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The local resonances of a free isotropic elastic plate are investigated using laser ultrasonic techni-

ques. Experimental results are interpreted in terms of zero group velocity Lamb modes and edge

mode. At a distance from the edge larger than the plate thickness a sharp resonance is observed at

the frequency where the group velocity of the first symmetrical Lamb mode vanishes. Close to the

edge of the plate, the resonance due to the edge mode dominates. Both zero group velocity and

edge resonances appear at the theoretically predicted frequencies. These frequencies do not vary

with the distance from the edge of the plate and the transition between the two modes of vibration,

at about the plate thickness, is abrupt. Using a laser excitation on the edge, the amplitude profile of

the normal displacement at the edge resonance frequency was determined.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3607417]
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I. INTRODUCTION

Linear free vibrations of an infinite isotropic elastic

plate can be interpreted in terms of Lamb modes. Propagat-

ing modes are represented by a set of curves giving the real

angular frequency x of each symmetric (S) and antisymmet-

ric (A) mode versus the real wave number k, solution of the

Rayleigh-Lamb dispersion equation.1 Figure 1 shows the dis-

persion curves of the lower order modes for a Duralumin

plate of thickness d¼ 2h (longitudinal and transverse wave

velocities VL¼ 6.40 km/s and VT¼ 3.12 km/s, respectively).

Dimensionless quantities X¼xh/VT and kh are used. Low

frequency and long wavelength extensional or flexural vibra-

tions can be ascribed to the fundamental symmetric S0 or

antisymmetric A0 modes, which exhibit free propagation to

zero frequency, respectively. High frequency and long wave-

length stretch or shear vibrations occur at the cutoff fre-

quency fc of higher order Lamb modes, whose frequencies

depend on the plate thickness and on the bulk wave veloc-

ities of the material.2 These thickness resonances correspond

to an in-phase motion of the whole plate associated to van-

ishing wave number k in the plane of the plate.

As shown in Fig. 1, the first symmetric Lamb mode S1

exhibits a frequency minimum associated with a zero group

velocity (ZGV) at a nonzero value k0 of the wave number.

The energy deposited on the plate by a local impact is

trapped under the source at this ZGV frequency f0. As pre-

dicted by Tolstoy and Usdin,3 this phenomenon must give

rise to a sharp resonance peak and to ringing effects detecta-

ble over a long time in the source area. This local vibration

of an elastic plate was recently explained in terms of Lamb

waves in civil engineering by Gibson and Popovics.4 At the

same time, it was shown that the ZGV resonance is remark-

ably generated and detected using non-contact laser based

ultrasonic techniques.5

Another ringing phenomenon was discovered at the

boundary of a thick circular disc,6 at the free end of a cylindri-

cal rod7 and on the contour of a rectangular plate.8 In all cases,

this symmetric vibration is of a resonant nature. This so-called

“edge mode” exists in a narrow band around the resonant fre-

quency and the mechanical displacement is confined in a small

region near the free edge. For a plate at the edge resonance fre-

quency, which is lower that the minimum frequency of the S1

branch, only the fundamental symmetric Lamb mode S0 can

propagate. However, the change in the direction of propaga-

tion implies a change in sign for one stress component but not

for the other. Thus, stress free conditions imposed on the plate

edge cannot be fulfilled by the superposition of incident and

reflected propagating S0 modes alone. By solving the Ray-

leigh-Lamb equation, for complex wave numbers, Mindlin

and Medick discovered two complex branches besides the real

branch of the S1 mode. As shown in Fig. 2, these branches em-

anate from the stationary point (or ZGV point) of the S1 Lamb

mode.9 Onoe pointed out the role of complex modes to satisfy

boundary conditions at the plate edge.8 Following Gazis and

Mindlin,10 the extensional S0 mode present in the interior of

the plate, must be coupled with complex branches of the dis-

persion equation. A similar approach, highlighting the theoret-

ical link between edge and ZGV modes, was developed by

McNiven11 for a cylindrical rod.

In the first experiments on edge modes, the resonance

was measured using a contact piezoelectric transducer.6 A

transducer excitation was then used by Le Clezio et al.12 for

plates and Ratassepp et al.13 for pipes, while the non-contact

detection was achieved with a laser probe. Recently, it has

been shown that pulsed laser sources provide an invaluable

tool for investigating the free local resonance spectrum of

elastic plates or tubes.14,15

The objective of this study is to investigate, with a full

non contact technique, the existence of edge and ZGV
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resonances of an isotropic elastic plate. The paper is organized

as the following: the main properties of ZGV Lamb modes

and edge resonances are recalled in Sec. II. The local resonan-

ces of an elastic plate with a free edge are investigated

through laser ultrasonic measurements in Sec. III.

