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In this letter we study metamaterials made out of resonant electric wires arranged on a spatial scale much smaller than
the free space wavelength and we show that they present a hybridization band that is insensible to positional disorder.
We experimentally demonstrate defect cavities in disordered and ordered samples and prove that, analogous to those
designed in photonic crystals, those cavities can present very high quality factors. In addition we show that they display
mode volumes much smaller than a wavelength cube, owing to the deep subwavelength nature of the unit cell. We
underline that this type of structure can be shrunk down to a period close of a few skin depth. Our approach paves the
way towards the confinement and manipulation of waves at deep subwavelength scales in both ordered and disordered
metamaterials.

Photonic crystals (PC) are periodic composite materials
typically scaled at the wavelength which exhibit bandgaps due
to their translational symmetries1–7. As these bandgaps re-
sult from interferences between distinct paths followed by a
propagating wave, local modifications of the medium does
not affect its global properties and can create defect cavi-
ties in which the waves are trapped8. Conversely metama-
terials, which are organized at a scale much smaller than the
wavelength, are usually studied under an effective medium ap-
proach and designed to obtain macroscopic effective proper-
ties such as negative indices9–13. In a recent paper however14,
we have shown that it is possible to merge the advantages of
metamaterials and PC, hence allowing the control of waves
on a deep subwavelength scale, using locally resonant media.
We have proved that they present a so called hybridization
bandgap15–18 which can be explained by the far field coupling
between the resonance of the unit cells and the incoming plane
waves. This has allowed us to demonstrate waveguides, cavi-
ties, benders or splitters, of dimensions very small compared
to the wavelength.

In this letter we go beyond this proof of principle work.
We experimentally study locally resonant metamaterials in the
microwave domain and we exploit the hybridization bandgap
that they present. We prove that the latter is due to the resonant
nature of their constitutive unit cell rather than to symmetries
by characterizing both spatially ordered and disordered meta-
materials. Then we demonstrate that a local modification of
the medium permits to create ultra small mode volume defect
cavities in both ordered and disordered samples. We show that
those cavities exhibit at the same time high quality factors,
around half a thousand, and ultra low volume modes, less than
λ3/10000. This results in extremely high Purcell factors. We
underline that interestingly, shrinking the medium in its trans-
verse dimension decreases at the same time the losses and the
mode volume of the cavity, which results in never achieved
Purcell factors19. We finally discuss the limits of the idea and
notably its transposition to higher frequency parts of the spec-
trum.
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FIG. 1. Experimental samples: a periodic (a) and a spatially random
(c) wire medium. (b-d) Measure of the hybridization bandgap of both
samples. (e) schemed top view of the samples under study, showing
the spatial distribution of wires. (f) Point defect in the hybridization
bandgap for the periodic (left) and spatially random (right) sample.
This point defect consists in introducing a shorter wire with a reso-
nant frequency f1 within the bandgap of the metamaterial.

In order to study experimentally the proposed concepts, we
use a very academic subwavelength resonator, that is, a res-
onant metallic wire. Since it resonates along its long dimen-
sion, which we arbitrarly align with the Oz direction, the latter
can be of deep subwavelength size in the xOy transverse plane.
In fact, the diameter of such a wire can even be decreased
down to a few skin depths. Because we realize our samples
manually, we opt for wires of length L = 7 cm, which corre-
sponds to a resonance around f0 = 2.15 GHz, and of diameter
d = 0.5 mm. We start by measuring the properties of a peri-
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odic medium made out of 19×19 wires separated by a period
a = 2 mm (corresponding to λ0/70) maintained by a Teflon
structure, and those of a randomly positioned one which con-
tains the same average density of resonators (Fig 1.a and 1.c).
In order to study the hybridization bandgap that displays those
media, we place azimuthally in the far field a vertically polar-
ized antenna that is connected to one port of a network ana-
lyzer (Agilent N5230C PNA). We connect the second port to
a handmade probe, a very electrically short monopole. This
probe is placed in the near field of the arrays of wires, and
is mainly sensitive to the vertical polarization of the electric
field.

We measure the transmission coefficient between the two
ports S12. Because the monopole is very short, it is inefficient
and reactive. This has two consequences: first, it is mainly
sensitive to the evanescent field in the samples, and second,
the transmission coefficient has to be understood as a rela-
tive measurement of the transmission. The corresponding S12

are plotted as a function of the frequency in Figures 1.b and
1.d. We know from our experiments of subwavelength fo-
cusing from the far field that such media, due to the resonant
nature and the finite size of the medium of interest,support
deep subwavelength modes that convert efficiently to the far
field20–23. Those modes are observable in the obtained curves
as resonant peaks. We stress here that the random medium
of Figure 1.c also supports those collective modes, although
these contain a distribution of wavevectors as opposed to a
single one for the periodic medium. We have explained those
modes using a Bloch formalism through rigorous calculations
of the Maxwell’s equations22. We have also adopted a more
phenomenological formalism based on the idea of a hybridiza-
tion between the continuum of plane waves propagating in the
medium and local oscillators, which are interfering either in
phase (f < f0, modes are allowed) or in anti-phase (f > f0,
the hybridization bandgap is created)14. Indeed, the curves
of the transmission coefficient between the two ports of the
network analyzer show a wide dip that starts around the fre-
quency of 2 GHz (Figs. 1.b and 1.d). It is clear that this
bandgap exists for both the periodic medium and the random
medium, meaning that it is not due to the periodicity or the
density of the structures, but rather to the resonant nature of
their unit cells. It is to be reminded that we only consider
the effect of positionnal disorder24 and there is no near field
coupling between the wires25.

