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Holographic rendering of off-axis intensity digital holograms is discussed. A review of some of the main
numerical processing methods, based either on the Fourier transform interpretation of the propagation
integral or on its linear system counterpart, is reported. Less common methods such as adjustable
magnification reconstruction schemes and Fresnelet decomposition are presented and applied to the
digital treatment of off-axis holograms. The influence of experimental parameters on the classical holo-
gram reconstruction methods is assessed, offering guidelines for optimal image rendering regarding the
hologram recording conditions. © 2011 Optical Society of America
OCIS codes: 090.1995, 100.3010.

1. Introduction

Optical holography consists of the acquisition of
images from diffracted optical field measurements.
Holographic imaging was initially proposed by Gabor
[1] for electron microscopy. Holograms were recorded
on high-resolution photographic plates. Because of
the subsequently named “in-line” configuration,
holograms were stained with twin-image and zero-
order contributions, which overlapped with the
signal image [2]. Originally recorded with the red
radiation of mercury lamps, holograms were increas-
ingly recorded with laser light sources, which gave
much more reliable results. In 1962, Leith and
Upatnieks proposed the introduction of an off-axis
reference beam [3] to separate, in the spatial fre-
quency domain, the real image from the twin-image
and zero-order diffraction terms. However, holo-
grams were still to be reconstructed by optical
means.

The first digital reconstructions of optically mea-
sured holograms were realized by Goodman and
Lawrence [4], and further by Kronrod et al. [5] (in
Russian; more details can be found in Ref. [6]) in
the early 1970s. Here, optically magnified parts of
the holograms are digitally sampled and then recon-
structed using Fourier transform based routines.
Digitalization of optical holograms allowed, for in-
stance, improvement of reconstruction quality [7],
retrieval of information about the phase of the
recording wave [8,9], and treatment of holograms
without reconstruction [10]. One of the major break-
throughs in holographic imaging was initiated, by
Schnars and Jüptner, with direct recording of digital
holograms [11]. CCD and complementary metal
oxide semiconductor (CMOS) digital sensor arrays
enabled the acquisition and numerical processing
of high-resolution holograms at fast rates.

Intrinsic properties of holographic imaging allow
this technique to be used in a wide range of domains,
such as fluid mechanics [12–20], biomedical imaging
[21–26], and mechanical vibration analysis [27–35].
Democratization of high-resolution CCD and CMOS
sensors played a major role in the development of
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digital reconstruction techniques. For instance, re-
construction of phase-only [36], shifted [37], tilted, or
aberrated data [38–40] has been successfully demon-
strated. Inverse-problem approaches make it possi-
ble to improve object localization and field of view
in the reconstructed hologram [41,42]. Compressive
sensing based approaches are also to be considered
when working in noisy or low-light conditions
[43,44]. Moreover, due to the massive parallelization
of image processing calculations by graphics proces-
sing units (GPUs), hologram reconstruction can be
performed in real time [45–48].

In this paper, we will describe most of the common
off-axis digital holographic reconstruction schemes
and discuss their applicability. After some brief
reminders about digital holographic recording, we
will present the main reconstruction approaches,
involving one to three Fourier transforms. Then a
discussion about reconstruction with adjustable
magnification is proposed. Methods to tackle aliases
and replicas are proposed, leading to high-quality
magnified reconstructions. The use of Fresnelet
transform will also be discussed. Reconstruction
methods will be assessed experimentally with opti-
cally acquired off-axis holograms, to provide insight
into their respective suitability toward targeted
applications.

2. Fresnel Holography Bases

Digital holography typically consists of recording an
optical field emerging from an illuminated object in a
diffraction plane (e.g., in free-space propagation con-
ditions) and numerically calculating, from diffraction
models, the field distribution in the reconstruction
plane. In practice, optical holograms are measured
out from the interference of the diffracted beam beat-
ing against a reference beam, which is not disturbed
by the object to be analyzed. One of the object-
reference cross terms typically yields a complex-
valued map (i.e., quadrature-resolved—in amplitude
and phase) of the diffraction field in the sensor plane.
The complex-valued measurement contains rele-
vant information about the local retardation of the
diffracted field. Phase-shifting [49] and frequency-
shifting [50] techniques were proposed to record
the diffraction field in quadrature. The interference
pattern, recorded by sensor array, can be expressed
as [51]

Eðx; yÞ ¼ jRðx; yÞj2 þ jOðx; yÞj2 þO�ðx; yÞRðx; yÞ
þOðx; yÞR�ðx; yÞ; ð1Þ

where R and O denote reference and object optical
fields, respectively. Starred (�) symbols are asso-
ciated with complex conjugate values.

