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Multimode optical fibers (MMFs) have gained renewed interest in the past decade, emerging as a way to
boost optical communication data rates in the context of an expected saturation of current single-mode
fiber-based networks. They are also attractive for endoscopic applications, offering the possibility to
achieve a similar information content as multicore fibers, but with a much smaller footprint, thus reducing
the invasiveness of endoscopic procedures. However, these advances are hindered by the unavoidable
presence of disorder that affects the propagation of light in MMFs and limits their practical applications.
We introduce here a general framework to study and avoid the effect of disorder in wave-based systems and
demonstrate its application for multimode fibers. We experimentally find an almost complete set of optical
channels that are resilient to disorder induced by strong deformations. These deformation principal modes
are obtained by only exploiting measurements for weak perturbations harnessing the generalized Wigner-
Smith operator. We explain this effect by demonstrating that, even for a high level of disorder, the
propagation of light in MMFs can be characterized by just a few key properties. These results are made
possible thanks to a precise and fast estimation of the modal transmission matrix of the fiber which relies on
a model-based optimization using deep learning frameworks.
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I. INTRODUCTION

The description of light transport in multimode fibers
(MMFs) has been widely studied since the 1970s, with a
complete analytical understanding available in the case of
an ideal straight fiber [1]. However, imperfections of the
fabrication, geometrical deformations, or changes of the
environmental conditions introduce randomness that dras-
tically modifies their transmission properties. When light
injected in one mode statistically explores all the other
modes with the same probability, i.e., in the strong-
coupling regime, some average properties can be predicted
[2]. However, from a few centimeters to a few kilometers,
typical MMF systems are neither in the no-coupling nor in
the strong-coupling regime; disorder strongly influences
light propagation, but some aspects of the ordered behavior
survive [3–5]. This intermediate regime has been little
investigated so far due to the difficulty to experimentally
characterize the effect of disorder on the modal content of
the fibers. Understanding the transition between these two

regimes remains an important challenge for optical tele-
communications, endoscopic imaging, and micromanipu-
lation applications.
It is well known that injecting coherent light into an

MMF results in the observation of a random pattern of
bright and dark spots at the output, called speckle pattern.
However, unlike scattering media, the observation of a
speckle is not in itself a signature of disorder. Indeed,
perfect straight fibers also exhibit this property due to the
existence of intermodal dispersion [6]. As long as multiple
modes are excited, they quickly accumulate seemingly
random relative phases leading to such complex interfer-
ence patterns. In the past decade, the measurement of the
transmission matrix (TM) emerged as a tool of choice to
characterize and control the propagation of light in complex
but deterministic optical linear systems. Initially introduced
in the context of scattering media [7–9], it consists in
measuring the field-field linear relation between an input
plane and an output plane. This concept was then applied to
MMFs, unlocking new applications for endoscopic imag-
ing [10–12], micromanipulation [13], quantum information
processing [14], and for the control of optical channels for
telecommunications [15]. It allowed one, in particular, to
demonstrate the robustness of the propagating modes in the
case of short step-index fibers [6] and bent graded-index
fibers [16]. However, the observation of the TM does not
directly allow assessing the level of disorder, as dispersion
and mode interference lead to the observation of a
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seemingly random matrix, even without disorder. Only
when represented in the basis of the propagating modes
does the TM allow us to fully capture the spatial propa-
gation properties of the MMF. This process can be done by
directly injecting light and measuring the field in the mode
basis [17] or by numerically projecting a TM measured in a
basis of diffraction-limited spots [6]. In both cases, a good
characterization is achieved only for the low-order modes,
as going into higher-order modes places increasingly
demanding requirements on the beam quality and on the
alignment [18]. A numerical post-treatment is demon-
strated [6] to correct the TM measurement, but it still
requires a careful and time-consuming procedure.
Moreover, such an approach assumes that there is little
to no disorder in the fiber, which forbids the study of the
transition from the weak to the strong mode-coupling
regimes. One of the main challenges of practical applica-
tions of multimode fibers is not only to understand the
effect of disorder, but to avoid it altogether. In this context,
the time-delay operator introduced in quantum mechanics
by Wigner and Smith [19,20] has recently attracted
renewed interest among the complex media community.
For a lossless optical system characterized by its scattering
matrix S, which links all input channels to all output ones,
the Wigner-Smith operator is constructed using the fre-
quency derivative of S and defined as Q ¼ −iS−1∂ωS.
Interestingly, the eigenstates of this operator, also called
principal modes, are insensitive to small variations of the
frequency. The possibility to use wave front shaping
techniques to generate those input states opens new
applications to improve some properties of light transport,
such as to generate particlelike wave packets in chaotic
cavities [21] and in scattering media [22,23] or to optimize
energy storage in scattering media [24].
For MMFs, the scattering matrix can be approximated by

the TM, whose measurement gives access to the principal
modes. In the context of telecommunications, they are
particularly attractive, as they do not suffer from modal
dispersion to the first order [25]. Their ability to be stable
over a large bandwidth is observed in the case of weak [15]
and strong disorder [26]. The possibility to find channels
invariant to small modifications can be extended to other
parameters than the frequency using the generalized
Wigner-Smith (GWS) operator [27,28]. These studies focus
on the interaction between waves and localized targets in
scattering environments in the microwave regime.
In the present paper, we first introduce a new approach

that relaxes most of the experimental constraints on the
procedure to measure quickly and accurately the TM of an
MMF in the mode basis. It uses numerical tools based on a
modern machine-learning framework. We demonstrate the
ability to use the knowledge of the TMs for small
deformations to find an almost complete set of channels
using the GWS operator, the deformation principal modes,
that are insensitive to strong perturbations. To understand

this effect, we show that, all across the deformation range,
the evolution of the TM can be characterized by only a few
parameters that account for the mode coupling between
close-by propagating modes.

