
Propagation of scalar waves in dense disordered media exhibiting short and long range
correlations

Adrien Rohfritsch1, Jean-Marc Conoir1, Tony Valier-Brasier1, Romain Pierrat2, and Régis Marchiano1
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Correlated disorder is at the heart of numerous challenging problematics in physics. In this work
we focus on the propagation of acoustic coherent waves in 2D dense disordered media exhibiting
long and short range structural correlations. The media are obtained by inserting elastic cylinders
randomly in a stealth hyperuniform medium itself made up of cylinders. The properties of the
coherent wave is studied using an original numerical software. In order to understand and discuss
the complex physical phenomena occuring in the different media, we also make use of effective
media models derived from the Quasi-Crystalline Approximation and the theory of Fikioris and
Waterman that provides an explicit expression of the effective wavenumbers. Our study shows a
very good agreement between numerical and homogenization models up to very high concentrations
of scatterers. This study shows that media with both short and long range correlations are of strong
interest to design materials with original properties.

I. INTRODUCTION

Wave propagation in heterogeneous media made of parti-
cles randomly distributed into a host medium is subject
to intense researchs for more than half a century. Differ-
ent transport regimes exist, that depend on the size and
degree of disorder of the medium [1, 2]. For weak disor-
der, the mean field takes the form of a coherent wave that
can be described thanks to multiple scattering theories.
In particular, it can be shown that this coherent wave
propagates in an effective homogeneous medium with a
complex wavenumber keff [3, 4]. It is well known that the
correlations between scatterers strongly impact coherent
waves [5–7]. These correlations come into play for un-
derstanding, for example, the properties of many various
living systems [8, 9] or liquid metal [10], and many theo-
retical studies have been developed with a view to design
new materials [11, 12].

Existing studies focus on either short-range correlations
(SRC), such as for hard disks systems for instance, or
long-range correlations as those that essentially char-
acterize stealth hyperuniform (SHU) materials [13, 14].
Nevertheless, no studies adress the question of the prop-
agation of scalar waves in media composed of both short
and long range correlations. In this paper, we focus on
the impact of the increase of scatterers size on the co-
herent waves and we propose two statistical models to
capture the complex effects associated with materials ex-
hibiting short and long range correlations.

To ensure that the short and long range correlations co-
exist, the idea is to build a new medium by inserting
random particles into a SHU medium. The important
point is that the considered particles are not point-like
scatterers, they have a finite size and then cannot over-
lap. It follows that increasing concentration leads to a
strengthening of the coupling between the two popula-

tions: the SHU particles constraint more and more the
random ones, which have less space to fit between the
SHU particles. Thus, random particles organize them-
selves to give a SRC medium. Finally, one gets a nested
medium, composed of the SHU and SRC media, exhibit-
ing both short and long range correlations.

In the following, our analysis will be based on the proper-
ties of the pair-correlation function h2(r) and the struc-
ture factor S(q) [7]. These two quantities are important
to describe the correlation effects, first from the point
of view of the microstructure of the media [13], but also
they enter into the analytical expressions of keff that lead
to a clear physical interpretation of the propagation [15].
Then, the domain of validity of different statistical prop-
agation models providing keff is studied by comparisons
with numerical simulations made with an in-house soft-
ware, called MuScat [16]. It is based on the exact equa-
tions of the multiple scattering theory.

The paper is organized as follows: In Sec. II, the mi-
crostructure of the media of interest is exposed that en-
lightens the specifities of each pattern. In Sec. III the
comparison between a first order statistical model, that
does not take correlations effects into account, and nu-
merical results are exposed in order to analyze the prop-
agation of the coherent waves. Sec. IV is dedicated to
the derivation of effective wavenumbers and scattering
mean free paths taking into account correlations effects.
In Sec. V physical results are discussed.

II. ANALYSIS OF THE MICROSTRUCTURES

In this section, we are interested in the microstructure
of the nested medium (SHU + SRC) and the correla-
tions are examined throught the behavior of the pair-



correlation function h2(r) and the structure factor S(q),
where q is the scattering vector. The structure factor
plays an important role in the definition and the study
of the transparency of SHU media, that are known, as it
will be discussed later, to induce almost no loss on prop-
agation of waves at low frequency [17–21]. Let’s start by
presenting these media in the case where scatterers are
of finite size, which induces constraints on the radius of
the particles a and the appearance of a cut-off frequency
for transparency.

A. Stealth-hyperuniform medium: a correlated
disorder that cancels normalized density fluctuations

at large wavelength

Stealth hyperuniform media are characterized by the can-
cellation of normalized density fluctuations at large wave-
lengths [22, 23]. In the Fourier space, this can be de-
scribed by the structure factor. For N point like scatter-
ers, it is given by

S(q) =
1

N

∣∣∣∣∣∣
N∑
j=1

eiq.rj

∣∣∣∣∣∣
2

. (1)

The SHU property implies that the structure factor
SSHU(q) verifies [13, 24]

SSHU(q ∈ Ω) = 0, (2)

where Ω is a domain surrounding (but excluding) the ori-
gin. Property (2) implies the transparency of SHU media
in the low frequency limit and for the single scattering
regime.

