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Image Transmission Through a Dynamically Perturbed
Multimode Fiber by Deep Learning

Shachar Resisi, Sebastien M. Popoff, and Yaron Bromberg*

When multimode optical fibers are perturbed, the data that is transmitted
through them is scrambled. This presents a major difficulty for many possible
applications, such as multimode fiber based telecommunication and
endoscopy. To overcome this challenge, a deep learning approach that
generalizes over mechanical perturbations is presented. Using this approach,
successful reconstruction of the input images from intensity-only
measurements of speckle patterns at the output of a 1.5 m-long randomly
perturbed multimode fiber is demonstrated. The model’s success is explained
by hidden correlations in the speckle of random fiber conformations.

1. Introduction

Multimode optical fibers (MMFs) hold great promise for increas-
ing the capacity of data transmission, especially for applications
such as optical communication systems,[1] fiber lasers,[2] and
endoscopic imaging.[3–7] An important challenge such applica-
tions face is the inherent sensitivity of fibers to various types of
fluctuations, such as thermal, acoustic, or mechanical perturba-
tions. Unless special fibers are used,[8] such perturbations dra-
matically change the transmission properties, since modal in-
terference is extremely sensitive to changes in the phase accu-
mulated by the fiber’s guided modes, which are in turn affected
by the perturbations. Overcoming the effects of these perturba-
tions is an important step toward robust fiber-based technologies
and applications.
For one static conformation of the fiber, the transmission

properties are fully captured by the transmission matrix (TM).[9]

When weak perturbations are applied on the fiber, the TM of the
deformed fiber can be predicted,[7,10] mapped to pre-calibrated
deformations,[11] or compensated for.[12–14] Unfortunately, these
options do not hold for strong deformations. Invariant statis-
tical properties can also be harnessed to recover the transmit-
ted information. For example, a rotational memory effect was
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observed in pixel space,[15] and recently a
similar effect in mode basis was used for
image reconstruction through MMFs.[16]

Alas, these properties are also limited to
small perturbations and require a prior
estimation of the TM or a feedback sig-
nal. The existence of invariant prop-
erties that survive strong deformations
would allow envisioning image recon-
struction through unknown and strongly
perturbed fibers.
The high availability and low cost

of strong computing power in recent
years gave a significant boost to deep

learning (DL) approaches. Recently, neural networks have at-
tracted increasing attention in the optical community, allowing
for the reconstruction of input information after propagation
through random complex media.[17–28] In fibers, convolutional
neural networks (CNN) were shown to produce reconstructions
with a similar fidelity to the TM approach.[18,19,21] Most previous
works were limited to a single, static, fiber conformation. It was
recently shown that CNN models can reconstruct images from
fibers that are weakly perturbedwhile the data sets were recorded.
The weak perturbations were induced by natural drifts in the en-
vironmental conditions,[19] by weak bending of the fiber[21,28] or
by wavelength scanning.[29] Nonetheless, all previous works in
fibers were not able to generalize to unknown and strongly per-
turbed fiber conformations that span a wide configuration space
which describes numerous uncorrelated fiber configurations. DL
approaches are known to efficiently learn invariant properties of
signals, and can thus be harnessed for the challenge of learning
the transmission through strongly perturbed systems. Indeed, in
scattering media, Li et al. trained a CNN on the speckle created
by a group of thin diffusers, and produced excellent image re-
constructions from speckle resulting from different diffusers of
the same type.[20,30] This generalization was possible due to the
existence of correlations between speckle created by the differ-
ent diffusers, an invariant property which the DL model learned
to recognize.
Motivated by these results, we use DL to learn invariant prop-