II. MISALIGNMENT AND ABERRATION
ROBUST CALIBRATION

We first define the TMHpix measured in the pixel basis of
a modulator and a camera, respectively located in planes
conjugated with the input and output facets of a fiber.
Leveraging a fast digital micromirror modulator and InGaAs
camera, we estimate Hpix with a 1 kHz frame rate in about
10 s. The principle of the experiment is presented in Fig. 1(a)
and detailed in the Appendix A. Ideally, the mode basis
representation of the TM can simply be recovered using

Hmodes ¼ Mo
†:Hpix:Mi; ð1Þ

where Mi (respectively, Mo) represents the change of basis
matrix between the input (respectively, output) pixel basis
and the mode basis of the fiber (see Appendix D for the
theoretical mode calculation). We use the orbital angular
momentum modes basis, in which the modes are defined by
a pair of indices l and m, characterizing, respectively, the
radial oscillations and the orbital angular momentum.
However, in the presence of slight aberrations or misalign-
ments, the change of basis matrices cannot be inferred only
from the calculation of the theoretical mode profiles of the
fiber. It leads to strong unwanted distortions of the mode
basis TM, even with a carefully tuned setup [6]. Such an
effect also occurs when working directly in the mode basis,
as injected and detected modes, affected by the aberrations
and misalignments, are different from the true ones. To
overcome this problem, we design a numerical procedure
based on the neural network framework PyTorch [29], taking
advantage of graphics processing units (GPUs) for optimized
computational times. Unlike neural networks, that consists
of generalist layers, typically dense or convolutional layers,
we use a model-based approach. Our network is composed
of custom layers, that each mimic the effect of an aberration
by applying a Zernike phase polynomial to the change of
basis matrix. The structure of the network is represented in
Fig. 1(d). To take advantage of the deep learning optimi-
zation procedures, based on gradient descent, each layer is
differentiable. Only one parameter per layer, the strength of
the corresponding Zernike polynomial, has to be optimized.
We then train the model parameters to maximize

kHmodesk, where k:k represents the L2 norm (Frobenius
norm) of a matrix. Energy conservation imposes that the
input and output projections performed in Eq. (1) lead to
kHmodesk ≤ kHpixk. Since light can be transmitted through
the fiber only by the propagating modes, these two
quantities are equal when the matricesMi andMo correctly
compensate for the aberrations and misalignments. Unlike
neural networks, we do not need a large training set.
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Indeed, we feed to the network only one experimentally
measured matrix Hpix. Because of the low number of
trainable parameters, 46 corresponding to as many Zernike
polynomials plus one for a global scaling on each facet, the
optimization takes only a few seconds to converge for a
110-mode fiber. More details about the numerical approach
are provided in Appendix E. We effectively shift the
complexity of the acquisition from the experimental setup
quality to the numerical optimization. It allows changing
the fiber in study in a matter of a few seconds, without the
need for a precise alignment procedure.
We show in Fig. 1(b) the reconstructed mode basis TM

Hmodes assuming no aberration for a 30 cm unperturbed
110-mode graded-index fiber. The TM exhibits little
symmetry with high losses for the highest-order modes,
reflecting the effect of the aberrations and misalignments.
Moreover, only 49% of the energy is conserved in the mode
basis. After optimization [Fig. 1(c)], about 94% of the
energy is conserved. Moreover, the matrix shows a strong
diagonal, which traduces a weak mode-coupling effect.
92% of the energy is in the block diagonal, representing the
groups of degenerate modes [in green in Fig. 1(d)]. It is
important to stress that the optimization process only
maximizes the total energy in the mode basis; the observed
strong diagonal appears naturally. The procedure leads to

accurate corrections regardless of the level of disorder (see
Supplemental Material [30] S5 for reconstruction compari-
son for different levels of disorder).