For an infinite medium, Ω is continuous. In the case
of a more realistic domain of size L, it is convenient to
consider it as an unit cell of a periodic media [25]. Doing
so, the domain Ω is discretised.

It is convenient for Ω to choose a square domain of size
2K around the origin. Doing so, the discrete wavenum-
bers q are given by (nx, ny)2π/L, with −P < (nx, ny) <
P , and P = KL/(2π). The degree of stealthiness is de-
fined as the ratio between M(Ω), the number of con-
straint wavenumbers q ∈ Ω and the number of degrees of
freedom (2N in the case of a 2D point pattern) [24, 25]:

χ =
M(Ω)

2N
(3)

leading to the following expression for K [17, 18]

K =
π

L

√
4χN + 1. (4)

The parameter χ takes values between 0 and 1. A pattern
built with χ → 0 is fully disordered, whereas the choice
χ → 1 leads to a perfect crystal. For details on the

numerical procedure to design SHU point patterns, refer
to Refs. 24 and 26.

Let us precisely describe the medium. A SHU point pat-
tern is created at first, with parameter χ = 0.6. We chose
this high value in order to increase the minimum distance
between two points, allowing us to increase the radius
a of the monodisperse set of particles without overlap-
ping and hence to increase the concentration. The ratio
N/L2 = 3600 is also kept constant, which induces that
the parameter K is constant as well in every plot of the
paper. To reach a given concentration φ = Nπa2/L2, the
radius a of the particles is modified.

From a propagation point of view, it is well known for
years [27] that the intensity scattered by N scatterers is
proportionnal to the structure factor S(q), where q is
the scattering vector q = k0(ui − us), with (ui is the
incident wavevector, us the scattered wavevector and k0

the wavenumber of the incident field). This relation is
only valid in the single scattering regime. From there,
in this regime and considering Eq. (2), transparency of
SHU media is deduced [17].

For a square domain Ω of size 2K, transparency window
is such that |q| < K or equivalently k0 < K/2, which can
also be written in the form [18]

k0a ≤
√
πφχ. (5)

For the sake of legibility, we introduce the reduced
wavenumber k̃ = 2k0/K, such that 0 < k̃ < 1 is the
transparency window of the SHU medium in the single
scattering regime. Here, multiple scattering effects are
taken into account and are in competition with trans-
parency effects, which is induced by the spatial organi-
zation of scatterers.

B. Short-range correlated media: a correlated
media with local constraints

In heterogeneous media made of finite size cylinders, a
minimal exclusion distance b = 2a between their centers
is naturally imposed by their non-penetrability. This dis-
tance can also be larger but has to be lower than a max-
imum value imposed by the concentration. For random
monodisperse media, the maximum concentration being
φr ≈ 83%, the upper limit for b is [6]

bmax = 2a

√
φr
φ
. (6)

This type of constraints is called SRC because the pres-
ence of a cylinder only constraints its neighbourhood,
that is to say the position of cylinders located in a circle
of radius b around it. For all systems considered in this
paper, the minimal exclusion distance 2a has to be taken
into account in order to avoid overlapping.
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Figure 1: (a) SHU medium made of cylinders of radius a such that the concentration is φ = 5.5 %; (b) SRC medium
with cylinders of same size as (a); (c) Nested medium composed of the superposition of media SHU (a) and SRC (b);

(d) Nested medium made of larger cylinders such that φ = 25 % and φtot = 2φ = 50 %. (e-h) Average structure
factors 〈S(q)〉 respectively of the media (a-d). The black square on each plots (e-h) correponds to the domain Ω on
which the structure factor SSHU(q) = 0 (see text). (i) Pair-correlation function of the three media SRC, SHU and

Nested for concentration φ = 5.5 % and (j) same quantities as (i) for φ = 25 %.

The SRC medium is made of cylinders of radius a that
cannot overlap. It is understood as an intermediate case
between perfectly disordered and SHU media (see Fig. 1
of Ref. 18 and Ref. 6).

C. Mixing of long and short range correlations:
description of the nested medium

In the following, SHU and SRC media are both composed
ofN particles. The structure factor of the nested medium
SNested(q) can then be written with respect to the ones

of the SRC and SHU media as

SNested(q) =
1

2
(SSHU(q) + SSRC(q))

+
1

2N

N∑
m=1

N∑
n=1

e−iq.r
SHU
m eiq.r

SRC
n

+
1

2N

N∑
m=1

N∑
n=1

eiq.r
SHU
m e−iq.r

SRC
n .