erties of strongly perturbed multimode fibers. We use a CNN
and show that when we train the network over hundreds of ran-
dom nearly uncorrelated fiber bends, it succeeds in reconstruct-
ing high-fidelity images even when the fiber is strongly perturbed
many weeks after the training perturbations. We call this method
of training on multiple low-correlated fiber conformations con-
figuration training. A sketch of our workflow is presented as Fig-
ure 1. Configurations are created via strongmechanical perturba-
tions, by simultaneously bending the fiber at multiple positions
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Figure 1. Schematics of the reconstruction process. Images from the MNIST hand-written digit dataset are displayed on a digital micromirror device
(DMD). A laser beam is reflected from the DMD and injected on a multimode fiber, whose distal end is imaged on a CMOS camera. This procedure is
repeated for each fiber conformation that we change by applying local bends at multiple positions along the fiber (depicted by the orange, blue, green and
red curves). For the same set of input images (hand-written digits), different configurations give different output speckle patterns. Speckle-digit pairs
from some of the configurations (coined the known configurations) are used to train a convolutional neural network (CNN). Speckle from unknown
configurations are used to reconstruct digit input images and estimate the generalization capabilities of the trained model.

using an array of piezoelectric plate benders that are positioned
above the fiber.[31] We suggest that the generalization is possi-
ble due to some hidden statistical similarities in the speckle, and
support this by showing these correlations along with a 2D em-
bedding of the acquired speckle.

2. Experimental Section

2.1. Experimental Setup

The experimental setup, as depicted in Figure 2, consisted of a
HeNe CW laser (wavelength of 𝜆 = 632.8 nm) which illuminated
a digital micromirror device (DMD; Ajile AJD-4500-UT). The
light from the DMD’s on’ pixels was imaged on the proximal end
of a 1.5m-long step-indexMMF (Thorlabs FG050LGA; V number
≈ 55 at 𝜆) using a 4f system. The intensity of the output speckle
pattern was imaged by a second 4f system on a CMOS camera.
37 piezoelectric actuators were placed along the fiber, and a com-
puter was used to control their vertical displacement. Each actu-
ator bent the fiber by a three-point contact, creating a bell-shaped
local deformation of the fiber, and inducing mode mixing exhib-
ited in the fiber’s transmission matrix.[32] The curvature of the
bend depended on the vertical travel of the actuator, and was on
the scale of millimeters (down to ≈ 12 mm; see Figure 2b,c).[31]

By changing the actuator’s position, and composing the bends
created by all actuators, a huge variety of possible configurations,
with varying correlations between each other could be created. To
quantify the correlation between different random fiber confor-
mations, the Pearson correlation coefficient (PCC) was computed
between speckle patterns obtained for a fixed input. When the
bending configuration created by all of the actuators using their
full stroke was randomized, the average PCC between different
fiber conformations (calculated over the same input patterns) was
0.12 ± 0.01, which was found to be equivalent to the PCC values
obtained by simply bending the fiber on centimeter scales (see
Supporting Information for more details). These similar correla-
tion values in multiple bending regimes emphasize the system’s
relevance for studying general bending deformations.

Figure 2. Experimental setup and neural network architecture. a) A laser
beam illuminates a DMD. The reflected light is imaged onto the proxi-
mal end of an MMF. Piezoelectric plate benders are positioned above the
fiber (b), allowing for the application of various computer-controlled bends
along the fiber. The light from the distal end of the fiber is imaged on a
camera. c) Side view of a bend, applied by a three-point contact between
the actuator and an opposing metal rod. The curvature’s radius varies on
the scale of mm-s. d) Schematic of the U-Net architecture used for image
reconstruction from speckle obtained at multiple fiber geometries. L, lens;
DMD, digital micromirror device; O, objective; MMF, multimode fiber; M,
mirror; CMOS, camera.