III. PERTURBATION INSENSITIVE CHANNELS

To learn how to be insensitive to disorder, we first
characterize the full mode basis TM of an MMF when we
introduce and gradually increase a perturbation. We apply a
controlled deformation on the fiber along an axis orthogo-
nal to the propagation direction (Fig. 2).
Deformations of the fiber core leads to mode-dependent

losses, backreflection, and mode coupling that hinders
telecommunication applications. Qualitatively, strong
deformations have the effect of progressively populating
the off-diagonal elements of the TM while reducing the
energy on the diagonal. Thanks to the precise modal
projection, we could observe for the first time the crossover
from a nearly diagonal TM (weak coupling) [6] to a
seemingly random TM (strong coupling) [26].
We first compute the correction for the TM of the

unperturbed fiber using our aberration compensation
approach. We then apply the same correction parameters
for the measurements obtained when the deformation is
applied. It ensures that the correction procedure does not

(b)

(d)

(a) (c)

FIG. 1. Principle of the MMF TM reconstruction in the mode basis with the automatic compensation of the aberrations. (a) Simplified
sketch of the experiment: The input wave front is modulated using a spatial light modulator and sent on the input facet of an MMF. The
light is transmitted through the propagating modes, and the complex output field is imaged onto a camera. The TM is measured in the
pixel basis and numerically projected onto the theoretical propagating modes. Mi and Mo represent to the input and output change of
basis matrices, respectively, and Hmodes is the TM in the mode basis. (b),(c) Intensity of the experimentally measured TMs in the mode
basis before and after the numerical compensation of the aberrations for one input and one output polarization. The green squares
represent the groups of degenerate modes. The complete TMs are presented in Supplemental Material [30] Sec. S2. (d) Schematic of the
model architecture used for the compensation of the aberrations. Mi and Mo are modified by differentiable and trainable layers
representing a homothety (yellow layer) and phase aberrations characterized by Zernike phase polynomials (blue layers). The Fourier
transforms (green layers) allow applying aberrations in the direct and the Fourier planes. The models for the two input and output mode
conversions are trained simultaneously against a merit function that maximizes the energy in the projected matrix Hmodes (see
Appendix E).
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compensate for some effects of the perturbation. The
fidelity between the matrix of the deformed fiber and
the reference matrix for the unperturbed configuration (see
the caption in Fig. 2) decreases quickly as the displacement
Δx increases. While the transmission properties are
strongly altered for large deformations, our goal is to find
a set of channels that are little affected by them. In the
present work, the parameter of interest is the induced
displacement Δx; we then study the GWS operator
defined as

QΔx ¼ −
i
2
½H−1

modes:∂ΔxHmodes − ðH−1
modes:∂ΔxHmodesÞ†�;

ð2Þ

where † stands for the conjugate transpose.
The second term appears due to the fact thatHmodes is not

unitary [31]. We estimate the GWS operator for a small
deformation Δx ¼ 14 μm. The derivative is numerically
estimated using the approximation

∂ΔxHmodes ≈
HmodesðΔx0 þ δxÞ −HmodesðΔx0 − δxÞ

2δx
: ð3Þ

We choose δx ¼ 8 μm to mitigate the effect of noise that
appears for smaller differences δx.
Its eigenmodes, referred to as the deformation principal

modes, are theoretically insensitive to the deformation
parameter Δx to the first order. We numerically compute
their input profiles and compare the output intensity
patterns across the full range of deformations. The stability
of the deformation principal modes is shown in Fig. 3 as a
function of Δx. For comparison, we also test the injection
of the fundamental mode, which is less affected by disorder
than the other modes [32], and random wave fronts (the
correlation is averaged over 20 realizations). The best
deformation principal modes keep a correlation above
95% over the whole range of deformations compared to

the output profile for no deformation. Moreover, all the
principal modes but four perform better than the funda-
mental mode. It is important to note that, while the GWS
operator is estimated only for small deformations, it
provides an almost complete set of orthogonal channels
robust to deformations, even for large values of Δx. The
fact that few generalized principal modes do not perform
better than the fundamental mode can be attributed to some
of the fiber modes close to the cutoff being greatly
attenuated (see Supplemental Material [30] S5 for the
singular value decomposition of the TM).

IV. DISCUSSION

To further investigate how the deformation principal
modes, computed from the TMs for small deformations,
can efficiently cancel the effect of large deformations, we
study the deformation matrix defined as

Dj ¼ H−1
modesðΔx ¼ 0Þ:HmodesðΔxjÞ − I: ð4Þ

This matrix quantifies how HmodesðΔxÞ deviates from
HmodesðΔx ¼ 0Þ. It is equal to 0 if the TM remains
unchanged. We want to determine the main characteristics
that best describe how the TM is modified when the
perturbation is applied. We then define a deformation
operator D̄ that links each value of the deformation Δxj
to the corresponding deformation matrix Dj. It character-
izes the full evolution of the deformation of the matrix over
the range of deformations applied. We compute the singular
value decomposition of the operator D̄; it amounts to
performing a principal component analysis. The deforma-
tion plays the same role as the different realizations in
standard principal component analysis implementations
(see Appendix C). We show in Fig. 4(a) that the first
two singular values amount to more than 96% of the total
energy of the operator. The corresponding singular com-
ponents are represented in Fig. 4(b) for one pair of input

(a) (b) (c)

FIG. 2. Effect of deformations on the mode basis TM. (a),(c) Representation of Hmodes for no deformation and when a transverse
deformation Δx ¼ 70 μm is applied on the fiber. (b) Fidelity between the TM of the deformed fiber and the unperturbed one as a
function of Δx. The fidelity is defined as Fc ¼ Tr½jHmodesðΔxÞ:HmodesðΔx ¼ 0Þ†j2�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½jHmodesðΔxÞj2�Tr½jHmodesðΔx ¼ 0Þj2�

p
. In the

inset, we represent a sketch of the deformation procedure.
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and output polarizations. As the deformation operator is
computed for the whole range of deformations, the first
principal components characterize the most important
modifications applied to the TM during the deformation.