(7)

From Eq. (7), we notice that, without coupling between
both patterns, the resulting structure factor is directly
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the average between the two seperate structure factors
(SRC and SHU). This coupling is expected to increase
with the size of the particles. Figure 1 shows in (a) and
(e) a SHU points pattern and its structure factor. (b) and
(f) are the same quantities for an uncorrelated medium,
(c) and (g) for a nested medium whose concentration is
φtot = 2φ = 11 % and the corresponding structure factor
averaged over disorder 〈S(q)〉. In (d) and (h) the same
quantites are presented for larger particles that lead to
φtot = 2φ = 50 %. In this case, the spectral domain Ω
is clearly visible, endorsing the fact that the SRC par-
ticle pattern is organizing itself, being more constraint
by the SHU medium. It must be mentionned that the
parameter K is kept constant here, defined with N , the
number of cylinders in the SHU medium. Doing so, we
keep constant the incident wavenumber k̃ in every plot
of the paper. In Fig. 1 (h), the domain where S(q) de-
creases is larger than 2K, which endorses the fact that
correlations strongly impact the nested medium made of
2N particles.

Figures 1 (i-j) show the three pair-correlation functions
h2(r) of each medium (SRC, SHU and nested), for re-
spectively φ = 5.5 % (φtot = 11%) and φ = 25 %
(φtot = 50 %). These quantities, computed numerically,
allow to broaden the previous remarks. In Fig. (i), no
sign of correlation appear for the nested medium except
the ones that are already visible on both separated me-
dia. This means that, in this case, the coupling between
both media is weak. In this case, SRC medium appears
to be properly discribe by the Hole Correction (h2(r) ≈ 0
∀r > 2a). As the concentration increases [see Fig. 1 (j)],
a strong peak appears around r = 2a in the nested case,
that is not visible on SRC and SHU media, showing that
this medium is both short and long range correlated and
that all particles are strongly connected. This strong
peak can typically be predicted by analytical methods,
such as the one of Percus-Yevick [28, 29]. The analysis
of the microstructure is more straightforward from S(q)
than with h2(r), in particular when it comes to analyz-
ing the behavior of SHU. In the following, we will analyze
which of these parameters is more accurate to study wave
propagation.

III. ANALYSIS OF THE PROPAGATION:
LIMITATION OF CLASSICAL APPROACHES

The important point of this paper is to understand the
coupling between SRC and SHU media from the point of
view of propagation of coherent waves characterized by
the effective wavenumber keff = ω/ceff+iαeff, with ceff the
effective phase velocity and αeff the effective attenuation.
This last quantity is linked to the elastic mean free path
by [30]

αeff = 1/2`e (8)

since no absorption effects are considered here. In this
section, we start by comparing results obtained with the
software MuScat [16] and the most common statistical
approach for multiple scattering problems, the Indepen-
dant Scattering Approximation (ISA). The great interest
of ISA is to clearly described the propagation of coherent
waves in random media provided that the concentration
of scatterers is not too large. This model predicts the
effective wavenumber to be

k2
ISA = k2

0 − 4in0f(0) (9)

where k0 = ω/c0 is the wavenumber inside the host
medium, ω the pulsation and n0 = φ/πa2. Here, f(θ)
is the far field form function of a single cylinder, given by

f(θ) =

+∞∑
n=−∞

Tne
inθ, (10)

where the scattering coefficients Tn contain all the elas-
tic properties of the cylindrical elastic particles, that are
made of steel (longitudinal wave speed, cL = 5700 m/s,
transverse wave speed cT = 3000 m/s, density ρc = 7850
kg/m3) [31]. One important point is that the scatter-
ing coefficients T0 and T1 of an elastic particle are of the
same order of magnitude at low frequency. So, these two
modes have always to be considered, but in the extreme
case φtot = 2φ = 50%, for the highest frequencies, the
mode n = 2 is also needed to reach convergence. In the
following, the scattering cross section of a scatterer, re-
quired to calculate effective attenuations or elastic mean
free paths, is given by

σ =

∫ 2π

0

|f(θ)|2dθ =

∫ 2π

0

σd(θ)dθ. (11)

The procedure to compute the effective parameters with
MuScat is based on the phase difference method and can
be found in Refs. 6 and 16. Simulations on SRC, SHU and
Nested media are performed, averaging over fifty similar
disorder realizations for each.