2.2. Data Acquisition and Processing

To collect many different speckle patterns for a single fiber ge-
ometry, sequences of hand-written digit patterns were displayed
from the MNIST dataset[33] on the DMD and the resulting 128 ×
128 speckle patterns were recorded. Due to the binary nature of
the DMD, each digit was first converted to a binary amplitude im-
age by applying a threshold on the original 8-bit grayscale image.
The acquired number of digit patterns and fiber configurations
varied in the different training approaches studied. In all cases,
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Figure 3. Digit reconstruction using a CNN trained on a single fiber con-
formation. a) Example of speckle patterns received at the distal end of the
fiber for a random configuration. b) The ground truth that is the image
that is sent to the DMD. c) The top row shows representative examples
of reconstructions from a known configuration (the one the model was
trained on). The bottom row shows examples of an unknown configura-
tion, from which it is evident that the model does not generalize to other
fiber conformations. The corresponding inputs were not used as part of
the training process. The pixel-wise accuracy, calculated over the patterns
in each row appears in orange, and the Jaccard index (JI) in blue.

separate data was acquired for training and for testing purposes
(according to the division of the original dataset[33]).
The deep learning model used here was a convolutional neu-

ral network (CNN) of U-Net type.[34] The network was fed with
speckle images, and the digit patterns that were displayed on the
DMD were reconstructed. Once the training was complete, pre-
dictions were made in real time (milliseconds). The exact archi-
tecture used is depicted in Figure 2d (see Supporting Information
for more details). The metrics used to quantitatively appraise the
performance of this model were the pixel-wise accuracy (defined
as the percentage of the correctly predicted pixels) and the Jaccard
index (JI; the intersection over union score of the binary recon-
structions, which ranges between 0 and 1, and is only affected by
the white pixels). Additionally, a very simple CNN[35]was trained
to classify the reconstructions into digits, and to compare each re-
sult with the digit number that was displayed on the DMD. The
classification success was defined as the true positive rate and
was calculated over unknown patterns to assess the generaliza-
tion capabilities of the trained model.

3. Experimental Results

We start by demonstrating the reconstruction of a single config-
uration. For this first experiment we acquire a total of 70k dif-
ferent images (originating from 70k different hand-written digit
patterns in the MNIST dataset), of which 60k are used for train-
ing and the rest 10k only for testing. We use the training set
to train the model, and use the unknown test set to appraise
its performance. As expected for an unperturbed fiber, and in
accordance with previous works, the reconstruction is very ac-
curate, see Figure 3. Quantitatively, the average pixel-wise accu-
racy for the entire test set (averaged over 10k reconstructions) is
97.6% ± 0.2, the JI is 0.83 ± 0.02, and the classification success
is over 97%. While yielding high fidelity reconstructions for the
same fiber conformations, this model fails to generalize over un-
known fiber perturbations, resulting in an average pixel accuracy
of 82.8% ± 3.2 and JI of 0.17 ± 0.07 as demonstrated in the bot-
tom row of Figure 3c.
In principal, one could extend this approach and train a CNN

on all of the data from multiple configurations. In the Support-
ing Information, we demonstrate this for simultaneously train-
ing on eight random fiber conformations. However, since each

actuator induces significant mixing between the fiber modes,[32]

the space representing the possible configurations induced by 37
actuators is very large, even for a short fiber. To statistically ex-
plore this space, a large number of configurations need to be rep-
resented in the training set. The current approach, to which we
refer as “standard training”, is not scalable for a large number of
configurations, as it requires a large data set for each configura-
tion and thus the training set becomes too large to be handled
efficiently in terms of memory (needed to store the images) and
time (to train the network).
As one cannot expect to learn all of the possible conformations

of the fiber, predicting the output from an unknown configura-
tion can be possible if there are invariant properties that are ro-
bust to conformation variations and are learned by the CNN. To
harness these potential invariant properties, we train the network
over 943 fiber conformations, obtained by randomizing the posi-
tions of all of the actuators. The degree of correlation between
fiber conformations, quantified by the PCC of speckle patterns
obtained for the same fiber input, is 0.12 ± 0.01. To account for
the large number of configurations while limiting the size of the
training set, we use only 800 training images per configuration
and record the intensity of the resulting speckle. In total, data was
acquired over the span of 14 weeks, during which a few differ-
ent macro bends were applied in addition to the actuator-induced
bends to improve the model’s robustness to mechanical pertur-
bations of varying scale. The same average PCC was obtained be-
tween configurations from the same and different days, regard-
less of the applied macro bend. We acquire additional test data
from 800 other random fiber conformations, to appraise the per-
formance of the model on unknown configurations. We coin this
type of training, which consists of less data from multiple fiber
conformations as “configuration training”, because we prompt
the model to learn general statistically invariant properties.
The configuration training immensely improves the recon-