It is shown that, for low perturbations introduced by
thermal fluctuations, the distortion of the TM can be
parametrized by only one parameter [33]. To test here if
the TM of a fiber under strong deformations can be

(a) (b) (c)

FIG. 3. Examination of the deformation principal modes. (a),(c) Output intensity profiles for the injection of a deformation principal
mode, the fundamental mode of the fiber, and a random wave front for the minimal and maximal deformation. Each pair of patterns
represents the intensity in the left and right circular polarization states of light. (b) Pearson correlation coefficient between the output
intensity pattern at Δx and the one at Δx ¼ 14 μm for all the deformation principal modes, the fundamental mode, and after averaging
over 20 random input wave fronts.

(a)

(c) (d)

(b)

FIG. 4. Analysis of the effect of deformations. (a) Singular value distribution of the deformation operator representing the full range of
deformations. (b) Intensity of the first two singular components U1 and U2. (d) Matrix representing the coupling between close-by
modes, i.e., with a radial order l difference equal or lower than 1 and an orbital momentum m difference equal or lower than 1.
(c) Fidelity between the measured TM in the mode basis and the approximated one using Eq. (5) (blue line). The fidelity is defined
similarly as in the caption of Fig. 2(b).

LEARNING AND AVOIDING DISORDER IN MULTIMODE … PHYS. REV. X 11, 021060 (2021)

021060-5



parametrized by only a few parameters, we approximate the
transmission matrix using just the first two components U1

and U2 using

D̂j ¼ αjU1 þ βjU2; ð5Þ

where αj and βj are directly extracted from the singular
value decomposition (see Appendix C). We show in
Fig. 4(c) the fidelity between the estimated matrix
ĤmodesðΔxjÞ ¼ HmodesðΔx ¼ 0Þ:½D̂j þ I� and the measured
one. Surprisingly, all across the range of deformations, the
TM can be estimated using only two parameters with a
fidelity above 93%. We can give a qualitative interpretation
of the two significant components. U1 is close to identity,
traducing the loss of energy in the diagonal compared to the
reference TM at Δx ¼ 0. It is equivalent to the decay of the
ballistic light in the presence of a scattering environment in
free space. The second vector U2 shows a well-defined
symmetric pattern that corresponds to an energy conversion
between modes with close-by radial and angular momenta l
and m [see Figs. 4(b) and 4(d)]. This result is consistent
with the previous observations of mode coupling [34] in
bent graded-index fibers. It corresponds to photons being
injected in one mode and leaving the fiber in a close-by
mode, which corresponds to photons whose direction has
been modified once by the perturbation. This phenomenon
is analogous to the conversion between ballistic and single
scattered photons in scattering media. This physical inter-
pretation is made possible thanks to the precise correction
of the aberrations that would otherwise destroy the sym-
metries of Hmodes.
The fact that the TM can be estimated precisely using

only two terms, only one of them accounting for mode
coupling, is counterintuitive considering the fact that
Hmodes shows a seemingly random aspect for high-order
modes at large deformations [see Fig. 2(c)]. Coupling
between modes further away in the l and m space can
occur; it is the equivalent of multiple scattered photons in
scattering media. However, strong mode coupling also
comes with important losses due to coupling to nonguided
modes that leak out of the fiber [32], leading to a low-
energy contribution of this effect. The fact that the same
component U2 dominates the mode-coupling effect for the
whole deformation range explains how the deformation
principal modes, estimated for low deformations, are still
valid for strong deformations.

V. CONCLUSION

In summary, we present a framework to study the effect
of disorder in MMFs, allowing one, in a matter of seconds,
to fully characterize light propagation in the mode basis.
As precise predictions for the effect of perturbations on
multimode fibers in real-life situations are currently lack-
ing, our approach provides a way to quantify such

perturbations using measured transmission matrices and
could serve as a benchmark for the study of theoretical
models. We harness this approach to observe for the first
time the existence of deformation principal modes that are
robust against strong deformations and that can be found by
only using the knowledge of the fiber properties for small
deformations. This can be explained by the predominance
in the transmission properties of the coupling between
nearby modes, even for large deformations. We emphasize
that our framework is general and can be used to study any
linear propagation system regardless of the presence or the
type of perturbations. Moreover, as the complexity of
handling the effect of the aberrations and misalignments
in the TM estimation is rejected onto a fast automatic
postprocessing, our approach is virtually robust to any
optical system imperfections, allowing plug-and-play oper-
ations suitable for real-life applications.