The effective attenuation plotted in Fig. 2 shows that
the SHU medium allows the coherent wave to propa-
gate without any loss. This transparency behaviour is
in perfect agreement with previous results from the lit-
erature [17, 18]. In this figure, correlation effects are put
in light. First, at low concentration, Fig. 2 (a) shows
that MuScat-SRC (i.e. the MuScat simulations on SRC
media) is in agreement with ISA for φ = 5.5 %. This
was expected because the SRC medium is almost per-
fectly random for this concentration, and we know that
ISA perfectly models the propagation in this case where
the correlation does not play any role. Recall that the
correlation is a second order effect. The correlation ef-
fects are clearly demonstrated by the MuScat-SHU curve.
This one shows the cancellation of the attenuation which
is the signature of acoustic transparency. More inter-
esting, MuScat-Nested and ISA curves are very close to
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Figure 2: Effective attenuation calculated with MuScat
and with the ISA, for each pattern (SHU, SRC and

Nested), for φtot = 2φ = 11 % (a) and φtot = 36 % (b),

with respect to the wavenumber k̃ = 2k0/K (see text).

each other even if there are correlations in the medium.
Here, the nested medium, which is twice as dense as
SRC and SHU media, impacts the coherent wave in a
very similar way as the SRC medium alone. We can say
that the SHU medium is hidden in the SRC medium.
Furthermore, this illustrates the weak coupling between
the two sets of cylinders when the concentration and the
cylinders size are small. However, when considering re-
sults in Fig. 2 (b), for which the whole concentration is
φtot = 2φ = 36 %, the situation is completely differ-
ent. The MuScat-Nested curve no longer matches the
MuScat-SRC curve, a strong coupling between SRC and
SHU media appears inside the nested medium.

It should also be notice that in Fig. 2 (b), the MuScat-
SRC curve appears as a transition between the ISA-
25 % curve and the MuScat-SHU curve, which enlightens
the link between short and long range correlations. In-
creasing distance b inside SRC microstructure makes the

wave propagates with less loss, making the medium more
transparent than the uncorrelated equivalent medium.
The difference between MuScat-Nested and MuScat-SRC
curves proves that the coupling is here very strong, the
result being that the Nested medium causes half less loss
than the same medium without correlation (ISA-50 %
curve).

IV. MODEL FOR AVERAGE QUANTITIES

Numerical results extracted with the software MuScat
help us understanding the global behaviour of the coher-
ent waves that propagate in the different media. How-
ever, it does not allow to distinguish the preponderant ef-
fects and the weaker ones, all of them being naturally in-
tegrated in the numerical procedure [16]. For this reason,
it appears also crucial to make use of statistical models
that are built on different restrictive assumptions. These
models depend directly on the two quantities h2(r) and
S(q) used to describe the microstructure in Sec. II. We
thus have a clear relation between the microstructure and
the propagation of the waves. The better agreement of
a given approach with MuScat therefore enlighten the
relevance of its assumptions, pointing out at the same
time the predominance of one physical effect compared
to the others. It is noteworthy that the pair-correlation
function only involves the relation between two scatter-
ers. The wave propagation models chosen in the following
are also of order two in interactions. As the interaction
of waves with a scatterer is characterized by the scatter-
ing coefficients Tn (eigenvalues of the transition matrix
T ), the models introduced only use higher-order TnTm
products to characterize the correlation. In this spirit,
different models that are essential for the physical anal-
ysis are presented briefly in the following.

A. Average field

In this section we briefly present the models we used
to describe the propagation of coherent waves. Basi-
cally, diagrammatic expansions were introduced in par-
ticle physics by Feynmann [32], Dyson [33] and others
in order to provide deep physical insight into nature of
multiple interactions and correlations between scatterers.
The coherent waves result from a statistical averaging
over realizations of disorder. Here, let us start directly
with the expression of the ensemble average of the Green
function 〈G〉 verifying the Dyson equation [15, 34]

〈G〉 = Ĝ+ ĜΣ̂〈G〉, (12)

where Σ̂ is the self-energy operator and Ĝ is the Green
function that corresponds to the medium either without
scatterers or without any correlations between scatterers.
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Let us define the wavenumber k̂ inside this medium. Be-
cause the medium is assumed to be statistically homo-
geneous and isotropic, this function is given in Fourier

space by Ĝ(k) = (k̂2 − k2)−1 and 〈G〉 is consequently of
the form

〈G(k)〉 =
1

k̂2 − k2 − Σ̂(k)
. (13)

The effective wavenumber keff is defined in our case as an
eigenvalue of the system, and is solution of

k2 = k̂2 − Σ̂(k). (14)

The first (and the simplest) approach is to choose the host

medium as the reference medium. In that case Ĝ = G0

and k̂ = k0 are associated to the homogeneous space
without scatterers, we have

Σ̂ = Σ = + + + ... (15)

whereas, according to U. Frisch [15], if Ĝ = G and k̂ = k
are associated to the space with uncorrelated scattering
events. We get

Σ̂ = Σ = + + .... (16)

