile found in §4.

2 Pendulum shaken in arbitrary direction

(m, L)

x

y

Figure 1: Pendulum shaken with arbitrary acceleration
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We study the motion of a pendulum shaken with a speed ~v = −a0ω sin (ωt)~eφ
and an acceleration ~a = −a0ω2 cos (ωt)~eφ as presented in figure 1. The acceler-
ation of the mass in the comoving frame is Lα̈ ẽα−Lα̇2 ẽr so that we have

mLα̈ = m~g. ẽα−m~a. ẽα (1)

Defining ω2
0 = g/L and ξ = a0ω

2

g , this can be rewritten

α̈+ ω2
0 sinα = ξω2

0 cos (ωt) sin (φ− α) (2)

Assuming ω >> ω0 we decompose α = αs + αf where αf is a fast variable
oscillating at ω and αs is a slow variable. If < . > is the mean over one fast
period, one has < αf >=< αs cos (ωt) >= 0. We also assume that αf is small.
Keeping only leading order oscillating at ω in equation 2 leads to

α̈f = ξω2
0 cos (ωt) sin (φ− αs) (3)

that gives

αf = −ξ ω
2
0

ω2
cos (ωt) sin (φ− αs) (4)

We then take the mean < . > of equation 2 and we get

α̈s + ω2
0 sinαs = ξω2

0 < cos (ωt)[sin (φ− αs)− cos (φ− αs)αf ] >

= −ξω2
0 cos (φ− αs) < cos (ωt)αf >

= ξ2
ω4
0

2ω2
cos (φ− αs) sin (φ− αs)

= ξ2
ω4
0

4ω2
sin (2φ− 2αs)

(5)

The equilibrium position then verifies

ξ2
ω2
0

4ω2
sin (2φ− 2αs) = sin (αeq) (6)

In the case of large excitation, we have ξ >> 1 so that Ep is minimal for
αs ≈ φ+ nπ with n an integer. We write φ+ nπ− αs = ε << 1 and we rewrite
eq. 5 as

− ε̈+ ω2
0 [sin (φ+ nπ)− cos (φ+ nπ)ε] = ξ2

ω4
0

2ω2
ε (7)

that can be reorganized as

ε̈+ ω2
0

(
cos (φ+ nπ) +

ξ2ω2
0

2ω2

)
ε = ω2

0 sin (φ+ nπ) (8)

There are two equilibrium positions. If we set φ = 0 the equilibrium positions
are ε = 0 (hanging pendulum, n = 0) and ε = π (inverted pendulum, n = 1).
In our experiments, we slowly vary φ and start with ε = 0. For each angle, we
can only observe the equilibrium that corresponds to n = 0 as observing the
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z

Figure 2: Notations for the liquid and the equivalent disk with notations from
the pendulum

equilibrium associated to n = 1 would require to "jump" from one equilibrium
to another. The equation of motion is then

ε̈+ ω2
0

(
cos (φ) +

ξ2ω2
0

2ω2

)
ε = ω2

0 sin (φ) (9)

that is the equation used in the main text.

3 Mapping on the fluid interface experiment

3.1 Correspondance of variables
We want to link the angles of the pendulum (αeq, φ) with the angles defined for

the fluid in the main text (β, θ). We first have θ = φ (see figure 2). Concerning
β, we see figure 2 that we have β = φ−αeq. This angle is zero when the interface
is orthogonal to the shaking and is slightly positive otherwise.

In order to make an analogy with a pendulum, we need to compute the
equivalent ω0 of the effective pendulum. For an horizontal interface, we know
that the largest mode on an interface of length L has a pulsation

√
2πg
L . This

has no reason to be valid for a non-horizontal interface. However, if we now
consider our mass of fluid as a rotating half disk of mass m around it center,

18



the inertia momentum is I = π
4R

4ρlz = 1
2mR

2 and the center of mass is at a
distance 4

3πR. The equation of motion for such disk is (with L= 2R)

α̈ = −mg 4R

3πI
sinα = − 16g

3πL
sinα = −ω2

0 sinα (10)

The main difference is that this model takes into account the motion of masses
of liquids (sloshing) while the wave dispersion only takes into account surface
deformation. Assuming rotation around point O ensures that the volume of
fluid will be conserved.