Raw and processed data, custom modules, and sample
codes for pre- and postprocessing are available in the
dedicated repository [35].
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APPENDIX A: EXPERIMENTAL SETUP

The optical setup is represented in Fig. 5. The light
source consists of a continuous linearly polarized laser
beam at 1550 nm (TeraXion NLL) injected into a 10∶90
polarization-maintaining fiber coupler (PNH1550R2F1).
The 90% arm is collimated and expanded to illuminate a
digital micromirror device (DMD) (Vialux V-650L) com-
posed of 1280 by 800 pixels with a pitch of 10.8 μm
working at a maximum frame rate of 10.7 kHz. The light is
converted into the left or right circular polarization using a
quarter-wave plate and a motorized precision rotation
mount (PRM1/MZ8). Two lenses allow the conjugation
of the DMD plane with the surface of a standard 30 cm
OM2 (50 μm core) graded-index multimode fiber, consist-
ing of a glass core, a glass cladding, and an acrylate
coating. The MMF input facet is held by a fiber connector
(Thorlabs B30128C3) and a bare fiber terminator (Thorlabs
BFT1) and is mounted onto a five-axis translation stage
(Thorlabs APY001/M and MAX311D/M). The output
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facet is positioned into a V groove (HFV002) and held by
magnetic clamps. The fiber is maintained approximately
straight. Roughly at half the length, we place a V groove to
support the fiber where we introduce a deformation. The
perturbation is applied on the fiber by pressing on it using a
50 nm precision dc servo motor actuator (Thorlabs Z812).
Magnetic clamps are placed on both sides of the servo
motor to prevent the fiber from slipping when the defor-
mation increases. The coating absorbs a significant part of
the deformation of the fiber, so that the deformation applied
to the fiber core is proportional to but smaller than the
translation value Δx. The output facet of the fiber is imaged
onto an InGaAs camera (Xenics Cheetah 640-CL 400 Hz)
through a beam displacer (Thorlabs BD40) that spatially
separates the two polarization contributions in two different
areas of the pixel array. A reduced region of interest allows
achieving frame rates of about 1 kHz. The 10% arm of the
fiber beam splitter is used to illuminate the camera with a
tilted reference arm in an off-axis configuration [36].

APPENDIX B: MEASUREMENT
OF THE PIXEL BASIS TM

The modulation of the input field is achieved using the
Lee hologram method [37]. It allows performing complex
amplitude modulation using a binary amplitude DMD [38].
The input modulation patterns consist in square layouts
of Nin

pix ¼ 35 × 35 ¼ 1225 square macropixels of size
20 × 20 pixels. We imprint on each macropixel a periodic
pattern of bright (modulation state on) and dark (modula-
tion state off) stripes. Each macropixel effectively acts as a
small grating. The first order of diffraction is selected with a
diaphragm represented in Fig. 5. In the plane of the input
facet of the MMF, the modulation on the macropixels can
be switched on or off by removing the periodic pattern. The
phase of the pixels can be modified by offsetting the grating

patterns on each macropixel. We use a grating period of two
pixels, giving access to only two levels of phase modula-
tion, 0 and π. We can then create three complex amplitude
states: 0, 1, and −1. Sequences of patterns are generated
and sent to the control board of the DMD, where they are
stored in the onboard memory. The sequence is then
displayed at a 1 kHz frame rate on the DMD, which
triggers the acquisition of the frames on the camera.
A tutorial on the Lee holograms is made available on our

Web site [39]. This modulation procedure is implemented
in the PYTHON module SLMlayout [40], and the interface
control of the DMD is done using the PYTHON module
ALP4lib [41]. We developed, share, and maintain both
packages.
The complex output field is measured using an off-axis

holographic technique [36]. We share a tutorial on the off-
axis holography and some sample codes on our Web site
[39]. The complex field is simultaneously measured for the
two orthogonal circular polarization states. A quarter-wave
plate converts the left and right circular polarizations into
two linear orthogonal polarizations. A beam splitter com-
bines the reference arm and the signal arm, and a beam
displacer projects the contributions from the two polariza-
tion states on two different regions of the camera. For
each polarization, the optical field is projected onto a
square pattern of 41 × 41 square macropixels. The field is
averaged over each macropixel. The output field for each
input wave front is encoded into a vector of size
2Nout

pix ¼ 2 × 41 × 41 ¼ 3362, where Nout
pix is the number

of macropixels for each polarization.
The first step of our experiment is to estimate exper-

imentally the TM in the pixel basis Hpix. This matrix
describes the linear relationship between the field on one
pixel of the modulator to the field on one pixel of
the camera. We send a set of input wave fronts described
by the vectors Xi, i ∈ ½1…Nmasks� that represent the field on

FIG. 5. Experimental setup. Li, lenses; Ci, collimators; WPi, quarter-wave plates; M, mirror; D, diaphragm; BD, beam displacer.
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all the input macropixels. The corresponding output field
patterns are represented in the basis of the camera macro-
pixels by the vectors Yi, i ∈ ½1…Nmasks�. The relation
between the input and output fields reads

Yi ¼ Hpix:Xi ∀ i ∈ ½1…Nmasks�: ðB1Þ

Let us call X (respectively, Y) the matrix that represents
the stack of vectors Xi (respectively, Yi). Equation (B1) can
be rewritten