The interference between reference and object
beams can be recorded within a wide range of con-
figurations. These can be grouped in two main
categories: in-line [51] and off-axis configurations
[52]. For our applications, off-axis holograms will

be recorded with a Mach–Zehnder configuration.
The final part of our off-axis Mach–Zehnder config-
uration is illustrated in Fig. 1(a). Here, the reference
and object beam are combined, with a relative angle
α, using a nonpolarizing beam-splitting/combining
cube. It should be noted that α should be chosen
so as to fulfill the sampling theorem. The maximal
value leading to a correct sampling of the inter-
ference pattern is therefore given, under paraxial
conditions, by

αmax ≈
λ

2Δx
; ð2Þ

where Δx denotes the sampling rate of the recording
device.

This off-axis angle results in separation of the four
terms of Eq. (1) in the spatial frequency domain. This
aspect is proposed Fig. 1(b). The central part of the
hologram spectrum (jRðx; yÞj2 þ jOðx; yÞj2) is known
as the autocorrelation term; its size is associated
with the highest spatial frequencies of the object,
denoted by B. Real and twin images of the object are
respectively given byOR� andRO�. These two terms
are twice as small as the autocorrelation term. To
improve the reconstruction quality, autocorrelation
and twin-image terms have to be canceled. This can
be achieved either by spatial filtering [53] or phase
shifting [54]. Doing this makes it possible to recon-
struct the real image term only.

In the next part, we will focus on hologram
reconstruction. After a brief reminder about the
Fresnel transform, we will discuss its main digital
implementations.

3. Digital Hologram Reconstruction

Digital reconstruction of an hologram consists in a
posteriori refocusing over the original object, which
can be performed by calculating backward propaga-
tion of the light from the hologram to the reconstruc-
tion plane. This process is equivalent to positioning
the recorded hologram back into the reference beam.
The eference beam therefore becomes the reconstruc-
tion beam. Using the Huygens–Fresnel principle,
one can infer an integral formulation of the intensity
Erec in the reconstruction plane, from an off-axis

Fig. 1. (a) Hologram recording in off-axis configuration, (b) spatial
frequency representation of off-axis holograms.
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recorded hologram E [55]:

Erecðξ; ηÞ ¼ −i
z
λ

Z
R2

Eðx; yÞ expðikrÞ
r

dxdy: ð3Þ

Here, the distance r is given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ðx − ξÞ2 þ ðy − ηÞ2

q
; ð4Þ

where ðx; yÞ and ðξ; ηÞ denote the spatial coordinates
in the hologram and reconstruction plane, respec-
tively. It should be noted that the hologram Eðx; yÞ
has been recorded as an off-axis configuration. Under
Fresnel approximation, when z3 ≫

1
8λ ½ðξ − xÞ2þ

ðη − yÞ2�2, r can be approximated by

r ¼ z

�
1þ 1

2

�
x − ξ
z

�
2
þ 1
2

�
y − η
z

�
2
�
; ð5Þ

and Eq. (3) is rewritten as

Erecðξ; ηÞ ¼
exp

�
i2π
λ z

�
iλz

Z
R2

Eðx; yÞ

× exp
�
i
π
λz ½ðx − ξÞ2 þ ðy − ηÞ2�

	
dxdy: ð6Þ

This relationship will be used in the remainder of
this paper to perform reconstruction of off-axis inten-
sity holograms.

As far as variables in Eq. (6) are separable, all the
discrete formulations will be derived in the one-
dimensional (1D) case. Generalization in two dimen-
sions is straightforward. The 1D discrete Fresnel
transform is defined by

ErecðpÞ ¼
exp

�
i2π
λ z

�
iλz exp

�
i
π
λz p

2Δξ2
�XN−1

n¼0

EðnÞ

× exp
�
i
π
λz n

2Δx2
�
exp

�
−i

2π
λz npΔxΔξ

�
; ð7Þ

where nΔx and pΔξ respectively denote the spatial
coordinate in the CCD and reconstruction plane,
and N is the number of sampling points.