II. ANALYSIS

As previously indicated, in a thickness resonance the

whole plate surface is vibrating in phase, because of the van-

ishing wave number. Conversely, a ZGV resonance is a local

resonance, with a finite wave number. The conditions of ex-

istence of zero group velocity Lamb modes in isotropic

plates were discussed in a previous paper.16 These modes

appear in a range of Poisson’s ratio about the value for which

the cut-off frequency curves of modes belonging to the same

family intercept. Experimentally, this phenomenon can be

observed by detecting the normal displacement at the source

point or less than half a wavelength apart from the source. In

laser ultrasonic experiments, the absorption of a part of the

laser pulse energy generates propagating and non-propagat-

ing Lamb modes. Only modes whose energy velocity, i.e.,

group velocity is zero remain after a long time. The spectrum

of the signal exhibits sharp peaks whose frequencies match

the ZGV modes. These ZGV resonance frequencies provide

the local plate thickness if the longitudinal and transverse

wave velocities are known or the material parameters if the

plate thickness is known.15

The first analysis of the edge resonance, based on the

second order Mindlin’s approximation, involves only the

first two complex branches.9 If the remarkable increase in

the displacement of the plate end is well explained, the

agreement with experimental results is only qualitative for

the edge resonance frequency. Generally, edge mode is

caused by the interferences at the free edge of a plate

between the incident and diffracted modes, real and complex

ones. Moreover, the edge mode corresponds to a complex

valued frequency and its amplitude decay with time at a rate

given by the imaginary part of the complex resonance fre-

quency. Recently, a numerical study shows that this reso-

nance frequency becomes real for two values v1¼ 0 and

v2¼ 0.2248 of the Poisson’s ratio v.17 Pagneux gives a for-

mula which is a good approximation of this real part XR:

Real½XR� ¼ 0:652v2 þ 0:898vþ 1:9866: (1)

The variations of the real part of normalized resonance fre-

quencies X¼xh/VT versus Poisson’s ratio are plotted in Fig.

3 for edge, ZGV and thickness modes. This graph confirms

FIG. 2. Dispersion curves of complex Lamb modes for a Duralumin plate.

The dots (�) indicate the edge resonance frequency.

FIG. 1. Dispersion curves of propagating Lamb modes for a Duralumin

plate of thickness d¼ 2h.

FIG. 3. Real part of normalized resonance frequency xh/VT versus Pois-

son’s ratio v, for the edge mode (dashed line), the S1S2-ZGV Lamb mode

(solid line) and the thickness modes S1, S2 (dash dot lines). Measured edge

resonance frequencies: fused silica (o), crown glass (�), Duralumin (^).
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that for all usual materials, the edge resonance frequency is

lower that the ZGV one. Le Clezio et al. investigate the pro-

file of the out-of-plane component of the total displacement

field away from the resonant edge of an aluminum plate.12

III. EXPERIMENTAL RESULTS

Several measurements were performed on different ma-

terial plates to explore the domain of existence of local

resonances.

A. Local resonance measurements

Laser ultrasonic techniques were used in order to avoid

any damping of the plate resonances due to a mechanical

contact. In the first experimental setup shown in Fig. 4, the

source and detection points are superimposed. The thermo-

elastic source is a Q-switched Nd:YAG laser (optical wave-

length 1064 nm) providing a pulse having 20 ns duration and

4 mJ of energy. The spot diameter of the unfocused beam is

equal to 1 mm, in order to efficiently generate the first ZGV

mode.14 Lamb waves were detected by a heterodyne interfer-

ometer equipped with a frequency doubled Nd:YAG laser

(wavelength 532 nm, power 100 mW). This interferometer is

sensitive to any phase shift along the path of the optical

probe beam reflected by the moving surface.18 The normal

displacement is recorded using an oscilloscope linked to a

computer, which permits to process the data.

Three samples were used in the following experiments:

the first one is a 150-mm square Duralumin plate of thick-

ness 1.51 mm, the second one is a 49-mm square crown glass

plate of thickness 1.57 mm and the third one is a 15� 20

mm fused silica plate of thickness 1.09 mm.

The first measurements were performed on the 150-mm

square Duralumin plate. Material parameters, determined

from the ZGV resonance method,15 were found to be

VL¼ 6361 m=s; VT ¼ 3134 m=s; � ¼ 0:3397;

with a relative error smaller than 0.1%.