Y ¼ Hpix:X: ðB2Þ

An estimation Ĥpix of the TM can be found by using
each vector of the canonical basis for the input excitation
patterns, i.e., using X ¼ I. It gives direct access to the TM
using Ĥpix ¼ Y. One can also use any orthogonal basis,
such as the Hadamard basis that is convenient for phase-
only modulation [7], so that Ĥpix ¼ Y:X−1. However, in
the presence of noise, or if one or more measurements fail,
the quality of the reconstructed matrix is significantly
altered. To mitigate those effects, we choose to use a set
of random vectors Xi with Nmasks > Nin

pix. We can then
estimate the TM using

Ĥpix ¼ Y:Xþ; ðB3Þ

where : þ represents the Moore-Penrose pseudoinverse. We
choose Xi to be random patterns where the modulation on
each pixel can take the value 0, −1, or 1. For each pattern,
the percentage of off pixels, i.e., taking the value 0, is drawn
from a uniform distribution between 60% and 80%. The
percentage of on pixels taking the value 1 is drawn from a
uniform distribution between 40% and 60%, the other
pixels taking the value −1. The positions of the pixels are
random. We choose Nmasks ¼ 6 × Nin

pix ¼ 7350 to ensure
the existence and the stability of the pseudoinverse of X.
By changing the input polarization state, we measure

separately the two corresponding submatrices. They are
finally combined into a large matrix of size 2Nout

pix × 2Nin
pix.

APPENDIX C: SINGULAR VALUE
DECOMPOSITION OF THE DEFORMATION

OPERATOR

We first reshape the stack of the matrices Dj as a two-
dimensional matrix D̄ of sizeN2

modes × NΔx, whereNΔx is the
number of deformations and Nmodes ¼ 110 the number of
propagatingmodes. It links eachdeformation, indexed by j, to
all the elements of the matrix Dj, indexed by the composite
index fklg∈ ½1…N2

modes�. The range ½1…NΔx� of the index j
corresponds to deformations between Δx ¼ 0 μm and the
maximal deformation Δx ¼ 70 μm. Next, we calculate the
singular value decomposition of this operator:

D̄ ¼ U:Λ:V†: ðC1Þ

Λ is a diagonal matrix of size NΔx × NΔx containing
the singular values, whose distribution is represented in
Fig. 4(a).U is a matrix containing the corresponding output
singular vectors Ui, i ∈ ½1…NΔx�. They can be reshaped
as two-dimensional matrices Ui of size Nmodes × Nmodes.
For any given deformation, we can approximate Dj

using only U1 and U2 with Eq. (5). It amounts to replacing
Λ in Eq. (C1) by Λ̃ defined by Λ̃11 ¼ Λ11 ¼ λ1,
Λ̃22 ¼ Λ22 ¼ λ2, and Λ̃kl ¼ 0 for all other values.
The coefficient αj and βj in Eq. (5) are then expressed by

αj ¼ λ1V�
1j; ðC2Þ

βj ¼ λ2V�
2j: ðC3Þ

We represent in Fig. 6(a) the evolution of the absolute
value of the coefficients of α and β as a function of the
deformation. The contribution of α is dominant for small
deformations and globally decreases as the deformation
increases. Conversely, the contribution of β is small for

(a)

(b)

(c)

FIG. 6. Analysis of the evolution of the transmission matrix.
(a) Coefficients of α and β in Eq. (5) in arbitrary units as a
function of the deformation. Coefficients are normalized by the
maximal value of jαj. (b) Relative phase between the diagonal
elements of the mode basis TM as a function of the deformation
and the same diagonal elements for Δx ¼ 0. (c) Energy variation
of the mode basis TM as a function of the deformation evaluated
as kHmodesðΔxÞk2=kHmodesðΔx ¼ 0Þk2.
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small deformations and globally increases with the defor-
mation. This trend confirms that the first effect to appear is
the loss of energy on the diagonal, due to the effect of U1,
and then the coupling to neighboring modes in the
momentum space, due to the effect of U2. We observe
that this global trend is modulated by a periodic oscillation.
The beating between the two contributions can be attributed
to the fact that the two physical effects are not fully
decoupled in the two operators, as U2 also has significant
energy on the diagonal that modifies the energy of the
ballistic photon similarly to U1. It is shown that, in addition
to mode coupling, deformations are associated with a
global rescaling of the fiber which induces phase shifts
that dominate for small deformations [6,16,33]. We re-
present in Fig. 6(b) the evolution of the phase on the
diagonal of the mode basis TM. We observe an oscillation
with the same periodicity as the beating between α and β.
As the perturbation increases, one expects higher-order
coupling effects to become significant in Eq. (5), which
would be associated with the coupling between modes
further away in the momentum space. However, such an
effect increases the chance for the photons to couple
to nonguided modes, leading to losses [32]. We show in
Fig. 6(c) the variation of the energy of the mode basis TM
as a function of the deformation. Losses increase with the
deformation up to approximately 2.5%, confirming that
higher-order coupling effects are still weak in this regime.
We restrict ourselves in this study to deformations in the
elastic regime of the material, higher deformations leading
to nonreversible perturbations and permanent damage of
the fiber.