Direct implementation of Eq. (7) is a time-
consuming process. Starting from Eq. (6), one can
realize that efficient computational schemes can be
designed to implement digital holographic recon-
struction. This makes it possible to separate recon-
struction methods into two main families: the
Fourier based approaches [based on the use of a
single fast Fourier transform (FFT)], well suited for
imaging extended objects localized far from the CCD
or CMOS sensor, and the convolution methods, com-
puted by using two or three FFTs. These methods are
well adapted for the reconstruction of holograms of
small lateral dimensions, recorded near the imaging

device. Alternative methods can be considered when
an adjustable magnification or advanced filtering
techniques are needed.

In the remainder of this section, we will detail the
different computational approaches and apply these
to the reconstruction of digital holograms.

A. Single-FFT Method

Efficient implementation of Eq. (7) can be performed
using the FFT algorithm [56,57]. In this case pixel
pitches in both the reconstruction (Δξ) and the
CCD plane (Δx) are related by

Δξ ¼ λz
NΔx

: ð8Þ

Therefore, Eq. (7) can be rewritten as

ErecðpÞ ¼
exp

�
i2π
λ z

�
iλz exp

�
i
πλzp2

N2Δx2

�XN−1

n¼0

EðnÞ

× exp
�
i
π
λz n

2Δx2
�
exp

�
−i2π np

N

�
: ð9Þ

This relationship is therefore easily computed by

ErecðξÞ ¼
exp

�
i2π
λ z

�
iλz exp

�
i
πλzp2

N2Δx2

�

× F
�
EðxÞ exp

�
i
π
λz x

2

�	
: ð10Þ

It should be noted that within this configuration,
the ratio between the reconstructed horizon and the
sensor array extension (which can be abusively de-
noted as the magnification of the reconstruction
method) is closely linked to the reconstruction dis-
tance, i.e., γ ¼ Δξ=Δx ¼ λz=ðNΔx2Þ. In the remainder
of this paper, the intrinsic magnification of the
single-FFT implementation of the reconstruction
integral will be denoted by γ0 ¼ λz=ðNΔx2Þ.
B. Convolution Based approaches

Holographic reconstruction can be viewed as a linear
system. As matter of fact, Eq. (6) is the mathematical
expression of the spatial convolution between the
hologram and the Fresnel impulse response function
hz, which is defined by (omitting the multiplicative
constant)

hzðxÞ ¼ exp
�
i
π
λz x

2

�
: ð11Þ

Convolution based approaches lead to unitary
magnification, namely, Δξ ¼ Δx.

1. “Three-FFT Algorithm”

Computation of the convolution product between the
hologram and the holographic impulse response can
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be efficiently implemented in Fourier domain. Using
fast Fourier transform algorithms, Eq. (6) can be
computed as

ErecðξÞ ¼
exp

�
i2π
λ z

�
iλz F−1½FfEðxÞg × FfhzðxÞg�; ð12Þ

where F and F−1 respectively stand for the Fourier
transform and its inverse.

2. Angular Spectrum Propagation

This method is based on the propagation of the
angular spectrum of the hologram. The angular spec-
trum transfer function is given by [58]

HðuÞ ≈ exp
�
2i

πz
λ

�
1 −

1
2
λ2u2

��
; ð13Þ

where u is the spatial frequency in Fourier domain.
Using Eq. (13), hologram reconstruction can be
performed:

ErecðξÞ ¼
1
iλzF

−1½FfEðxÞg ×HðuÞ�: ð14Þ

C. Algorithms with Adjustable Magnification

Neither the single-FFT approach nor the convolution
basedmethods allow adjustment of themagnification
of the reconstructed hologram. As a matter of fact, in
single-FFT hologram processing, magnification de-
pends on the recording wavelength and distance,
whereas it remains constant using a convolution ap-
proach. In the latter case, themagnification is unitary
(Δξ ¼ Δx). This aspect is illustrated by Fig. 2. Here,
the evolution of the reconstructed horizon is repre-
sented with respect to the reconstruction distance.
The solid lines are associated with the single-FFT
reconstruction scheme, and the doted lines are the re-
construction horizon of the convolution based recon-
struction approaches. It should be noted that for
z ¼ NΔx2=λ [this distance is determined by taking
Δx ¼ Δξ in Eq. (8)], single-FFT and convolution ap-
proaches exhibit the same magnification.