The impact of the two options (15) and (16) on the dis-
persive equation will be explained in the following. In
these expressions, each circle corresponds to a first order
interaction in the multiple scattering medium associated
with the action of the scattering operator T of a single
scatterer. The scattering coefficients Tn in Eq. (10) are
the eigenvalues of T . The lines between two circles rep-
resent the propagation in the reference medium, while
the dotted lines represent the correlation between two
scattering events. In the following, the formulation (16)
is adopted because it allows to seperate concentration
effects (adjusting k) without dealing with correlation ef-
fects. The wavenumber k is either replaced by kISA within
the fremework of the ISA (first order of interactions), or
by kLM within the framework of the QCA (second order of
interactions). It is worth noting that effective wavenum-
ber kLM only models double interactions without corre-
lations between the cylinders positions [35] and is of the
form:

k
2

= k2
LM = k2

ISA +
8

πk2
0

∫ π

0

cot

(
θ

2

)
d

dθ
[f(θ)]2dθ. (17)

Now that the modeling of k has been exposed, the main
challenge is to calculate the diagrams of the self-energy
operator including pair-correlated scattering events. To

do that, we rely on the approach of Fikioris and Water-
man (FW) which is based on the QCA (we thus speak
about QCA-FW). This approach models the correlation
with the pair-correlation function h2(r). This leads us to
the following approximation

ΣQCA = + + .... (18)

with the result (c.f. App. A)

k2
eff = k

2 − 8iπn2
0

+∞∑
n,m=−∞

TnTm

×
∫ +∞

0

Jm−n(keffr)H
(1)
m−n(k0r)h2(r)rdr. (19)

Two approximations are made to deduce Eq. (18) from
Eq. (16). First, diagrams of the same type as the second
diagram of Eq. (16) can be neglected under the assump-
tion that correlations effects are stronger for close pairs
of particles. The particle in the middle of the diagramm
being therefore far from the two others, one can assume
diagrammatically

= ≈ 0. (20)

Secondly, we assume Tn(k) = Tn(k0) so that the wavy
lines of Eq. (16) become straight lines in Eq. (18). Note
that Tn(k) coefficients are involved only in the framework
of self-consistent theories as the QCA-CP [36]. Imposing
k = kISA will be denoted FW(ISA), whereas the choice
k = kLM will be designated by FW(LM). In the case of
monopolar scatterers, it is worth noting that kLM reduces
to kISA. Therefore, Eq. (19) reduces in this case to the
well-known expression of Keller’s wavenumber [5, 37–39]

k2
eff = k2

ISA − 8iπf(0)2n2
0×∫ +∞

0

J0(keffr)H
(1)
0 (k0r)h2(r)rdr.

(21)

B. Average intensity

To calculate the scattering mean free path `e = 1/2αeff,
an other way consists in analyzing the average intensity,
driven by the Bethe-Salpeter equation. In this frame-
work, it is efficient to introduce the average structure
factor 〈S(q)〉, which is calculated by ensemble averaging
Eq. (1). The structure factor is intrinsically linked to
h2(r) and provides another point of view to analyze the
behavior of the microstructure of multi-scattering media.
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This quantity, for cylinders located on a surface S , can
be written as

〈S(q)〉 = 1 +
N − 1

S 2

∫∫
S 2

[1 + h2(rjk)]ejq.(rj−rk)drjdrk.

(22)
Then, by definition of the Fourier transform and not-
ing |Θ(q)|2 =

∫∫
S 2 e

jq.(rj−rk)drjdrk the spatial Fourier
transform of the surface S , we get [17]

〈S(q)〉 = 1 +
N − 1

S
h̃2(q) +

N − 1

S 2
|Θ(q)|2, (23)

where h̃2(|q|) is the Fourier transform of h2(r), used in
Dyson approaches discribed just before. If the finite-size
effects caused by Θ(q) are eliminated, a corrected struc-

ture factor 〈Scorr(q)〉 = 〈S(q)〉 − N − 1

S 2
|Θ(q)|2 can be

introduced leading to the expression of the effective at-
tenuation [26, 27, 40, 41]

1

2`e
= αHF =

n0σ

4π

∫
Ω

〈Scorr(kr(u− u′))〉dΩ, (24)

with σ given by Eq. (11) and kr = Re(
√
k2

eff) [17]. Re-
lation (24) is derived in the context of ponctual scatter-
ers. It is consistent with earlier works. Among them,
Ref. 41 appears to be one of the first to prove its va-
lidity through comparison with experiments. However,
Hart and Farrell already used it in their work on the
cornea [27]. This is the reason why we denote “HF” the
predictions based on Eq. (24). Furthermore, one com-
mon way to take anisotropic effects into account is to use
the Interference Approximation (ITA) that leads to write
the correction [5, 7]:

1

2`e
= αITA =

n0

4π

∫
Ω

σd(arg(u−u′))〈Scorr(kr(u−u′))〉dΩ.

