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Abstract – We investigate the nonlinear response of pulsed high-amplitude sound transmission
in weakly compressed granular materials, simultaneously probing sound amplitude, time-of-
flight velocity and harmonic generation. We observe that weakly compressed packings can
both exhibit weakening and strengthening when driven by high-amplitude sound, and that
weakening/strengthening of the sound velocity and transmission amplitude go hand in hand.
We find that strengthening is associated with the generation of second harmonics, whereas for
weakening, no appreciable second harmonics are generated. All these findings point to changes in
the contact network; effective medium theory can describe these effects qualitatively, but fails to
account for them quantitatively.

Copyright c© EPLA, 2013

Dry granular media are collections of macroscopic
grains that interact through repulsive and frictional
contact forces, and that jam in nonequilibrium config-
urations [1–4]. The root cause of their rich behavior is
that for given values of macroscopic control parameters,
such as density and pressure, there are many microstates,
which are not equivalent [5–8]. Perhaps the most crucial
characteristics of these microstates are their highly hetero-
genous contact force networks that can quickly rearrange
under driving [5]. A particularly important quantity that
characterizes these networks is the contact number Z,
defined as the average number of contacts per particle.
This contact number plays a central role in the mechanical
behavior of a granular system [2–4,9,10], but is hard to
observe directly in 3D, when using standard techniques
such as photoelastic imaging [5], X-ray tomography, MRI
and fluorescent confocal microscopy [11,12].
Sound waves propagate through the contacts between

grains, making sound an alternative and unique probe
to examine 3D contact networks [13,14]. For long-
wavelength, low-amplitude waves propagating in granular
media, effective medium theory (EMT) might be applica-
ble [14]. In such theories, one assumes that spatial
fluctuations of contact density and contact stiffness
can be ignored —reasonable for long wavelengths.

Consequently, measurements of the compressional and
shear wave velocities, VP and VS , give access to the
contact number Z, via VP ∝ (Z/Rρ)

1/2(Dn+2Dt/3)
1/2

and VS ∝ (Z/Rρ)
1/2(Dn+3Dt/2)

1/2, where R is the
elastic-sphere radius, ρ the material density of spheres and
Dn and Dt are the normal and tangential contact stiffness,
respectively [14]. For Hertzian contacts, the Hertz-
Mindlin contact theory predicts that Dn(P ) and Dt(P )
are proportional to P 1/3, which yields the well-known
pressure dependence of VP and VS as Z

1/3φ−1/6P 1/6,
with φ the packing density.
Whereas some properties of granular media, such as low-

amplitude sound velocity or bulk elastic moduli, are well
captured by effective medium theory [13,14], other prop-
erties, such as their nonlinear response to high-amplitude
pulsed sound waves [15] or weak shaking [7] evidence
their rich, glassy behaviour. Underlying this richness is the
fragility of granular media. Indeed, for typical grain sizes
(600–800 µm) and confining pressures (say 1–100 kPa),
the elastic deformations (6–120 nm) of rigid grains such
as glass beads are orders of magnitude smaller than the
grain size. Hence, even tiny deformations may be sufficient
to change contact forces and open and close contacts [16].
As a result, when granular systems are driven by exter-
nal forces, subtle changes in the microscopic organization
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of the grains can lead to significant changes in their bulk
properties, without any appreciable change in macroscopic
parameters such as density.
In this nonlinear regime, Liu and Nagel showed that

the transmitted sound amplitudes of high-amplitude
continuous waves traveling through a glass bead packing
under gravity exhibit strong temporal fluctuations [8].
This evolution is likely associated with vibration-induced
changes in the microscopic fabric, such as the breaking
and reforming of particle contacts. Similarly fluctuating
behavior has also been found for the phase velocity
of sound waves [17]. In addition, in several cases, the
effective sound velocity in granular media was found
to decrease under the influence of strong sound waves.
This weakening is likely due to the decrease of the
tangential stiffness Dt, and/or the loss of contacts by
acoustically induced sliding of grains which results in the
rearrangement of the contact network [15,18].
These observations raise several interesting questions.