Working with an adjustable magnification algo-
rithm is a great opportunity to make the reconstruc-
tion horizon independent from the hologram
recording parameters. Domains such as multiwave-
length holography benefit from this property [59,60].

Several approaches have been proposed to allow
magnification adjustment. Ferraro et al. used zero-
padding to control the reconstructed horizon and to
make it independent from the reconstructed distance
[61]. This method gives good results for multiwave-
length hologram multiplexing but may, however, in-
crease the computational load. Another way to adjust
the magnification is to reconstruct the hologramwith
a two-step algorithm [62]. Each step consists of a
single-FFT reconstruction. Letting z be the recon-

struction distance, the two steps (reconstruction at
distances z1 and z2) are chosen such that z ¼
z1 þ z2. Here, the magnification is controlled by the
choice of the intermediate reconstruction distance
z1. An optimization of this approach allows the
authors of Ref. [63] to better match physical diffrac-
tion, thus obtaining high-fidelity reconstruction of
magnified holograms. Control of reconstruction mag-
nification, shift, and aberration compensation has
also been proposed and realized using a digital lens
with adjustable parameters in the reconstruction
process [64].

In the following subsection, we will focus on two
algorithms that allow adjustment of magnification
in the reconstruction process and that are based
either on the convolution [65] or the single-FFT [66]
implementation of the Fresnel transform.

1. Digital Quadratic Lens Method

This method is based on the convolution approach
[59,60]. Prior to reconstruction, the hologram is
padded to the desired horizon and then multiplied
by a digital spherical wavefront acting as a quadratic
lens, which is defined by

LðxÞ ¼ exp
�
−i

π
λRc

x2
�
; ð15Þ

where Rc denotes the curvature radius of L. This
curvature radius can be defined in terms of system
magnification such that

Rc ¼
γz

γ − 1
: ð16Þ

Here, γ is the ratio between the CCD horizon (of
the padded hologram) and the object’s physical
extent. Working with a spherical reconstruction
wavefront modifies the physical reconstruction dis-
tance z to z0 ¼ γz. Thus, hologram reconstruction
can be realized by computing the following relation:

Fig. 2. Angular acceptance of digital holographic reconstruction
process. Solid lines are associated with the single-FFT reconstruc-
tion, and dashed lines correspond to the convolution approaches.

1 December 2011 / Vol. 50, No. 34 / APPLIED OPTICS H139



ErecðξÞ ¼
exp

�
i2π
λ z0

�
iλz0 F−1½FfEðxÞLðxÞg × Ffhz0 ðxÞg�;

ð17Þ

when working within a “three-FFT” scheme, or

ErecðξÞ ¼
exp

�
i2π
λ z0

�
iλz0 F−1½FfEðxÞLðxÞg ×HðuÞ�; ð18Þ

when angular spectrum propagation is considered.
An alternative method, based on this formalism
associated with a spatial filtering of the single-FFT
reconstructed hologram, allows the reconstruction of
the local object field with an adjustable magnifica-
tion [65]. This method makes it possible to limit the
effect of the reference beam distortions. However, one
more FFT (two, when the angular spectrum imple-
mentation is considered) is needed to deal with the
filtering step.

2. Fresnel–Bluestein Transform

This approach is based on a “clever” expansion of
Eq. (9) [66]. In the kernel of the Fourier transform,
the product 2np is rewritten as 2np ¼ n2 þ p2

−

ðp − nÞ2 [67], such that the discrete Fresnel trans-
form can be expressed by

ErecðpÞ ¼
exp

�
i2π
λ z

�
iλz exp

�
−
iπ
λzΔξðΔx −ΔξÞp2

�

×
XN
n¼0

EðnÞ exp
�
iπ
λzΔxðΔx −ΔξÞn2

�

× exp
�
iπ
λzΔxΔξðp − nÞ2

�
: ð19Þ

Let γ ¼ Δξ=Δx be the magnification of the recon-
struction. Therefore, Eq. (19) can be rewritten as