struction of test images from unknown fiber conformations. We
observe that when the average correlation between configura-
tions from the train set and the test set (calculated for the same
input patterns) is 0.12, the average Jaccard index increases from
JI= 0.13 for standard training to JI= 0.47 for configuration train-
ing. To emphasize the performance difference between our con-
figuration training and the standard (single configuration) train-
ing, we plot the JI for standard training as a function of the out-
put intensity correlation between the test configurations and the
train set (Figure 4, red curve). The test configurations range from
strong perturbations (train-test correlation ≈ 0.12) to weak per-
turbations (train-test correlation ≤ 1). Thus, with our configu-
ration training, reconstructions from strong perturbations have
similar fidelity to ones that are achieved fromweak perturbations
with standard training. Noticeably, when the train-test correla-
tion is ≈ 0.6 (weak perturbations regime), the JI values of stan-
dard training are similar to those obtained with our configuration
training at a correlation of 0.12 (strong perturbations regime). As
depicted by the example reconstruction in Figure 4, this improve-
ment translates an unintelligible image (leftmost red frame) to a
sharp image (green) which greatly resembles the ground truth.
Additional reconstruction examples are provided in Visualization
1 as part of the Supporting Information. To study the impact of
the size of the training set in this approach, we trained three addi-
tional models, where instead of 800 samples per configurations
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Figure 4. Reconstruction fidelity versus the correlation between the test
configurations and the training set configurations. The Jaccard index (JI),
which quantifies the reconstruction fidelity, is plotted against the Pearson
correlation coefficient (PCC) between the train and test configurations. For
configurations with an average PCC of 0.12, our method of configuration
training (green circle) produces higher-quality reconstructions than stan-
dard (single configuration) training, by a factor of ≈ 3.5. The blue data
point represents the JI for using the same fiber configuration for train-
ing and testing. The red curve shows the degradation of reconstruction
fidelity with the decreasing correlation between the train and test set (see
Supporting Information). The green data points correspond to unknown
fiber conformations using configuration training on 943 random fiber con-
formations. The effect of the training set size is observed by training sep-
arate models on 63/100/200/800 samples per configuration, with the av-
erage obtained JI depicted as the green triangle/diamond/square/circle.
The standard deviation of the first three is emitted for clarity, and has the
same size as the one that is shown. All points are calculated over the same
test input patterns. The PCC between two different configurations corre-
sponds to the average PCC between respective output intensity patterns
for the same input excitations, and the standard deviation between the
train and test for configuration training is shown. A representative exam-
ple for the reconstruction of an unknown input digit is displayed at the top
along with its ground truth.

we used only 63/100/200 samples from each of the 943 config-
urations. We then tested the reconstruction fidelity using these
models over the same test patterns of unknown configurations.
The obtained average JI is depicted in Figure 4 as the green tri-
angle/diamond/square (correspondingly). Noticeably, the gener-
ated reconstructions have a lower JI than when the model was
trained on 800 samples per configurations, however there is still
an increase of a factor of ≈3 to the average JI compared with the
“standard training” approach, with a training set of comparable
size and the same average configuration PCC.
To further examine the configuration training results, we show

representative examples of test patterns in Figure 5, and in Visu-
alization 2. In Figure 5, each column describes reconstructions
from an arbitrary configuration, one from each day data was ac-
quired. Interestingly, the reconstructions for both known (part
of the training) and unknown (only used for testing) configura-
tions give results of similar quality. This is reflected by similar
values which are obtained for known and unknown configura-
tions over the entire test set using all of our evaluation metrics,
as detailed in Table S1, Supporting Information. We attribute the
resemblance of the results for known and unknown configura-
tions to the small number of examples in the train set from each
configuration.More training data fromeach of the configurations