Is there any correlation between amplitude and velocity
measurements of the nonlinear sound transmission? Why
does nonlinear sound lead to weakening, not strengthen-
ing of granular media? Can we elucidate the microscopic
behavior governing acoustically induced granular evolu-
tion?
In this work, we address these questions by investigat-

ing long-wavelength pulsed compressional waves in weakly
compressed granular media. We present the first simul-
taneous measurements of sound amplitude, time-of-flight
velocity and harmonic generation. Our first finding is that
weakly compressed packings can both exhibit weakening
and strengthening, and that weakening/strengthening of
the sound velocity and the amplitude of the transmitted
signal go hand in hand. Our second main finding is that
strengthening is associated with the generation of second
harmonics, whereas for weakening, no second harmonics
are generated. We suggest that this strong correlation
can be interpreted via sound-induced buckling and sliding
that, respectively, raise and diminish the contact number.

Experimental procedure. – Our acoustic measure-
ments were performed on a granular medium consisting
of polydisperse glass beads (600–800µm), in which a first
broadband piezoelectric transducer of diameter 30mm was
used as acoustic source, while a second transducer placed
at a distance of 9 cm from the source detects the propaga-
tion of coherent longitudinal waves (fig. 1(a)).
Two types of mechanical loading were applied in this

work. In the first set of experiments, we used a cylindrical
container of diameter 150mm and height 200mm. A
pre-compaction of the granular packing is realized by
20 cycles of loading-unloading of a top piston, up to a
pressure of about 110 kPa. In this way, a reproducible
packing was obtained and acoustic measurements were
then performed at a pressure P = 40 kPa. The second set
of experiments was carried out in a setup consisting of
the same glass beads confined in a square Plexiglas box
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Fig. 1: (a) Schematic of the experimental setup where glass
beads are confined by a vertical stress of P = 40 kPa. Compres-
sional waves are excited by a source transducer S and detected
by a second transducer D. (b) A typical input wave Ui consist-
ing of a ten-cycle Gaussian tone burst centered at f = 9kHz
(top, grey) and the transmitted wave Uf (bottom, black).

(325mm× 300mm× 150mm) with a free top surface [19].
The source and detector where burried at a depth of 11 cm,
leading to an effective pressure of about P = 2kPa. Before
each experiment, the granular sample was freshly poured,
and the container was horizontally shaken to obtain a
stable packing.
We send ten-cycle Gaussian tone bursts centered at a

low frequency (in the 8–10 kHz range) every 50ms. The
obtained data averaged over ∼ 1 s allows us to simulta-
neously measure the sound velocity V and the magnitude
and harmonic content of the transmitted signal. The sound
velocity was determined from the time-of-flight velocity
V between the excitation and the transmitted Gaussian
pulses (fig. 1(b)) —no appreciable dispersion of the sound
velocity was observed in the frequency range 1–100 kHz.
We note here that typical wavelengths are of order 1 cm,
smaller than the detector, but significantly larger than the
beads, so that our sound waves probe the granular medium
at an intermediate scale.
We characterize the transmitted signal by the amplitude

of the fundamental component and the second harmonic.
To do so, we filter the detected waves in the time domain
using custom written Labview routines, and determine the
amplitudes Uf of the fundamental and U2f of the second
harmonic by fitting Gaussian profiles to the appropriately
filtered signal [18]. This allows us to probe the evolution
of V , Uf and U2f as a function of the input amplitude Ui
and time t.

Strengthening and weakening of compressed

samples. – We probe the evolution of the granular
medium under the influence of nonlinear sound by
measuring both the amplitude and time-of-flight veloc-
ity of the transmitted acoustic signal as a function of
time. We first focus on our well-compressed sample (P =
40 kPa), using ten-cycle pulses centered at 8 kHz and fixing
Ui = 90 mV, corresponding to a vibration displacement of
about 10 nm (acceleration 2–3 g).
As figs. 2(a), (b) illustrate, both the velocity V and the

ratio Uf/Ui show a significant time evolution, even as the
input strength is kept constant: the granular packing is
modified by the sound waves [8]. We stress that the evolu-
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Fig. 2: Interaction of high-amplitude sound waves with a bead
packing under P = 40 kPa. (a)–(c) Constant input; (d)–(f)
sweeps. (a), (d): evolution of sound velocity V . (b), (e):
evolution of the ratio of transmitted first harmonic, Uf , and
input Ui. (c), (f): Ui.