ErecðpÞ ¼
exp

�
i2π
λ z

�
iλz exp

�
−
iπ
λz γð1 − γÞΔx2p2

�

×
XN
n¼0

EðnÞ exp
�
iπ
λz ð1 − γÞn2Δx2

�

× exp
�
iπ
λz γðp − nÞ2Δx2

�
: ð20Þ

It should be noted that the magnification γ is inde-
pendent of the hologram recording parameters
and can be adjusted at will. With this formulation,
Eq. (20) is the spatial convolution product of two
functions f and g, defined by

f ðnÞ ¼ EðnÞ exp
�
i
π
λz ð1 − γÞn2Δx2

�
ð21Þ

and

gðnÞ ¼ exp
�
i
π
λz γn

2Δx2
�
: ð22Þ

The Fresnel–Bluestein reconstruction algorithm
can, therefore, be summarized as

ErecðξÞ ¼
exp

�
i2π
λ z

�
iλz exp

�
−
iπ
λz γð1 − γÞΔx2p2

�

× F−1½Fff ðxÞg × FfgðxÞg�: ð23Þ

Adjustable magnification rendering with the
quadratic lens method and the Fresnel–Bluestein
algorithm yield the same results. Let γ0 be the intrin-
sic magnification of the single-FFT reconstruction
scheme. Hologram rendering of a United States
Air Force (USAF) resolution target sector with
228 line pairs:mm−1 spatial frequency at element
(7-6), with both methods at magnification γ ¼ 0:8;
1; 2:5 × γ0, is reported in Fig. 3. Although these two
methods are based on different formalisms (single-
FFT formalism and convolution based approach),
it is here made obvious that both methods lead to
the same results.

3. Aliases and Replicas

Adjustable magnification algorithms make it possi-
ble either to zoom over details in reconstructed
images or to reconstruct objects whose dimensions
are greater than that of the recording device. How-
ever, care must be taken. As a matter of fact, working
with reconstruction horizons smaller than the ob-
ject’s physical extent may cause aliases in the recon-
struction plane, whereas replicas may appear in the
opposite situation. In other words, considering γ0 ¼
λz=ðNΔx2Þ the intrinsic magnification of the single-
FFT based Fresnel transform implementation,

γ < γ0 ð24Þ
will lead to replicas in the reconstructed image,
whereas choosing

γ > γ0 ð25Þ
will generate aliases. This aspect is illustrated by
Figs. 4(a) and 4(c). A hologram of the object was
reconstructed using the adjustable magnification al-
gorithm proposed by Restrepo and Garcia-Sucerquia
[66] (the results would have been the same if the
quadratic lens algorithm was considered). The recon-
struction with the single-FFT algorithm (γ ¼ γ0) is
proposed in Figs. 4(b) and 4(e). It should be noted
that replicas can be seen in Fig. 4(a) (here γ < γ0),
and aliases appear in Fig. 4(c) (for γ > γ0). These un-
wanted effects degrade the reconstruction quality
and must be avoided.

To limit the aliasing effect, when γ > γ0, Hennelly
et al. proposed a filtering scheme, which is presented
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in Fig. 5(a) [68]. Prior to being reconstructed, the
hologram is multiplied by a chirp function defined as

CðxÞ ¼ exp
�
i
π
λz x

2

�
: ð26Þ

The resulting chirp-multiplied hologram is then
low-pass filtered and finally multiplied by C�, which
is the complex conjugate of C. The size of the filtering
window is chosen so as to match the physical extent
of the reconstruction horizon at distance z. It is
therefore possible to reconstruct the hologram using
an adjustable magnification algorithm. Benefits of
this filtering approach are illustrated by Figs. 4(c)
and 4(f). Alias artifacts are completely removed, thus
giving a high-contrast image of the reconstructed
objects.

When γ < γ0, replicas can be seen on the recon-
structed image. Their removal can be performed by
the procedure illustrated in Fig. 5(b). The recon-
structed hologram is cropped in order to keep the

ðγ0=γÞN pixels associated with the original object.
This selection is then zero-padded to the original
size of the hologram. As can be seen from Figs. 4(a)
and 4(d), replicas are completely removed.

D. Fresnelet Decomposition

Fresnelet decomposition was initially proposed by
Liebling et al. for the reconstruction and processing
of digital holograms [69]. This multiresolution
scheme finds application in a wide variety of domains
such as data compression [70,71], nonlinear filtering
[72], and wavefront retrieving [73] and can be con-
sidered in autofocusing procedures [74]. Fresnelet
reconstruction of a hologram consists of its decompo-
sition on the basis of Fresnel-transformed wavelets.