Although the scaling of ω0 ∼
√
g/L seems reasonable, the prefactor can be

adjusted. In everything that follows we take ω0 =
√
πg/L to give it a wave

equivalent. This value ensures good agreement between experimental results
and predictions.

3.2 Notations
The velocity in the lab frame is noted v(z, t) = V (z) sin (ωt), the velocity in
the co-moving frame is noted v∗(z, t) = V ∗(z) sin (ωt) and the velocity in the
boundary layer in the co-moving frame is noted v∗b (z, t) = V ∗b (z) sin (ωt)

4 Velocity profile of the interface
We are now interested in the velocity of the interface. We take a point J such
that in the co-moving frame ~OJ = z ẽα. We have in the co-moving frame

~v∗(z, t) = −zα̇ ẽr (11)

We know that α̇ = α̇s + α̇f . From equation 4 we get

α̇f = ξ
ω2
0

ω
sin (ωt) sin (φ− αs) (12)

Moreover we assume that the equilibrium for slow variables is reached so that
α̇s ≈ 0. Thus we get that in the co-moving frame

~v∗(z, t) = −ξz ω
2
0

ω
sin (ωt) sin (φ− αeq) ẽr = V ∗(z) sin (ωt) ẽr (13)

In the lab frame the velocity of the point J is (using ẽr = cos (φ− αeq)~eφ +
sin (φ− αeq)~e⊥φ )

~v(z, t) = −a0ω sin (ωt)~eφ − ξz
ω2
0

ω
sin (ωt) sin (φ− αeq) ẽr

= −
(
a0ω + ξz

ω2
0

2ω
sin (2φ− 2αeq)

)
sin (ωt)~eφ

− ξz ω
2
0

ω
sin (φ− αeq)2 sin (ωt)~e⊥φ

(14)
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Experimentally we measure |β| = |φ − αeq| < π/6 so that we can neglect the
term along ~e⊥φ in the previous expression. In particular we see that the point O
has the velocity of the excitation.

5 Boundary layer
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Figure 3: Predicted velocity profile with typical values a0 = 1.4 mm, L = 5 cm,
ω = 2π.100 rad/s, ξ = 55 : blue line is the velocity profile from equation 14,
red dashed line is the velocity profile when the boundary layer is added. Black
dashed line is the velocity of the container.

We have seen in the previous section that the velocity is at first order aligned
with the excitation, that means ẽr ≈ ~eφ. We will also use complex variables as
our equations will be linear. Any velocity will take the form ~v(z, t) = V (z)eiωt~eφ.
For instance the velocity at the interface found in equation 14 now writes

~v(z, t) = V (z)eiωt~eφ

V (z) = −a0ω − ξz
ω2
0

2ω
sin (2φ− 2αeq)

= −a0ω + V ∗(z)

(15)
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Due to symmetry, all variables are assumed to depend on z (and t) only. If
we assume non-slip boundary condition at the walls, the velocity should verify

V (z = ±L/2) = −a0ω (16)

Clearly the velocity V (z) does not verify this condition (see figure 3). We will
perturb it near the wall to satisfy this condition. The spatial extension of the
perturbation should be of the order of δ =

√
2ν
ω ≈ 2 mm. In this boundary

layer, the flow ~vb should follow Stokes equation with boundary conditions
∂~vb
∂t

= ν∆~vb −
1

ρ
~∇P

~vb(z = ±L/2) = −a0ωeiωt~eφ
~vb(|z ± L/2| >> δ) = V (z)eiωt~eφ.

(17)

The last conditions indicates that the velocity at a distance d >> δ from the
wall is simply the unperturbed velocity. Over a few δ, the velocity V (z) can
be considered as a constant (see figure 3). The variation over δ is dV

dz δ =

a0ω sin (β) δ
2L so that compared to the typical velocity V ≈ a0ω one can neglect

this variation as δ/L << 1. This fact will now be used to find the velocity
profile near the wall.