Following the proposals of our recent paper14, our aim is
now to demonstrate cavities in the investigated media. Evi-
dently, since the structure of most metamaterials and in par-
ticular those studied here is deeply subwavelength, removing
one unit cell (as implemented in PC) does not have much con-
sequences, since within one period of the medium, no state
can exist. However, a defect is simply created by detuning
the resonant freqency of a single unit cell so that it falls in the
bandgap created by the other wires. To that aim, we just tune
the length of a single wire to a length L′ = αL, where α<1
is correctly chosen. Thus, we shift its resonance frequency
upward of a factor 1/α. We stress here that the existence
of the defect cavity can be understood, despite the deep sub-
wavelength organization of the crystal, only because the hy-

bridization bandgap results from interference effects only14.
Indeed, near field interactions between unit cells would re-
sult in spatially extended states rather than point defect states.
Moreover, we point out that embracing an effective medium
approach, adding a defect would solely result in a reduced
response of the system, which would hide the interesting phe-
nomena studied here.
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FIG. 2. (a) Measure of S11 in the near field of the wire medium with
or without the point defect in the periodic (left) and spatially random
(right) sample. (b) Experimental measure of the confinement around
the point defect in the periodic (left) and spatially random (center
and right) sample.

We now test experimentally this concept using the fabri-
cated samples. To do so, we first acquire with the network
analyzer the reflection coefficient S11 of the small monopole
when it is placed in the near field of a chosen wire of length
L. This is realized for the two samples at frequencies ranging
from 2 GHz to 2.2 GHz, and the result is plotted in blue in
Figure 2.a for the periodic medium (right) and for the random
medium (left). Below the frequency of 2.06 GHz, we can see
dips in the reflection coefficient, meaning that some energy
has been transmitted from the probe to the sample, or equiv-
alently that the otherwise very inefficient monopole has been
impedance matched by the medium due to the Purcell effect.
These dips correspond to the higher frequency subwavelength
modes supported by the samples. Now we replace the cho-
sen wire by a shorter one. The experiment is realized in both
the periodic and the random media, for wire lengths that span
the interval 65 mm to 70 mm, with a step of 0.5 mm. We
obtained consistent results for all measurement and here we
present those of the wire of length L′ = 67 mm, that is, one 3
mm shorter than those of the metamaterial. We plot in green
curves the reflection coefficients obtained for the ordered and
disordered samples in Figure 2.a. Clearly another dip has ap-
peared for the two studied samples, and the latter corresponds
to the defect created in the media, since it appears only after
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detuning the wire. Because the measured |S11| can be under-
stood as an estimation of the coupling between the probe and
the medium, we conclude that at the resonance frequency of
the shortened wire, some energy is transmitted to the defect
state. We have consequently created a cavity in each sample
for which we measure a quality factor around Q = 550, which
is more than two orders of magnitude higher than a single wire
in vacuum. It is limited by the ohmic losses. Here, we point
out that our defect states are not to be confused with disor-
der induced defects26 since there is no near field couplind and
since the medium typical spatial scale is much smaller than
the wavelength, which preclude any such state to exist.

Of equal interest is the spatial extension of the cavity cre-
ated by the defect. In order to obtain its estimation for a given
modified wire of length L′, we use a 2D translation stage that
permit us to scan the whole surface of the bottom of our sam-
ples. For each position, we measure the S11 of the probe,
meaning the coupling with the medium, at the resonance fre-
quency of the defect. When the probe is located outside of
the cavity, the reflection coefficient remains very close to one,
while it decreases consequently above the defect cavity. The
value of the S11 at the resonance frequency of the defect state
for each position in the near field of the sample gives hence
an estimation of the spatial extension of the created cavity.
In order to represent it graphically, and since the value of the
reflection coefficient still has no exact meaning, we calculate
the value |1-S11|as a function of the position in the xOy plane.
We map it for one position in the periodic medium and two
positions in the random one (Fig.2b).
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FIG. 3. Profile of the |1 − S11| in logaritmic scale for two defect
frequencies in the periodic array (a) and two positions in the random
array (b). In inset are shown the corresponding linear profiles