tion of the amplitude ratio and the sound velocity appear
very similar. Surprisingly, this evolution is not always
monotonic: In the experiments shown in figs. 2(a),(b),
both amplitude and velocity of the transmitted wave
increase from 0 to 3000 s, corresponding to a strengthening
of the granular packing, whereas from 3000 to 8000 s, the
amplitude and the velocity decreased, implying a weaken-
ing of the granular packing [15].
During the experiment, we do not observed any visible

rearrangement of the grains or measure any significant
change in the height of the granular sample. We estimate
the maximal change in the height to be less than 10 µm,
corresponding to a change in packing fraction less than
0.1%. This is significantly less from density changes seen
in tapping experiments [6], and far too small to explain by
itself the observed evolution of our packings.
To probe the role of the excitation amplitude, we

performed similar acoustic measurements by ramping
the input amplitude Ui up and down. As figs. 2(d)–(f)
illustrate, the strengthening or weakening does not simply
correlate to an increase or decrease of the excitation
amplitude as would be expected for solitonic or shock
waves [20,21] the observed changes in transmission and
sounds speed are not simply due to such nonlinear effects,
but rather suggest an evolution of the packing.
Repeating these experiments, both with fixed and vary-

ing Ui, and for different sweep rates, we did not find
a clear correlation between the excitation protocol and
the strengthening or weakening behavior, although we
note that immediately after loading the initial behavior
is always strengthening.

Strengthening and weakening of weakly

compressed samples. – The time evolution of our
granular samples must be caused by microscopic changes
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Fig. 3: Typical measurements of the sound velocity (i) and the
amplitude ratio (ii) measured as a function of time in a loose
granular packing under P = 2 kPa, excited by a given protocol
(iii). Three distinct regimes are observed: (a) strengthening,
(b) weakening, and (c) interplay between strengthening and
weakening.

in the contact fabric, which we expect to be more easily
excited at lower pressures. We conducted a second series
of experiments in a packing of glass beads under gravity,
and focus on the protocol where Ui is ramped up and
down. We undertook a total of 21 runs.
As fig. 3 illustrates, we observe three distinct types

of behavior: strengthening (fig. 3(a), 9 times), weakening
(fig. 3(b), 8 times), or, more rarely, random variation
between strengthening and weakening (fig. 3(c), 4 times).
The random nature of the weakening or strengthening
confirms that the type of evolution is not only controlled
by the sound amplitude, but also depends on the history
and particular microstate of the granular packing itself.
We note that the sound velocity variation observed at this
low pressure is about 10%, larger than the 4% observed
at higher pressures (P = 40 kPa), consistent with our
expectation that lower pressures promote the evolution
of the packing.
The striking similarity that we observed between the

temporal variations in the amplitude ratio and in the
sound velocity can be qualitatively understood in terms
of the acoustic impedance using an effective medium
approach, as follows: The acoustic impedance of the
granular material is zg := ρV , where ρ and V are the
mediums density and the effective sound velocity, and
the transducers have a much higher impedance zt. The
coefficient of amplitude transmission for a plane wave from
the source transducer to the granular medium is given
by t1 = 2zt/(zt+ zg), whereas the transmission coefficient
from the granular medium to the detection transducer
t2 = 2zg/(zt+ zg), so that the coefficient of the total
transmission t is thus

t= t1t2 = 4zgzt/(zg + zt)
2
≈ 4zg/zt ∝ ρV. (1)

Since we did not measure a significant change in the height
of the granular sample, we argue that the packing density
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ρ remains almost constant, so that it follows that in this
framework, the amplitude of sound transmission should be
linearly proportional to the sound velocity.
While this is qualitatively consistent with our obser-

vations, we note here that the variation in amplitude is
much stronger than the variation in sound velocity —for
example, in fig. 3(b), the change in V is of order 15%,
whereas the change in Uf/Ui is more than a factor 2!
Comparing the changes in V and Uf/Ui of all our data,
we conclude that the typical change in transmission ampli-
tude is roughly five times larger than the change in veloc-
ity. This suggest that effective medium theory can not
quantitatively account for the evolution of the packing by
nonlinear sound waves: the physics underlying the evolu-
tion of the packing is truly complex.

Harmonic generation. – On the scale of the grain con-
tacts, two types of nonlinearity can be distinguished [22]:
one arises from the normal loading (Hertzian model)
and the other from the tangential friction force (Mindlin
model). It is useful to distinguish a weakly and strongly
nonlinear regime, by the relative magnitude of the sound
amplitude u and the typical static grain deformation u0,
induced by the confining pressure. The highly nonlin-
ear regime corresponds to u≫ u0, shock waves can be
generated with a front velocity depending on the wave
amplitude, strongly damped by plastic rearrangement and
frictional dissipation [17,20,21,23]. On the other hand, in
the weakly nonlinear regime (u≪ u0), reversible nonlin-
ear responses described by the nonlinear terms of the
normal stiffness [24] have been observed, including second-
harmonic generation [18].
To gain more insight into the microscopics underlying