Liebling proposed the use of B-splines, which can
be defined as [69]

βnðxÞ ¼ β0 �… � β0|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
nþ1

ðxÞ; ð27Þ

where β0 is given by

β0ðxÞ ¼

8><
>:

1; 0 < x < 1
1
2 ; x ¼ 0 or x ¼ 1

0; otherwise

; ð28Þ

and the � symbol denotes the convolution product.
As shown by Unser et al., the B-spline fulfills all the
mathematical requirements to be used for multireso-
lution analysis of L2ðRÞ [75], especially the two-scale
relation:

βn
�
x
2

�
¼

X
k∈Z

hðkÞβnðx − kÞ: ð29Þ

Here hðkÞ ¼ 1
2n

�nþ 1
k

�
is the binomial filter.

A B-spline can be used to generate a semiorthogo-
nal wavelet function basis of L2ðRÞ denoted by ψn

j;k
and defined as

fψn
j;k ¼ 2

−j
2ψnð2−jx − kÞgj;k∈Z; ð30Þ

where

ψn

�
x
2

�
¼

X
k∈Z

gðkÞβnðx − kÞ: ð31Þ

The filter gðkÞ is the quadrature mirror filter of
hðkÞ. Fresnelet basis can be calculated simply by
taking the Fresnel transform of the B-spline basis.
Fresnelet bases are therefore defined by

f~ψn
j;k ¼ 2

−j
2 ~ψnð2−jx − kÞgj;k∈Z; ð32Þ

with

Fig. 3. Reconstruction of a hologram for γ ¼ 0:8; 1;2:5 × γ0.
(a), (c), (e) Quadratic lens method, (b), (d), (f) Fresnel–Bluestein
method.
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~ψn

�
x
2

�
¼

X
k∈Z

gðkÞ~βnðx − kÞ; ð33Þ

and

~βn
�
x
2

�
¼

X
k∈Z

hðkÞ~βnðx − kÞ: ð34Þ

Here ~: is associated with the Fresnel transform.

It should be noted that the computation method
chosen for the Fresnel transform will affect the Fres-
nelet transform results. As amatter of fact, Fresnelet
transform properties will be the same as those of the
chosen Fresnel computation scheme (e.g., adjustable
or unitary magnification).

4. Application

In this section, reconstruction of experimental holo-
grams is performed according to the methods
reported in Section 3. Holograms are recorded ac-
cording to the experimental setup of Fig. 6. Here,
off-axis interference between the reference and
object beams are recorded on a 2048 × 2048 pixel
CCD sensor with a Δx ¼ 7:4 μm pixel pitch. The ob-
ject consists of an inverted USAF target illuminated
with a green laser (λ ¼ 532nm). The USAF target is
positioned at three different distances, zi, from the
sensor, chosen such that Δξ < Δx, Δξ ¼ Δx, and
Δξ > Δx, where Δξ and Δx denote the size of the re-
construction and of the CCD sensor, respectively. Ex-
perimental reconstructions are presented hereafter.

A. Classical Reconstruction Methods

In this section, holograms recorded at zi such that
Δξ < Δx, Δξ ¼ Δx, and Δξ > Δx, are reconstructed
using single-FFT, angular spectrum propagation,
and three-FFT methods. Images of the reconstructed
objects are proposed in Fig. 7. This figure consists of a
two-entry table. In each row, the holograms recon-
structed when Δξ < Δx, Δξ ¼ Δx, and Δξ > Δx are
depicted. Each column is associated with the chosen
reconstruction method: single-FFT, angular spec-
trum propagation, and three-FFT. It is noticeable

Fig. 4. Illustrations of alias and replica phenomena. (a) Reconstruction with γ ¼ 0:5 × γ0, (c) reconstruction with γ ¼ 4 × γ0, (d) same as (a)
with replica removal, (f) same as (c) with alias filtering, (b), (e) reconstruction with γ ¼ γ0.

Fig. 5. (a) Synoptics of the antialias procedure, (b) replica
removal scheme.

H142 APPLIED OPTICS / Vol. 50, No. 34 / 1 December 2011



that in most cases reconstruction results depend on
the method chosen. In the following section, results
obtained are detailed row by row.

1. Reconstruction for Δξ < Δx

1. Single-FFT
As seen on Fig. 7, aliases are present in the recon-

structed image of the object. This is due to the fact
that the single-FFT implementation of the Fresnel
transform results in a magnified image of the origi-

nal object. Thus, the reconstructed object extends
over the limits of the CCD sensor.