The normal displacements measured when the source

and detection points are superimposed in the middle and on

the edge of the plate are displayed in Figs. 5(a) and 5(b),

respectively. The upper trace corresponds to the ZGV reso-

nance of the S1 Lamb mode, the second ones to the edge res-

onance. Whereas the amplitudes are comparable, the time

decays of the two signals are different. Values of the meas-

ured and predicted resonance frequencies and also of the qual-

ity factors are given in Table I. The theoretical quality factor

is defined as Q¼ jRe[X]/2Im[X]j and the experimental value

is deduced from the time decay of the normal displacement.

With a difference as small as 0.2%, the agreement between

theoretical and experimental resonance frequencies is very

good. The rapid decrease of the displacement at the plate edge

[Fig. 5(b)] is linked to the imaginary part of the edge reso-

nance frequency. For Duralumin (v� 0.34) the values calcu-

lated with Eq. (9) in Ref. 17:

Re½X� ¼ 2:367 and Im½X� ¼ �3:35� 10�3;

lead to a theoretical quality factor Qth¼ 350. The experimen-

tal value (Qmeas¼ 250) is smaller than the theoretical one.

This difference may be ascribed to small geometrical irregu-

larities in the plate edge which broaden the resonance peak.

In practice, the quality factor (Q¼ 4200) of the ZGV reso-

nance is limited by local variations in the plate thickness.

Similar measurements were performed for crown glass

and fused silica plates. Material parameters of the crown glass

were found to be: VL¼ 5744 m/s, VT¼ 3432 m/s and

v¼ 0.2224. This Poisson’s ratio is very close to the second

value V2¼ 0.2248 for which the resonance frequency becomes

FIG. 4. Experimental setup.

FIG. 5. Normal displacements measured when the source and detection

points are superimposed (a) in the middle, (b) near the edge of the Duralu-

min plate.

TABLE I. Frequencies and quality factors of ZGV and edge resonances,

measured and predicted for the three samples of thickness d.

Material Resonance fpred (MHz) fmeas (MHz) Qmeas

Duralumin ZGV 1.905 1.901 4200

(d¼ 1.51 mm) Edge 1.568 1.566 250

Crown glass ZGV 1.738 1.738 1000

(d¼ 1.57 mm) Edge 1.544 1.545 650

Fused silica ZGV 2.640 2.626 590

(d¼ 1.09 mm) Edge 2.389 2.378 330
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real. Assuming no material damping, the imaginary part found

by Pagneux17 is very small compared to the real part:

Re½X� ¼ 2:219 and Im½X� ¼ �0:45� 10�6;

and the theoretical quality factor of the edge resonance is

larger than 106. In practice, this feature is limited by the sig-

nal to noise ratio, the material damping and the coupling

with the air. Nevertheless, the measured quality factor for

the edge resonance: Qmeas¼ 650, is higher than in Duralu-

min which is in agreement with theoretical predictions.

For the fused silica sample, the parameters were found

to be: VL¼ 6032 m/s, VT¼ 3792 m/s, and v¼ 0.1733. For

this plate the quality factor of the ZGV resonance is lower

than expected which can be ascribed to a defect in interface

parallelism. The quality factor of the edge mode is in

between those of Duralumin and crown glass which corre-

sponds to the theory.

B. Dependence of ZGV and edge resonances on the
excitation location

In order to investigate the domain of existence of these

resonances, the distance of the source and probe beams from

the plate edge was varied in 50 lm steps on the Duralumin

plate. At each distance, the normal displacement u(r, t) was

recorded during 390 ls with a 25 MHz sampling frequency.

The time domain Fourier transform U(r, f) was then calcu-

lated and is displayed in Fig. 6 between 1.4 MHz and 2.1

MHz. Two horizontal lines can be observed on the frequency

B-scan: the higher one corresponds to the S1S2-ZGV reso-

nance frequency. The lower one, localized near the plate

edge, corresponds to the edge resonance and perfectly

matches the value calculated from Eq. (1). A slow alteration

of the ZGV resonance frequency could be expected while

coming toward the edge. However, it is not the case. The

amplitude of the ZGV resonance vanishes at a distance from

the edge equal to about the plate thickness. The transition

between ZGV and edge modes is abrupt: the two modes do

not exist simultaneously.

In order to measure the profiles of the edge mode, the

experimental setup has been modified. The source laser

beam was flipped by 90� to hit the edge of the sample, while

the interferometer still measures the normal displacement on

the plate surface, along a line perpendicular to the edge

(Fig. 7). The excitation is then symmetrical and a more pre-

cise measurement can be achieved close to the edge since it

is not affected by the source thermal signal due to the heat-

ing of the air by the laser pulse.

According to the scheme in Fig. 8(a), the laser pulse pro-

duces a direct excitation of the edge resonance which lasts

FIG. 6. (Color online) Spatial distribution of the displacement spectrum for

the Duralumin plate (dB scale).