Figure 5. Reconstructions produced by configuration training of speckle
from multiple low-correlated fiber conformations. The leftmost column
shows the ground truth. Each of the other columns show reconstructions
from a randomly chosen configuration, acquired at different days. The
three (four) columns under ”known” (”unknown confs”) depict recon-
structions from configurations the model did (did not) train on. Notice-
ably, both known and unknown configurations results in reconstructions
of similar fidelity. The Jaccard index of each reconstruction appears below
it in blue, next to the pixel-wise accuracy which appears in orange.

could produce even better reconstructions. Moreover, the large
standard deviation of the JI depicted in Figure 4 by the error bars
is manifested in Figure 5, where evidently some digits are easier
to reconstruct than others (e.g., ”1” and ”6” compared with ”2”
and ”3”).

4. Discussion

For a static fiber conformation accurate results can be obtained
using a CNN with standard training, since similar digit images
(e.g., two patterns of the digit ”9”) excite similar fiber modes.
Thus, the resulting speckle for similar inputs within the same
fiber conformation are spatially correlated, as shown in the blue
histogram of Figure 6a for an input image of a ”9”. These correla-
tions aid the CNN to produce accurate reconstructions, as evident
in the top row of Figure 3c and the high JI described by the blue
point of Figure 4. Furthermore, the relatively high correlations
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Figure 6. Speckle correlations and 2D embedding of inputs and configurations. a) Histogram of the Pearson correlation coefficients of speckle for
different DMD inputs within the same configuration (blue), speckle generated for the same DMD inputs in two different configurations (gray) and
different inputs in two different configurations (orange). The blue histogram is wide and accounts for the ease of reconstructing images from a single
fiber conformation. The shift of the mean value between the gray and orange histograms could account to the reason a CNN is able to generalize over
fiber bends. b) 2D embedding of 15k speckle patterns from a single fiber conformation mostly divides them according to the class of the digit that
was displayed on the DMD (0–9). c,d) 2D embedding of speckle patterns from 33 random configurations. The embedding contains 32 blobs, and an
additional centered blob that corresponds to data that was not easily separable (which appears in the center due to the algorithm’s working mechanism).
c) The color code corresponds to different configurations (information that was not available to the algorithm), showing configuration clusters (with two
configurations that completely overlap). d) Same data as (c), the colors correspond to digits (same code as (b)), and shows that the t-SNE algorithm is
not successful in separating this data according to digits.

in the pixel basis hint that the simpler task of classifying the
input digit images (according to digit) can potentially be achieved
with a ”classical” machine learning approach, that is without DL.
In ref. [30], Li et al. used an unsupervised dimension reduction
technique and demonstrated that speckle that emerge from thin
diffusers can be clustered according to their original class or
acquisition configuration. Here we take a similar approach and
show that using the t-distributed stochastic neighbor embedding
(t-SNE) dimensionality reduction technique,[36] images from the
same fiber conformation are mostly clustered according to their
underlying digit class (Figure 6b).
For a dynamic fiber that undergoes strong perturbations, one

would not expect the CNN to work since even for the same im-
ages at the fiber input, speckle patterns for different fiber defor-
mations show low correlations. However, the transmission prop-
erties cannot be totally uncorrelated, as it would have prevented
the generalization over unknown conformations that we experi-
mentally demonstrated in this study. To explore how we are able
to produce high fidelity reconstructions, we search for invari-
ant properties in the speckle produced for different fiber confor-
mations. Following ref. [20], we computed the correlations be-
tween output speckles for different configurations. For two ran-
dom configurations, the speckle patterns that are obtained for dif-