(25)

V. PROPAGATION OF THE COHERENT
WAVE IN SHORT AND LONG RANGE

CORRELATED MEDIA

A. Importance of the anisotropic scattering of
elastic particles on the coherent waves

The QCA-FW, dealing with the pair-correlation func-
tion, allows to consider scatterers with angular radiation
patterns leading to scattering cross sections containing
several modes of vibration. Even at very low frequency,
the two first vibration modes are necessary in order to de-
scribe scattering cross sections, which leads to anisotropic
scattering-cross section, as shown in Fig. 3. Two simu-
lations are presented in Fig. 4 showing that this point is
essential in the calculation of the correlation. In the first
case, purely monopolar (isotropic) scattering is consid-
ered by numerically cancelling the dipolar mode. In this

case, it is worth noting that Keller’s predictions agree
with HF’s predictions for k̃ < 1, which means that the
SHU transparency nature of the medium is caught. In the
second case, where real elastic particles are considered,
Keller’s model fails to estimate the effective attenuation.
As shown by MuScat results, transparency remains but
calculating keff with Eq. (21) does not succeed in predict-
ing it. This is the reason why the QCA-FW is introduced
and adopted in the following.

Figure 3: Differential scattering cross-section σd
calculated for an elastic particle and a monopolar

scatterer, for a frequency such that k0a = 0.25.

An important contribution of this section is to show that
the models FW(ISA) and FW(LM) lead to a very good
prediction of the wavenumbers for all the microstruc-
tures, SRC, SHU and Nested. This is a result which has
already been established for dense random media, where
the Percus-Yevick approximation is generally used [42],
but which is original for SHU and Nested media. In the
following, the FW(ISA) model is shown to account for
spatial correlations in the cases where the cylinders radii
are relatively small. This is the most common situation
encountered in the literature. At higher concentrations,
when multiple scattering effects increase, we show that
the use of FW(LM) improves the predictions of FW(ISA).
This result can be easily understood because the kLM

wavenumber is of the second order in concentration un-
like kISA which is of the first order.

B. Modelling of the correlation in dillute media

In Fig. 5 (a), we clearly see that FW(ISA) perfectly cap-
tures the SHU transparency properties of the medium. It
validates the fact that the pair-correlation function h2(r)
properly describes the microstructure of a SHU medium,
as already observed in a recent study [43] that deals with
point-like particles. Furthermore, the use of the func-
tion h2(r) is relevant to model the propagation inside
the media, endorsing the fact that pair interactions are
predominant.
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Figure 4: Effective attenuation in the SHU medium
Comparison between MuScat, Keller and HF

approaches. Concentration φ = 5.5 %.

Let us now analyze statistical predictions based on the
average intensity. For the first particles size [Figs. 5 (a-c)]
the concentration is φtot = 2φ = 11 %, allowing the as-
sumption kr ≈ k0 for the calculation of `e with Eq. (24).
It is worth noting that FW(ISA) and HF predictions give
very close results for each case (SHU, SRC and nested).
The physical interpretation is clear: even if diagrammatic
expansions are truncated to interactions of order two, the
Ward identity, which expresses the conservation of en-
ergy, is still verified in a good approximation. Rigorously
speaking, recurrent scattering has also to be taken into
account as well which is negligible for not too dense sys-
tems out of resonance. It is worth noting in Fig. 5(c)
that FW(ISA) and HF slightly underestimate the effec-
tive attenuation given by MuScat, proving that the den-
sification of the medium has a strong influence on the
coherent wave propagation.

A strong advantage of the model based on the mean field
(FW) is that it provides a full expression of the entire
wavenumber. This allows to examine the effective phase

velocity, much more difficult to extract through the in-
tensity. In Fig. 6, we plot this quantity, calculated for
the three sets of particles. This choice is motivated by
the fact that in this case the effect of correlations strongly
appear for the highest frequencies, even at low concentra-
tion (φ = 5.5 %). The agreement is quantitative between
FW(ISA) and MuScat, endorsing the fact that correla-
tions also impact the phase velocity, near the transition
frequency k̃ = 1. As opposed to the attenuation results
[Fig. 2 (a)], the presence of the SHU particles modifies
the phase velocity. This results could appear usefull for
interesting applications such as waveguiding [44].

C. Effective wavenumbers in dense correlated
media

Overall, all the models except that of Keller agree among
themselves for the diluted media. But what happens
when the concentration and multiple scattering effects
increase?

This leads to consider now φ = 18 % for each sets of par-
ticles (the nested medium has then a concentration of
φtot = 36 %). This leads at the same time to an increase
of the coupling between the two populations: the SHU
cylinders constraint more the SRC ones, which have less
place to fit between the SHU cylinders. Also, the product
k0a is increasing proportionnaly. To adjust the two dif-
ferent approaches (FW and HF), FW(LM) is considered
instead of FW(ISA), and αITA [Eq. (25)] is also com-
puted.