the strengthening and weakening, we have probed the
magnitude of the second harmonic. As we will detail
below, the Hertzian nonlinearity in the normal forces,
associated with changes in the particles overlap, will give
rise to second-harmonic generation, with a magnitude U2f
that is expected to rise as U2i . In contrast, nonlinearities
due to sliding or transversal motion of contacting grains,
described by the full Hertz-Mindlin interactions, do not
generate second harmonics, due to symmetry (“sliding
left is equivalent to sliding right”). Our central finding is
a one-to-one correlation between strengthening and the
generation of second harmonics on the one hand, and
weakening and the absence of second harmonics, on the
other hand.
To correlate strengthening/weakening and second-

harmonic generation, we focus on all 17 data sets taken
at 2 kPa that monotonically weaken or strengthen. As
figs. 4(a), (b) illustrate, we first will study scatter plots of
U2f vs. Ui.
Let us first focus on fig. 4(a) which shows harmonic

generation for a strengthening sample (the same as
depicted in fig. 3(a). Here, the second-harmonic U2f
grows quadratically with Ui. We show now that this is
consistent with the Hertzian nonlinearity of the normal
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Fig. 4: (Color online) Second-harmonic generation measured in
the packings of fig. 3. (a) The fundamental Uf (black circles)
and second harmonic U2f (red crosses) measured vs. Ui during
strengthening. Linear and quadratic scaling (dashed and dotted
lines) are shown as a guide to the eye. (b) Uf (black circles)
and second harmonic U2f (red crosses) measured vs. Ui during
weakening. The straight blue line corresponds to the best fit.
(c) Scatter plot of power law exponent α vs. ΔV/Δt for U2f
shows that α≈ 2 for strengthening samples (dark-grey shade),
whereas α≈ 0 for weakening samples (light-grey shade). Error
bars on α are or order 20%.

forces between grains, where the contact force F between
two particles scales as δ3/2, where δ is the particles
deformation. Here, δ is composed of two contributions:
a constant δ0, which in a mean-field approximation
is set by the pressure, and an oscillation contribution
un, which is due to the sound wave. Expanding the
Hertzian contact law around δ= δ0, we find that the
oscillating component of the force between particles
Fn ≈Dnun(1+βun+ δu

2
n+ . . .), where Dn is the linear

normal stiffness, and β and δ correspond to the quadratic
and cubic nonlinear terms determined by the confining
pressure P [15]. From this, we can obtain an approximate
expression for the second-harmonic displacement within
effective medium approaches U2f ∝ βf

2U2i [18], which is
precisely the power law observed in fig. 4(a).
Let us now turn to fig. 4(b), which shows the absence

of significant second-harmonic generation in a weaken-
ing sample. Clearly, the magnitude of the normal rela-
tive motion un is too small to excite a significant second
harmonic, but nevertheless, the amplitude of the sound
wave is similar — what is going on? We suggest that
in this case, the relative motion between particles is
mainly in the perpendicular, sliding direction. We may
deduce from the Mindlin theory an approximate relation
between the shear oscillating displacement ut and force Ft,
ut ≈ StFt+ γF

3
t + . . ., where St is the nonlinear dynamic

compliance [15] and γ the cubic nonlinear term. The
absence of a quadratic nonlinear term is due to symme-
try, which implies that nonlinear effects like harmonics
generation are one order smaller than for the normal
oscillation [25], and would explain the absence of an
appreciable second harmonic in the weakening regime
shown in fig. 4(b).
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The generality of the link between strengthen-
ing/weakening and second-harmonic generation is
illustrated in fig. 4(c). Here we have characterized all data
sets (not just those shown in figs. 4(a) and (b)) by the
overall time evolution of the sound velocity, ΔV/Δt, and
an exponent α, obtained by fitting a power law expression
of the form U2f =AU

α
i to the scatter plots of U2f vs. Ui.

fig. 4(c) shows the resulting scatter plot of the exponent α
as a function of ΔV/Δt. Clearly, the exponent goes from
a value around zero (for ΔV/Δt < 0) to a value around
two (for ΔV/Δt > 0). Even though the drift in sound
velocity is not linear, this shows that ΔV/Δt captures
the sign of this drift, i.e., strengthening vs. weakening.
Figure 4(c) thus illustrates the generality of our finding

that for strengthening samples, the second harmonic U2f
grows quadratically with Ui, consistent with a simple
Hertzian nonlinearity, whereas for weakening samples,
U2f is small and nearly independent of Ui, suggesting
that in the weakening regime the Hertzian nonlinearity
is not dominant and likely overshadowed by the frictional
nonlinearity [15].
Finally, we have revisited the limited number of runs

that show alternating strengthening and weakening, and
have inspected the magnitude of the second harmonic.
We note that when a sample switches from strengthening
to weakening, the second harmonic does not drop imme-
diately, suggesting that the harmonic generation follows,
and not precedes, the strengthening or weakening of the
sample.