FIG. 7. Experimental setup for the excitation on the edge of the plate.

FIG. 8. (Color online) (a) Direct excitation by the laser pulse. (b) Reso-

nance spectrum versus the distance from the edge of the Duralumin plate

(dB scale).
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about 130 ls. A transient S�0 Lamb mode propagating toward

the opposite edge of the plate is also generated. This S�0 nota-

tion follows the axis orientation chosen by Le Clezio et al.12

The amplitude of the mechanical displacement versus fre-

quency and propagation distance is calculated by a temporal

Fourier transform for this time duration and displayed in

Fig. 8(b). Close to the edge, the profile presents two nodes

corresponding to the interference of the S�0 mode with the

evanescent modes. At a distance of 4 mm from the edge,

evanescent modes vanished and the level remains constant

corresponding to the S�0 propagating mode which is fed by

the resonance. This phenomenon was described by Gazis and

Mindlin as follows: “the energy that is temporarily trapped at

the edge will gradually leak into the interior of the plate as an

extensional wave.”10

Then, the resonance is excited a second time by the

reflection of the S�0 mode at the opposite edge of the plate

according to the scheme in Fig. 9(a). This reflected S0 mode

comes back to the observed region after 150 ls, and simulta-

neously excites the edge resonance and interferes with the

S�0 mode. Indeed, the plate is large enough and the reso-

nance quality factor small enough to ensure that the first res-

onance vanishes before the S0 reflected mode reaches the

first edge leading to a second resonance. This second excita-

tion is similar to the excitation made with a transducer

placed at the opposite edge, as in experimental studies by Le

Clezio et al. for plates12 or Ratassepp et al. for pipes.13

Thus, it is interesting to analyze the profile in order to com-

pare with theoretical predictions.

The amplitude profiles were calculated versus the fre-

quency for the second time window from 160 to 400 ls. In

this case, after the first two nodes, other regularly spaced

nodes appear that are due to the interferences between inci-

dent and reflected modes S0 and S�0.

In Fig. 10, the two profiles obtained at the resonance fre-

quency are compared to the theoretical one calculated by Le

Clezio et al. for �¼ 0.33.12 The profile obtained with S0 excita-

tion (o) agrees quite well with the theory (dashed dot). The pro-

file obtained by the pulse excitation (�) agrees near the edge,

while further, as expected, there is no interference pattern, but

the S0 level at the maxima of the former interferences.

In order to confirm which propagating modes contribute

to the edge resonance, we have calculated the spatial spectrum

by Fourier transform of the field measured over 10 mm. In

Fig. 11, the amplitude of the mechanical displacement at the

edge resonance frequency is plotted for real wave number.

For the first time window (solid line), it is clear that the S–0

mode dominates all other modes at this frequency, this

FIG. 9. (Color online) (a) Second excitation by the backward S0 mode. (b)

Edge resonance spectrum on the Duralumin plate (dB scale).

FIG. 10. (Color online) Edge resonance profile: direct excitation (x), second

excitation (o) compared to theoretical prediction by Le Clezio et al. (dash

dotted line).

FIG. 11. Spatial Fourier transform of the normal displacement at the edge

resonance frequency for the direct laser pulse excitation (solid line) and for

the second excitation by the backward S0 mode (dashed line).
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confirms the fact that the edge resonance feeds the propagat-

ing mode. This behavior differs from those of the ZGV modes

that are only associated to non propagating modes. It is coher-

ent with the relatively low quality factor of the edge mode.

For the S0 excitation, i.e., the second time window (dashed

line), the contribution of the incident S0 and reflected S–0 sym-

metric Lamb modes dominates with similar amplitude. This

analysis confirms that S0 is the only propagating mode that

contributes to the edge resonance.

IV. CONCLUSION

Zero group velocity (ZGV) Lamb modes and edge reso-

nance of an isotropic plate were experimentally investigated

using laser ultrasonic techniques. It has been shown that

ZGV modes can be observed without any frequency change

at a distance as close as the plate thickness from the edge.

Coming toward the edge, the amplitude of the ZGV reso-

nance vanishes whereas the edge mode resonance appears at

a lower frequency. The transition between the generation of

ZGV and edge modes is abrupt. Resonance frequencies

measured for Duralumin, crown glass and fused silica plates

are in a very good agreement with the theoretical values, the

frequency dependence on Poisson’s ratio was validated for

these different materials. Moreover, using a laser generation

on the plate edge, the edge resonance was excited solely and

the spatial distribution of the mode measured on the plate

face by scanning the laser probe. The experimental profile

was found to be in a good agreement with the theoretical one

given in the literature.
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