In Figs. 5 (d-f), the effective attenuations of the three
media are presented. For the SHU medium, we see that
all the models are in good agreement with MuScat, even
if FW(LM) predicts an increase for the high frequency
range. For the SRC medium, an important difference is
visible between FW(LM) and MuScat on one side and
FW(ISA), HF and the ITA on the other side. It should
be pointed out that ITA only rectifies HF significantly
for the highest frequencies, and that the correction is
the opposite of what is expected, making the medium
less opaque. This tendance was already pointed out by
Derode et al. on SRC media [5], demonstrating that ITA
does not improve HF to model the propagation in this
case. On the other hand, FW(LM) is very close to MuS-
cat, which shows the efficiency of the correction provided
by adjusting k = kLM in Eq. (19). This efficiency is
even more visible in the results for the nested medium
in Fig. 5 (c). Curiously, taking into account the angu-
lar radiation of the scatterers improves the FW model
but not the HS ones resulting from the average intensity
approach.

Here, we see that the FW(ISA) and FW(LM) models,
where the correlation is calculated from h2(r), are more
relevant than the HF model which is directly related to
the structure factor, c.f. Eqs (24).
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Figure 5: Effective attenuation calculated with different approaches for the different media (SHU, SRC and nested)
presented in Fig. 1. The concentration φ of SRC and SHU media is controled by the radius a of the particles (see
text). The frequency window is kept constant such that k0a ∈ [0.05− 0.35] for φ = 5.5 % (a-c), k0a ∈ [0.09− 0.63]

for φ = 18 % (d-f), k0a ∈ [0.1− 0.735] for φ = 25 % (g-i).

What happens when the particles size increases, as much
as φtot = 50 %? It could appear justified to contest the
previous assumption kr ≈ k0. A simple way to rectify
this assumption is to set kr = kISA. This leads to con-
sider the background medium as a uncorrelated medium,
already homogenized. It is worth noting in Fig. 5 (g-i)
that the corrections are too weak. Other numerical test
have been performed with kLM instead of kISA without
improving our results. So, other higher diagrams appear
to be necessary to properly describe the effective attenu-
ation with the HF approach. In our recent study [18], it
was demonstrated that adding higher orders diagramms
properly corrected the attenuation in the case of a SHU
medium. Indeed, these diagrams lead to a correction in
attenuation of approximately 2α2

ISA/k0 (order of magni-

tude) [17]. For our non resonnant system, these diagrams
of third order in interactions are to be taken account
before recurrent scattering. Here, the discussions about
higher order terms would have taken us to far, and there-
fore is out of the scope of this paper.

Together, results of Fig. 5 allow us to confirm that the
model FW(LM) is the most robust against correlation
and concentration effects.
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Figure 6: Effective phase velocity in a SHU medium for
which φ = 5.5 %.

VI. CONCLUSION

Our study deals with different types of microstructures:
SRC, SHU and nested. If the two first have been consid-
ered in the recent past, the effective properties of nested
media have never been studied before.

The concentration in the different media is driven by the
radius of the cylinders. Increasing this quantity leads at
the same time to an increase of the concentration and to
the self-organization of the multiple scattering medium:
the SHU particles constraint more and more the SRC
ones, which have less place to fit between the SHU cylin-
ders. If, for small cylinders, SRC medium can be assim-
ilated to an uncorrelated one, the short-range correla-
tions increase with the concentration. Finally, the nested
medium, composed of the SHU and SRC media, exhibits
both short and long range correlations.

Interestingly, whatever the concentration and the degree
of interaction between the particles, the nested medium,
which is twice as dense as SRC and SHU media, impacts
the attenuation of coherent waves in the exact same way
as an uncorrelated medium with half of particles. In other
words, we can say that half of the particles of the nested
medium are invisible, even at very large concentration.
However, the presence of the SHU particles in the nested
medium notably modifies the phase velocity. So inserting
a SHU in a random medium can change the velocity with-
out changing the attenuation. This results could appear
usefull for interesting applications such as waveguiding
or focusing.

Two new models derived from the QCA, FW(ISA) and
FW(LM), have been developed within the framework of
diagrammatic expansions and the Dyson equation in or-
der to calculate the effective wavenumbers. These mod-
els depend directly on the pair-correlation function h2(r)

introduced to describe the microstructures. With the
idea of establishing a link between the microstructure
and the wave propagation, we have also used a model de-
rived from the Bethe-Salpeter equation which describes
the imaginary part of the effective wavenumber with re-
gard to the structure factor. The two quantities h2(r)
and S(q) have the main interest to describe both the
microstructure and to represent the correlation in the
expression of the effective wavenumber. We thus have a
clear relation between the microstructure and the prop-
agation of the waves.