Evolution of harmonics. – During strengthening,
the packing continues to evolve over several sweeps of
Ui. As shown in fig. 5, the second harmonic U2f also
keeps growing in strength. This growth is not only simply
due to Ui becoming larger — by plotting the ratio of
U2f/Uf as a function of Ui, we find that also this ratio
increases over time, indicating that the generation of the
second harmonics becomes more efficient as the sample
strengthens. Again, this evidences the complexity of the
evolution of the granular packing.

+

a b

++

Fig. 6: Schematic illustrations of sound-induced change in the
mechanical coordination number: (a) a decrease via acoustic
fluidization; (b) an increase via buckling. The associated
packing density and geometric coordination number remain
unchanged in all these cases.

Discussion and conclusion. – Our data of the trans-
mission of nonlinear sound pulses in weakly compressed
granular packings reveals strong evolution of the veloc-
ity and amplitude of these pulses as well as its harmonic
generation. A simple effective medium picture captures
the correlation between weakening/strengthening of sound
velocity and transmission amplitude qualitatively, but
fails to quantitatively capture the magnitude of these
effects. Similarly, the generation of second harmonics in
the strengthening regime is consistent with the Hertzian
nonlinearity of the normal force components, but this
nonlinearity itself is not sufficient to capture the magni-
tude of strengthening/weakening [15].
We suggest that changes in the contact number Z are

an essential step towards understanding the magnitude
of the observed strengthening and weakening phenomena.
Based on the coincidence of an increase of sound velocity
and transmission amplitude with second-harmonic gener-
ation, we conjecture the following picture (see fig. 6). In
the weakening regime, the tangential vibration between
jammed particles reduces the contact stiffness Dt via
the frictional nonlinearity and further causes the loss of
contacts via sliding of particles out of contact ΔZ < 0
(fig. 6(a)), a process previously refereed to as acoustic
fluidization [15]. Since the frictional nonlinearity does
not generate even harmonics, this is consistent with the
observed absence of second harmonics in the weakening
regime (fig. 4).
In contrast, in the strengthening regime, large normal

vibrations take place (as evidenced by the observed gener-
ation of second harmonics), and these vibrations lead to
buckling of the force chains —a dynamic counterpart of
pressure-induced particle buckling [26]. This mechanism
would result in the formation of new contacts involved in
the force chains ΔZ > 0 (fig. 6(b)), driving the system to
a mechanically more stable configuration. Note that this
mechanism is different from the particle buckling mecha-
nism induced by compression, which is accompanied with
a packing fraction change [26–28].
While in frictional packings, changes in the overall

contact number Z may arise without appreciable changes
of the packing fraction, we believe that such contact
changes, although important, only capture part of the phy-
sics: First, according to effective medium theory [14], the
measured variation of the sound velocity ΔV/V ∼ 10%
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(fig. 3) would correspond to ΔZ/Z ≈ 3ΔV/V ∼ 30%, close
to a relative variation between random close packing
(ZRCP ≈ 6) and random loose packing (ZRLP ≈ 4) [2–4,
9,10]. It is unlikely that such large changes in the contact
number can arise without appreciable changes in the pack-
ing fraction. Second, changes in the contact number alone
do not capture the discrepancy between the typical varia-
tion in the sound velocity and the transmission amplitude
—recall that the change in the latter is typically five times
larger than the change in the former. Both of these obser-
vations illustrate that the effective medium theory quali-
tatively describes the experiments, but fails to quantita-
tively account for the data. We suggest that the changes in
contact numbers lead to significant rearrangements of the
contact network, which eventually result in the breakdown
of the affine approximations underlying EMT.
Our experiments therefore evidence evolution of the

packing beyond what can be captured by effective medium
theories. Important questions raised by this work then
include, first, what causes the system to collectively
strengthen or weaken and, second, what models can
quantitatively capture the large variation in sound velocity
and sound transmission observed.
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