To solve equation 17 we use superposition principle. We first consider the
flow ~v∞ = V (±L/2)eiωt~eφ. As ∆~v∞ = 0, the gradient pressure reads 1

ρ
~∇P∞ =

−iω~v∞. We then define ~wb = ~vb − ~v∞ and P̂ = P − P∞. One can show that
these new variables obey the system

~∇P̂ = 0

∂ ~wb
∂t

= ν∆~wb

~wb(±L/2) = −V ∗(±L/2)eiωt~eφ

~wb(|z ± L/2| >> δ) ≈ 0.

(18)

where we used for the last condition that V(z) is approximately constant in the
boundary layer. The solution to this equation is (writing ~wb(z, t) = Wb(z)e

iωt~eφ
)

Wb = −V ∗(±L/2)e−
1+i
δ (L2 −|z|) (19)

where as expected the size of the boundary layer is

δ =

√
2ν

ω
(20)

At the end we get the corrected velocity profile

Vb(z) = V (z)− V ∗(±L/2)e−(1+i)φ(z) (21)

where φ(z) = 1
δ (L2 −|z|) is the distance from one wall divided by δ. We see that

few δ away from the wall, we recover as expected the velocity computed in the
previous section. In contrary, at z = ±L/2 the velocity is −a0ω that is exactly
the velocity of the container.
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Figure 4: Sketch of the liquid and notations

6 Equilibrium condition from Navier-Stokes equa-
tion

We now propose to write the equilibrium condition at the free interface of a
vibrated liquid. We will assume that the forcing is horizontal so that ~eφ =
~ex. We start from Navier-Stokes equation in the comoving frame of velocity
−a0ω sin (ωt)~ex that writes

~∇.~v∗ = 0

∂~v∗

∂t
+ ~v∗.~∇~v∗ = −1

ρ
~∇p+ ν∆~v∗ + ~g + a0ω

2 cos (ωt)~ex
(22)

At the free boundary of equation y = h(x, t) in the comoving frame one has the
kinematic condition and the dynamic condition

∂h

∂t
+ v∗x

∂h

∂x
=
dh

dt
= v∗y

p(x, h(x, t)) = Patm
(23)

where vn is the velocity normal to the surface and Patm is the atmospheric pres-
sure. This holds providing we neglect capillary effect and variation of pressure
in the air layer. We will expand the quantities in the same manner as in refer-
ence [8]. We assume that a << aω << aω2 and that aω2 >> g. We define the
different time scales as

t−1 = ωt

t0 = t

t1 = t/ω...

(24)
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and we expand all quantities as

p = ωp−1(t−1, t0, ...) + p0(t−1, t0, ...) + ...

h = h0(t−1, t0, ...) +
1

ω
h1(t−1, t0, ...)

∂~v∗

∂t
= ω

∂~v∗

∂t−1
+
∂~v∗

∂t0
+ ...

(25)

Inserting these variables in eq. 22 gives at leading order in ω

∂~v∗

∂t−1
= −1

ρ
~∇p−1 + a0ω cos (t−1)~ex (26)

suggesting that all quantities oscillates with respect to t−1. Writing ~v∗ =
~V ∗(t0) sin (t−1) + ~u∗(t0) and p−1 = P−1(t0) cos (t−1) we get

~∇P−1 = −ρ
(
~V ∗ − a0ω~ex

)
= −ρ~V (27)

Hence at leading order the pressure gradient is linked to the velocity in the
laboratory frame ~V . The term ~u∗ corresponds to slow flow compared to ω. As
we are looking for equilibrium solutions for large times, we will assume that
~u∗ = 0 so that we have ~v∗ = ~V ∗(t0) sin (t−1).