ferent inputs exhibit a much narrower correlation distribution,
which is centered around a much smaller value than within the
same fiber conformation, as we depict in the orange histogram
of Figure 6a. This distribution is centered at 0.11 ± 0.01, and
presumably deems the mission of reconstruction from different
configuration impossible. However, when we compare between
the same inputs in random configurations, this distribution is
slightly shifted to higher values, and centered at 0.12 ± 0.01 (gray
histogram of Figure 6a).
The observed decorrelation of the output intensity pattern in

the pixel basis does not allow us to directly assess the level of dis-
order, since even if the transmission speckle decorrelates quickly
when deformation is applied, some hidden information can
still be present.[10,13] We believe that the mere existence of these
low, but non-zero correlations stand at the heart of the CNN’s
success in the image reconstruction through unknown fiber con-
formations. Indeed, the 2D embedding of speckle patterns from
different inputs and configurations using the t-SNE algorithm
clusters the data points according to their original configuration.
In Figure 6c we show a representative example for the embed-
ding of 33 random configurations (with two configurations that
completely overlap). We note that for less data, t-SNE is unable
to differentiate between digits (Figure 6d)—a task the CNN
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succeeds at. The fact that configurations of the disorder can
be discriminated using statistical analysis tools (Figure 6c,d)
shows that the transmission properties of light are not totally
randomized by the deformations, as outputs would otherwise be
indistinguishable. This supports the interpretation that the deep
learning model learns the invariant properties, common to all
deformations, which are then used to infer and reconstruct the
input excitation.We therefore conclude that there is an advantage
to using DL when dealing with multiple conformations.
The fiber conformations we study in this work are driven by

actuators that induce multiple bends on the millimeter scale.
In real life applications, we expect fewer bends though on a
longer length scale. We therefore compare the correlation be-
tween different fiber conformations, obtained for a few macro-
bends and for the actuator-driven bends, and find that the PCC
of the speckle output is ≈ 0.12 in both cases (see Supporting In-
formation for more details). We therefore believe that the pro-
posed configuration training can be implemented in real-life ap-
plications, and in particular for biomedical imaging, since the
parameters of the fiber we use adhere to those used in proto-
type microendoscopes.[6] A note-worthy limitation of our work
emerges from the homogeneity of the train set, which consists
of a single class of images: digits. The CNN we use channels
the input through an encoder, which represents the data in a
smaller dimension called the latent space. Due to the homogene-
ity and the nature of encoders, code in the latent space would
be decoded to a digit, or to a composition of digits, in the pixel
space (the reconstruction). Thus, images from the same domain
that is to be reconstructed should be used for the training of
our model to achieve the best performance. However, this short-
coming can be easily overcome by utilizing a more complex DL
model, which was shown to be able to generalize to images from
other domains.[18,20]

5. Conclusion

In this work we experimentally demonstrated robustness to fiber
deformations using a deep learning model. Our model is able to
reconstruct images which are transmitted through a bent multi-
mode fiber, with no knowledge of the specific fiber conformation,
and regardless of the inflicted bend configuration. We presented
an immense improvement in reconstruction fidelity compared
with standard DL approaches, transforming an incomprehensi-
ble image to an intelligible one. We showed that to achieve gen-
eralization it is essential to train a CNN on the speckle patterns
that originate from numerous fiber bends and are acquired for
many different image inputs.We implemented such an approach
by introducing configuration training. We then tested the net-
work’s performance on patterns from strongly perturbed fibers,
and showed good reconstruction results even for strong perturba-
tions applied many weeks after the training process. Our demon-
stration has possible real-life applications, in particular for fiber
endoscopy where changes in the geometrical configuration of the
fiber are unavoidable. The CNN model we used is fairly simple
and compact, with low memory requirements (compared to pre-
vious works in the field), allowing for video rate implementation
with standard computers.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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