APPENDIX D: CALCULATION OF THE
THEORETICAL MODES

The starting point of the mode projection operation is to
consider the ideal modes of the fiber. We want to estimate
the modes profiles of a perfect straight graded-index fiber
under the scalar approximation. Graded-index fiber mode
profiles and dispersion relation do not have a closed-form
analytical expression. However, approximate analytical
expressions can be found, for instance, using perturbation
theory or a variational approach [42]. Arguably, the most
widely used approximation is the Wentzel-Kramers-
Brillouin (WKB) approximation. It leads to an analytical
dispersion relation when assuming an infinite quadratic
spatial profile of the refractive index. While leading to
accurate estimations of the propagation constants, it has a
limited accuracy for the expression of the spatial mode
profiles [43,44], especially for low radial numbers l. Finite
difference methods are easy to implement numerically,
but the 2D discretization of the field leads to high memory
requirement and computation time and could lead to
inaccuracies for high-order modes. Because we consider
axiosymmetric index nðrÞ profiles, we want to simplify the
system to solve a 1D problem that depends on only the

radial coordinate r, allowing us to increase the accuracy
and decrease the computation time.
The 2D scalar Helmholtz equation for a propagating

mode can be written in the cylindrical coordinate system as

∂2
rψðr;ϕÞ þ

1

r
∂rψðr;ϕÞ þ

1

r2
∂2
ϕψðr;ϕÞ

þ ½k20n2ðrÞ − β2� ¼ 0; ðD1Þ

where ψ is the optical field, ϕ is the azimuthal coordinate,
β is the propagation constant, and k0 ¼ 2π=λ with λ the
wavelength.
Because the refractive index depends on only the radial

coordinate r for a perfect graded-index fiber, we can
separate the variables r and ϕ. We are then looking for
the orbital angular momentum modes of the form

ψml ¼ flðrÞeimϕ ðD2Þ

with l the radial order and m the azimuthal order, which
also corresponds to the orbital angular momentum.
Injecting this expression in Eq. (D1) leads to the 1D
equation

d2rflðrÞ þ
1

r
drflðrÞ þ

�
k20n

2ðrÞ − β2 −
m2

r2

�
flðrÞ ¼ 0:

ðD3Þ

The singularity at r ¼ 0 arising from the 1=r term makes
direct finite difference methods unstable. We can use the
transformation

glðrÞ ¼
1

flðrÞ
drflðrÞ ðD4Þ

and rewrite Eq. (D3) as a quadratic Ricatti equation [45]:

drglðrÞ þ PðrÞ þQðrÞglðrÞ þ g2l ðrÞ ¼ 0; ðD5Þ

where

QðrÞ ¼ 1

r
; ðD6Þ

PðrÞ ¼ k20n
2ðrÞ − β2 −

m2

r2
: ðD7Þ

A finite difference approximation of such an equation leads
to the recursive expression [45,46]

1þhgnþ1
l ¼ 1

1þhQn=2

�
h2Pn−2þ1−hQn=2

1þhgnl

�
; ðD8Þ

where gnl ¼ glðrnÞ, Qn ¼ QðrnÞ, Pn ¼ PðrnÞ, and h ¼
rnþ1 − rn is the step size.
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The expression (D4) can then be discretized as

fnþ1
l ¼ fnl ð1þ hgnl Þ: ðD9Þ

To find the first steps to initialize the iteration, we need
to consider the boundary conditions at the center of the
fiber core:

df
dr

����
r¼0

¼ 0 for m ¼ 0; ðD10Þ

fðr ¼ 0Þ ¼ 0 for m ≠ 0: ðD11Þ

For m ¼ 0, we discretize the functions at rn ¼ nh − 1=2
and initialize the functions with f0l ¼ 1 and g0l ¼ 0. For
m ≠ 0, we discretize the functions at rn ¼ nh and initialize
the functions with f0l ¼ 0, f1l ¼ h, and g1l ¼ ð1 − h2P1Þ=h.
For a given value of m, the propagation constants βml
that satisfy the Helmholtz equation, corresponding to the
propagating modes, are the ones for which the field
vanishes at large values of r.
The steps to find the modes of the fiber are the following:

We start with m ¼ 0 and perform a coarse scan of the
propagation constant values between βmin ¼ k0nmin and
βmax ¼ k0nmax. We choose rN > a large enough to assume
that the field at this point, and thus fN , should be vanish-
ingly small. The number of times fNðβÞ changes sign gives
us the number of propagation modes for the current value
of m. It corresponds to the maximal radial number l
admissible for the azimuthal number m. We then use a
binary search algorithm to find, at a minimum computa-
tional cost, the accurate admissible values of β for each l,
i.e., the values that minimize fN under a given tolerance
value. We then increment the value of m and repeat the
procedure. We stop when no solution is found for the
current value of m.
This procedure has been implemented in the PYTHON

module pyMMF [47] that we developed and share. Sample
codes to compute the ideal modes of the MMF are available
at the dedicated repository [35].