We now take the next leading order of equation 22 and get

∂~v∗

∂t0
+ ~v∗.~∇~v∗ = −1

ρ
~∇p0 + ν∆~v∗ + ~g (28)

By taking the rotational of eq. 27 we show that ~∇ × ~v∗ = 0. The non linear
term can then be written as ~v∗.~∇~v∗ = 1

2
~∇(v∗2). Taking the mean over one fast

period of equation 28 gives

1

4
~∇(V ∗2) = −1

ρ
~∇p̄0 + ~g (29)

where p̄0 is the mean pressure over one fast period. From this we deduce that
the static pressure field in the fluid is

p̄0(x, y) = C0 −
1

4
ρV ∗2(x, y)− ρgy (30)

We will now look at the boundary conditions 23. We will first compute
h(x, t). At first order, the kinematic condition is

∂h0
∂t−1

= 0 (31)

meaning that h0 does not depend on t−1. The next leading order gives (∂h0

∂t0
= 0

at equilibrium)
∂h1
∂t−1

+ V ∗x
∂h0
∂x

sin (t−1) = V ∗y sin (t−1) (32)
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From this we get

h(x, t) = h0(x) +
1

ω

(
V ∗x

∂h0
∂x
− V ∗y

)
cos (ωt) (33)

We can now develop the dynamic condition as

ωp−1(x, h0) + ω
∂p−1
∂y

(x, h0)
1

ω

(
V ∗x

∂h0
∂x
− V ∗y

)
cos (ωt) + p0(x, h0) = Patm − C

(34)
At first order we get ωp−1(x, h0) = C−1. This conditions forces the gradient of
pressure in the direction tangent to the interface to be zero. This gives using
equation 27

~V .~t = 0 (35)

At the interface, the velocity amplitude can then simply be written

~V = V (x, y)~n (36)

We have ∂p−1

∂y = ∂P−1

∂y cos (ωt) = −ρVy cos (ωt) using equation 27. Taking
the mean over one fast period gives (using the computed expression for p̄0)

− 1

2
Vy

(
V ∗x

∂h0
∂x
− V ∗y

)
− 1

4
V ∗2(x, h0)− gh0(x) = Patm − C (37)

In order to go further, we will assume a linear profile for h0(x) = x−x0

tan β with
β > 0 the equilibrium angle. Under this assumption the vector normal to the
surface is ~n = − cosβ~ex + sinβ~ey and ∂h0

∂x = 1/ tanβ. We finally need the
components of the velocity field that are

~V = V (− cosβ~ex + sinβ~ey)

Vy = sinβV

~V ∗ = a0ω~ex + ~V

V ∗x = a0ω − V cosβ

V ∗y = sinβV

V ∗2 = V ∗2x + V ∗2y

(38)

This finally gives

1

4
V ∗2 − 1

2
a0ωV

∗
x − gh0(x) = Patm − C (39)

In the limit of large forcing, we expect β << 1 so that V ∗2x ≈ V ∗2. In order
to conserve volume we impose

∫
V ∗(x)dx = 0. We deduce that there is at least

one point x0 such that V ∗(x0) = 0 since V ∗ is expected to be continuous. We
evaluate the previous expression at this point to get the constant Patm − C =
−gh0(x0) = −gy0. From this we finally get

V ∗(V ∗ − 2a0ω) = 4g(y − y0) (40)
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Around the point y0 we have V ∗ << 2a0ω so that

v∗(y, t) ≈ − 2g

a0ω
(y − y0) sin (ωt)

= −2

ξ
ω(y − y0) sin (ωt)

(41)

We can compare this to the velocity of the rigid pendulum that was (see
equation 13 with z = y−y0

sin (αeq)
)

v∗(y, t) = −ξ y − y0
sin (αeq)

ω2
0

ω
sin (φ− αeq) sin (ωt) (42)

Both velocities are equal if sin (αeq) = ξ2
ω2

0

2ω2 sin (φ− αeq). At first order in
φ−αeq this is exactly the equilibrium condition 6. In the limit of large forcing,
the velocity found in the solid case can be interpreted as the velocity of the
interface satisfying the equilibrium condition.

Note that since V 2 = (a0ω − V ∗)2 = a20ω
2 + V ∗(V ∗ − 2a0ω) the condition

40 can also be written
V 2 = a20ω

2 + 4g(y − y0) (43)

The point y0 being determined by the volume conservation condition. This gives

V (y) =
√
a20ω

2 + 4g(y − y0) (44)

as long as a20ω2 > 4g(y − y0). Thus the maximum height that can be stabilized
is related to the forcing velocity.
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