At low concentration, multiple scattering effects are min-
imized, and all the models used lead to the same results,
excepted that of Keller [5, 15, 39], which is the most
used for years. We showed that the Keller’s model fails
because it does not take into account the anisotropic radi-
ation of the particles in the calculation of the correlation.

An important issue of the article is to show that the
models FW(ISA) and FW(LM) lead to very good cal-
culations of the wavenumbers for all the microstructures,
SRC, SHU and nested, even at high concentration of par-
ticles when multiple scattering effects are strong. This
kind of results are known for dense random media, where
the Percus-Yevick approximation is generally used [42],
but is original for SHU, SRC and nested media when the
microstructure is far more complex.
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Appendix A: Theory of Fikioris and Waterman

Here, we use the theory of Fikioris and Waterman [45]
as the basis of our developments to take into account the
correlation. We could thus speak of QCA-FW.

The basic idea developped by Fikioris and Waterman [45]
is to project the fields on the cylindrical harmonics. Let
An be the unknown coefficients resulting from the pro-
jection, one finds that keff and the unknown coefficients
An are linked by the Lorentz-Lorenz law

An +
2πn0

k2
0 − k2

eff

+∞∑
p=−∞

TpApNn−p(keffb) = 0, (A1)

where

Np(keffb) = Np(keffb) +

[
k2

eff

k2
0

− 1

]
Mp(keff, b) (A2)
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and

Np(keffb) =(keffb)J
′
p(keffb)H

(1)
p (k0b)−

k0bJp(keffb)H
′(1)
p (k0b), (A3a)

Mp(keff, b) =

∫ +∞

b

H(1)
p (k0r)Jp(keffr)h2(r)k2

0rdr.

(A3b)

The Hole Correction consists in setting b = 2a to avoid
the scatterers from overlapping. Eq. (A1) is a homoge-
neous linear system of equations{

I +
2πn0

k2
0 − k2

eff

N T

}
.A = 0, (A4)

where A contains the modal amplitudes An, I is the iden-
tity matrix, T the matrix with coefficient Tnm = Tnδnm
and

N (keffb) = Np(keffb) +

(
k2

eff

k2
0

− 1

)
. (A5)

Cancelling the determinant of the matrix of this infinite
system of equations (A4) yields the desired dispersion
relation for keff. Here we use cumulative development,
that allows to write the determinant of any matrix X as
a sum

det (I +X) =

+∞∑
n=0

Qn(X), (A6)

where operators Qn are defined by recurrence
Q0 = 1,

Qn(X) =
1

n

n∑
p=1

(−1)p+1Qn+p(X)tr(Xp).
(A7)

The originality and the main interest of this method is
to offer a direct way to select how many orders of in-
teractions are taken into account, without any a priori
consideration on concentration values. Q1 describes the
interaction with one particle, Q2 with two particles and
so on. Hence, truncating Eq. (A6) to second order follows
the same idea that the one used in order to approximate
the self-energy operator in the Dyson equation. Doing
so, we find that

1 +
2πn0

k2
0 − k2

eff

N0(keffb)f(0)+

1

2

(
2πn0

k2
0 − k2

eff

)2

N0(keffb)
2f(0)2−

1

2

(
2πn0

k2
0 − k2

eff

)2∑
n

∑
k

TkTn [Nn−k(keffb)]
2

= 0.

(A8)

QCA-FW effective wavenumber takes the following
form [45, 46]

k2
FW = k2

ISA + (dconc
2 + dcorr

2 )n2
0 (A9)

where

dconc
2 =

−4iπ

k2
0

+∞∑
n,m=−∞

TnTm

{[
k2

0b
2 − (m− n)2

]
×

Jm−n(k0b)H
(1)
m−n(k0b)− k2

0b
2J ′m−n(k0b)H

′(1)
m−n(k0b)

}
(A10)

and

dcorr
2 = −8iπ

+∞∑
n,m=−∞

TnTm×∫ +∞

b

Jm−n(kFWr)H
(1)
m−n(k0r)h2(r)rdr.

(A11)

For the low frequency regime where only modes n = 0
and n = 1 are needed, no integral divergence appears
in the integral equation the governs the effective mean
fields, which makes useless the introduction of the radius
of exclusion b in the model. Therefore, as in Ref. [35],
we can assume that b→ 0 in the previous equations.

In this limit, the term dconc
2 does not contain any mi-

crostructure information and becomes equal to the sec-
ond order term of the model derived by Linton and Mar-
tin [35], namely

lim
b→0

dconc
2 =

8

πk2
0

∫ π

0

cot

(
θ

2

)
d

dθ
[f(θ)]2dθ. (A12)

Finaly, we find the expression (19) that we use to tackle
the physical problems of the paper.
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[20] V. Romero-Garćıa, N. Lamothe, G. Theocharis, O. Ri-
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