From Figure 2, it appears that the cavity width roughly mea-
sures one period of the medium in the transverse dimensions,
that is, around λ/70 at its resonance frequency. This typical
size can vary in the random medium, since the distance be-
tween neighbors changes with the position in the medium, but
it remains of the same order. Given the fact that the mode in
the cavity is transverse electromagnetic, the energy density is
constant along the Oz axis. This indicates that the total mode
volume of the cavity is of the order of (λ/70)2.( λ/2), that is
around λ3/10000. Indeed, not only is the period of such media
much smaller than that of conventional photonic or phononic
crystals, but their attenuation distance is also much smaller in
the bandgaps (Fig.1 b-d). To highlight this effect, we repre-
sent the profile of the |1 − S11| along one dimension of the
xOy plane for both defects in the periodic and random media.
From figure 3, we measure attenuation coefficients of the or-
der of 25dB per period in the periodic crystal as well as in the
random medium. In the latter, this coefficient slightly depends
on the position of the defect and on which transverse dimen-
sion we measure the profile, since it changes the distance to
the first neighboring wires.

Naturally, the spatial extension of the field in the defect cav-
ity has to be compared to that created around a resonant wire
alone, since the latter already confines the electromagnetic
field onto subwavelength dimensions. We have estimated that
the mode volume of such a resonator is 5 to 6 times larger than
when it is placed in the hybridization bandgap material. This
ratio is not huge, but we have already proven that the quality
factor of the cavity has been increased in the metamaterial by
a factor larger than a hundred. Overall, this results in a dras-
tic improvement of the Purcell factor of the cavity by a factor
close to a thousand. Furthermore, as we will demonstrate in
the last part of the paper, one can extremely decrease the mode
volume of this cavity by simply shrinking accordingly the di-
ameter of the wires and the period of the medium.
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FIG. 4. Evolution of (b) the Q factor (blue) and mode volume Vm

(red), and (c) the Purcell factor when reducing the lattice parameter
a (and consequently the wire’s radius)

Because we could not easily fabricate denser samples using
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thinner wires, we present theoretical estimations of structures
similar to the measured periodic one, albeit with varying pe-
riods and diameters of wires. We fix the ratio between the
diameter of the wires and their period to 4, as in our experi-
mental ordered sample. We evaluate the consequences of re-
ducing the diameter of a wire from 0.5 mm down to a few
skin depths (Fig 4.a). First, we can estimate the resonance
Q factor of such a cavity. As stated before, the hybridiza-
tion bandgap is really efficient and forbids any radiation loss,
thus the cavity damping is given by losses only. Those are
ohmic losses in metals and they result from a penetration of
the fields in the defect wire and its direct neighbors. For each
of them, the volume where the field penetrates can be approx-
imated as a skin depth wide ring of height L. Hence we easily
estimate that the amount of energy dissipated per cycle de-
creases linearly with respect to the wires’ radius since the ring
of field penetration decreases accordingly. While shrinking
the dimensions, we can therefore write Q(r)/Q(r0) = r0/r,
r0 and Q0 being respectively the initial radius and quality fac-
tor. Second, the mode volume displays a quadratic evolution
with respect to the lattice constant (Fig 4.b). Indeed, the field
is confined around the defect in the S = (2a)2 area formed by
its nearest neighbors. Thus the mode volume is estimated to
be Vm = λ/2S = 2λa2 = 36λr2, which increases quadrati-
cally with the wires’ radius since we chose to linearly vary it
with the lattice parameter.

Hence, very strikingly, reducing the wires’ radius and the
period of the medium results at the same time in higher Q
factors and lower mode volumes which is a very unusual be-
havior for cavities. Indeed, usually one has to choose between
high Q factors27 or low mode volumes28. Here, the Purcell
factor increases as 1/r3, solely limited by the skin depth in
copper (Fig 4.c).

In summary, we have demonstrated ultra small mode vol-
ume defect cavities in deep subwavelength periodic and ran-
dom metamaterials made out of resonant electric wires. This
proves that the hybridization bandgap of these metamaterials
does not rely on spatial order. We experimentally obtained
cavities presenting quality factors around 500 and mode vol-
umes of about λ3/10000. We underlined that these structures
can be shrunk in the transverse dimensions down to an area
of some skin depth squared, hence providing at the same time
incredibly small mode volumes and high quality factors ow-
ing to a mitigation of ohmic losses. This results in enormous
Purcell factors in the microwave domain. Similar results are
expected in the THz range and the deep IR, since in those
range noble metals still possess good conducting properties29.
In the visible, losses associated with plasmons should seri-
ously alter the quality factors mentioned here, but the con-
cept could still lead to ultra small mode volumes cavities30.
This type of cavities, because of their very high Purcell fac-
tors, should find applications in areas that rely on wave/matter
interactions and nonlinear effects for instance in quantum-
electrodynamics, energy rooting and filtering, or wave detec-
tors and sources. Moreover, associated to the waveguides,
splitters and other discrete components that we demonstrated
recently14, they should lead to many applications. We can now

imagine molding at wish the flow of waves in metamaterials
not only at a scale independent of the wavelength, but also
in spatially random samples, as opposed to photonic crystal
demonstrations, which simplify fabrication issues.
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