2. Angular Spectrum
As far as Δξ < Δx, the reconstructed object is well

embedded within the CCD sensor horizon. The angu-
lar spectrum method is therefore well suited for
reconstruction of holograms recorded near the CCD
sensor.

3. Three-FFT
The reconstructed image of the object is embedded

within the CCD sensor. However, replicas can be
noticed from the reconstructed hologram. This is
due to the fact that when the reconstruction distance
z < NΔx=λ, the impulse response hz is ill-sampled;
in this situation, the sampling theorem is not
verified [76].

2. Reconstruction for Δξ ¼ Δx

It can be noted that for Δξ ¼ Δx, the three recon-
struction methods considered give the same results.
As a matter of fact, in this situation, the recon-
structed horizon perfectly matches the sensor array
extent. In other words, intrinsic magnification of

Fig. 6. Experimental procedure for the holographic reconstruc-
tion benchmarking.

Fig. 7. Holographic reconstructions of the USAF target located at different distances.
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single-FFT Fresnel implementation is the same as
that of convolution approaches.

3. Reconstruction for Δξ > Δx

1. Single-FFT
As far as the object extent is bigger than the sensor

array dimensions, the single-FFT implementation of
the Fresnel transform is appropriate for hologram
reconstruction.

2. Angular Spectrum and Three-FFT
The fact that these approaches exhibit unitary

magnification is limiting when dealing with an object
located far from the sensor. As a matter of fact, it can
be realized from Fig. 7 that aliases occur in the recon-
structed image of the hologram.

Classical reconstruction methods have been ap-
plied to experimental holograms recorded at various
distances from the sensor array. It can be noted that
each method is valid only within a limited range
of distances. In the next section, we will give a few
words about Fresnelet decomposition and show that
its reconstruction properties can be modified to
match each reconstruction method.

B. Fresnelets

As presented in Section 3.D, Fresnelet decomposition
is similar to a multiscale-wavelet decomposition on a
Fresnel-transformed base. One appealing feature of
this decomposition is that the result of the Fresnelet
reconstruction depends on themethod chosen to com-
pute the Fresnel transform of the wavelet base.

To illustrate this point, Fresnelet reconstruction of
the hologram recorded for Δξ > Δx is performed. In
this situation, the single-FFT method gives good
results, whereas the three-FFT reconstruction pro-
duces alises. Here, the fresnelet bases are calculated
with the single-FFT and the three-FFT method ac-
cording to Eqs. (33) and (34). Decompositions of the
test hologram on the two calculated fresnelet bases
are proposed in Figs. 8(a) and 8(b), respectively. It
should be noticed that the computation scheme cho-
sen strongly affects the calculated coefficients.
Therefore, properties of the fresnelet decomposition
reconstruction depend on the method chosen to cal-
culate the fresnelet base functions. This aspect is
pointed out by Figs. 8(c) and 8(d). Here, hologram re-
construction from the Fresnelet coefficients depicted
in Figs. 8(a) and 8(b) is realized. These reconstruc-
tions are similar to the one obtained with classical
methods (see Δξ > Δx in Fig. 7 for comparison).
Thus, for Δξ > Δx, the single-FFT method will be
more reliable than the three-FFT scheme.

5. Conclusion

We have proposed an overview of holographic recon-
struction methods with application to off-axis inten-
sity hologram treatment. Intrinsic properties and
limitations of classical methods have been investi-
gated, and applicability ranges have been stated
with the reconstruction of experimental holograms.

It can be noted that the choice of the reconstruction
method will be driven by the hologram recording
conditions. For instance, when dealing with far and
extended objects, the single-FFT algorithm will be
the most appropriate, whereas convolution ap-
proaches will be suited for the reconstruction of small
objects located near the sensor array. Adjustable
magnification methods have been presented and
can be viewed as a way to overcome limitations of
the classical reconstruction schemes and allow the
reconstruction result to be independent from the cho-
sen scheme. Nevertheless, care must be taken in or-
der to limit aliases and replicas when working with
high or low magnification. Finally, Fresnelet recon-
struction of the holograms has been performed using
the fact that the Fresnelet decomposition base de-
pends on the method chosen to compute the Fresnel
transform. This method can be considered for filter-
ing or image compression when computational load
is not a critical issue.
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