APPENDIX E: MODEL-BASED OPTIMIZATION
FOR THE COMPENSATION OF THE

ABERRATIONS AND MISALIGNMENTS

Recent attempts were made to tackle the problem of
modal decomposition using deep learning frameworks. As
they use model-free neural network models, using standard
convolutional [48] or dense layers [49], these systems
require large training sets and significant amounts of
memory. Moreover, computational times and limited accu-
racy forbid their use for more than ten modes (the training
for ten modes takes about 43 h with a > 300 000 image
training set in Ref. [49]). We develop here a model-based
approach that learns only a few relevant parameters, is fast

(a few seconds) to converge, and requires only one TM
measurement. The general principle is to apply to the
change of basis matrices Mi and Mo a set of trans-
formations that mimics the effect of aberrations and
misalignments to compensate for the experiment’s imper-
fections. The schematic of the model is presented in
Fig. 1(d) in the main text.
In order to implement our model, we first need to use

complex-valued matrix operations. However, complex
tensors are not natively supported by the PyTorch framework
we use. To do so, we add a dimension to our data structure
of size 2 to encode the real part and the imaginary part of
the complex values. We then create a set of elementary
operations: complex conjugation, elementwise, and matrix
multiplications. The key parts of our approach are the
layers that mimic the effect of aberrations represented by
Zernike polynomials. The input of each layer is a batch of
complex 2D images of size Nmodes × Npix × Npix × 2. The
effect of a layer Zk, corresponding to the kth Zernike
polynomial, is to add, to each 2D image, a phase con-
tribution. It amounts to transforming each input image Kij,
ði; jÞ ∈ ½1…Npix� × ½1…Npix� into a modified one K0

ij

using

K0
ij ¼ KijejαkFkðrij;ϕijÞ; ðE1Þ

where Fkðr;ϕÞ is the kth Zernike polynomial, rij and ϕij

are the polar coordinates corresponding to the pixel indexed
by i and j, and αk is the weight of the aberration. αk is the
only trainable parameter of the layer. The layer automati-
cally calculates and stores the derivative of the output
tensor with respect to this parameter, as required for the
training process (backpropagation). By adding multiple
Zernike layers, we simulate the effect of a high level of
aberration. We perform a Fourier transform in the spatial
dimensions and add other Zernike layers to simulate
aberrations in the Fourier plane [see Fig. 1(d) in the main
text]. The first Zernike polynomials correspond to phase
slopes in the x and y directions and to a parabolic phase.
When applied in the Fourier plane, they introduce spatial
shifts in the x and y directions and a defocus. It allows
compensating for misalignments in the x, y, and z direc-
tions. Finally, we add a transformation T that applies a
global scaling transformation in the spatial dimensions.
The scaling parameter is the only trainable parameter of
this layer.
We treat separately each combination of input and output

polarizations. For each optimization, we train simultane-
ously two models, one for the input and one for the output
change of basis matrix. The input data correspond to the
matrices Mi and Mo of respective size Nmodes × Nin

pix and

Nmodes × Nout
pix that we compute using the approach detailed

in the previous section. We convert and reshape them
as PyTorch tensors of sizes Nmodes × Nin

x × Nin
y × 2 and
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Nmodes × Nout
x × Nout

y × 2, with Nmodes ¼ 55 the number of

modes per polarization, Nin
x ¼ Nin

y ¼
ffiffiffiffiffiffiffiffiffi
Nin

pix

q
¼ 35, and

Nout
x ¼ Nout

y ¼
ffiffiffiffiffiffiffiffiffi
Nout

pix

q
¼ 41. The first dimension is treated

as the batch size in conventional neural networks. The two
models return new input and output change of basis
matrices M0

i and M0
o that are used as input and output

projectors, respectively, on the pixel basis TM:

Ĥmodes ¼ M0
o
†:Hpix:M0

i; ðE2Þ

As explained in the main text, we know that an ideal
compensation of the aberrations corresponds to maximiz-
ing kHmodesk, with k:k representing the L2 norm
(Frobenius norm) of a matrix. We choose as the cost
function to minimize

L ¼ kHpixk
kĤmodesk

; ðE3Þ

whereHpix is the experimentally measured pixel basis TM.
Finally, we run an optimizer based on a stochastic

gradient descent approach (Adam optimizer [50]) to find
the set of parameters (weights of the Zernike polynomials
and the global scaling factors in input and output) that
minimizes the cost function L. Once the optimization
finished, the obtained change of basis matrices can be
used on any newly acquired pixel basis TM as long as the
setup stays unchanged. The full optimization takes 18 s on
a computer with an Nvidia GeForce 2080 Ti GPU and a
Xeon Gold 6142 CPU, 36 s on the same computer with
CPU computations only, and 51 s on a regular laptop with
an Intel i7-8550U CPU and no GPU. The gain of the GPU
computation is expected to increase drastically when the
number of modes increases, taking advantage of tensor
manipulation optimizations on GPUs.

The full model, the custom layers, and sample codes of
aberration correction using experimental data are available
at the dedicated repository [35].
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