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Waves scattered by a weakly inhomogeneous random medium contain a predominant single-scat-

tering contribution as well as a multiple-scattering contribution which is usually neglected, espe-

cially for imaging purposes. A method based on random matrix theory is proposed to separate the

single- and multiple-scattering contributions. The experimental setup uses an array of sources/

receivers placed in front of the medium. The impulse responses between every couple of trans-

ducers are measured and form a matrix. Single-scattering contributions are shown to exhibit a deter-

ministic coherence along the antidiagonals of the array response matrix, whatever the distribution

of inhomogeneities. This property is taken advantage of to discriminate single- from multiple-

scattered waves. This allows one to evaluate the absorption losses and the scattering losses sepa-

rately, by comparing the multiple-scattering intensity with a radiative transfer model. Moreover,

the relative contribution of multiple scattering in the backscattered wave can be estimated, which

serves as a validity test for the Born approximation. Experimental results are presented with ultra-

sonic waves in the megahertz range, on a synthetic sample (agar–gelatine gel) as well as on breast

tissues. Interestingly, the multiple-scattering contribution is found to be far from negligible in the

breast around 4.3 MHz. VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3506343]

PACS number(s): 43.60.Gk, 43.20.Fn, 43.80.Ev, 43.35.Bf [RKS] Pages: 225–233

I. INTRODUCTION

Standard imaging techniques such as ultrasonic echogra-

phy,1 radar,2 or optical coherence tomography3 are based on

the same principle. One or several source(s) emit(s) a wave

into the medium to be imaged. It is reflected by the inhomoge-

neities of the medium, and the backscattered wave is measured

by the same or other sensor(s). It contains two contributions:

(1) A single-scattering contribution (path s in Fig. 1): The

incident wave undergoes only one scattering event

before coming back to the sensor(s). This is the contribu-

tion which is used in imaging because there is a direct

relation between the arrival time t of the echo and the

distance d between the sensors and the scatterer, t
¼ 2d=c (c is the sound velocity). An image of the me-

dium reflectivity can be built from measured signals.

(2) A multiple-scattering contribution (path m in Fig. 1): The

wave undergoes several scattering events before reaching

the sensor. Multiple scattering occurs when scatterers are

strongly diffusive and/or highly concentrated. There is no

correspondence between the arrival time t and the posi-

tion of a scatterer. Thus, classical imaging fails in multi-

ple-scattering media.4–7

Standard imaging techniques rely on the single-scattering

assumption (first Born approximation). However, there is no

such thing as a purely single-scattering medium. A multiple-

scattering contribution always exists, albeit negligible com-

pared to single scattering. Naturally for imaging purposes,

one tries to reduce the influence of multiple scattering, for

instance, by choosing an appropriate frequency domain where

multiple scattering is not too strong.8 Focused beamforming

with an array of transducers, or more generally synthetic aper-

ture techniques,2 are also a way to enhance the single-scattering

contribution. It should be noted that even though multiple

scattering is considered as the enemy of classical imaging

techniques, studying it may bring additional information

about the scattering structure. Indeed, a wave undergoing

multiple scattering can be thought of as a random walker,9

with two essential parameters: The elastic mean-free path le
and the diffusion constant D. Measuring these parameters is

a way to characterize the microarchitecture of the scattering

medium.10,11 Yet in weakly inhomogeneous media where

the first Born approximation is reasonably valid (especially

human soft tissues probed by ultrasound in the megahertz

range), it is a challenge to study multiple-scattering parame-

ters because of the predominance of single scattering.

Recently, an original technique has been proposed to

separate the single-scattered echo of a target drowned in a

predominant multiple-scattering background.8,12 The method

was based on a matrix approach. It has been successfully

applied to target detection and imaging in highly scattering

media. In this paper, we are also interested in discriminating

single-scattering and multiple-scattering contributions from

the total response of an unknown medium, based on matrix

properties. However, the present approach is different from

earlier works,8,12 both in terms of method and applications.

The situation we consider here is exactly the opposite: We

want to extract the multiple-scattering contribution from pre-

dominantly single-scattered waves in a weakly scattering

media. Moreover, the method is based on a singular value

decomposition (SVD) applied to the antidiagonals of the

array response matrix and not to the array response matrix
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itself. The distinction between single- and multiple-scattering

subspaces is then performed using random matrix theory

(RMT),13,14 as it will be detailed in the Sec. IV.

The interest of this work is twofold. First, once single-

and multiple-scattering contributions are isolated, the propor-

tion of multiple scattering within the wave response of the

medium can be evaluated. This figure can be used as an indi-

cator for the validity of the single-scattering (Born) approxi-

mation, which is the basis of classical imaging techniques.

Note, however, that the purpose of this study is not to

improve imaging of weakly scattering media. The second in-

terest of this work is to provide a new tool for the characteri-

zation of weakly scattering media. More precisely, we will

show how the multiple-scattering contribution, once it is

isolated, can be taken advantage of in order to estimate the

scattering mean-free path le independently from the absorp-

tion mean-free path la, thus discriminating absorption and

scattering losses.

The experimental results we present were obtained with

pulsed ultrasonic waves first in a synthetic medium (agar–

gelatine gel) around 3 MHz and then in breast tissues around

4.3 MHz, but the principle of the technique can be applied to

all fields of wave physics (e.g., seismology, electromagnet-

ism, acoustics, etc.) for which the multi-element array tech-

nology is available and provides time-resolved measurements

of the amplitude and the phase of the wave-field.

II. TRANSDUCERS’ ARRAY CONFIGURATION

We use an N-element ultrasonic array (here, N ¼ 125).

The array is placed at a distance a from the random scatter-

ing sample under investigation (see Fig. 1). The first step of

the experiment consists in measuring the inter-element ma-

trix. A sinusoidal burst of length dt at the central frequency

fc is emitted from transducer i into the scattering medium.

Typical values here are dt � 1 ls and fc � 3 MHz. The back-

scattered wave is recorded with the N transducers of the

same array, which yields a set of impulse responses hij (t)
(j ¼ 1, … , N denotes the receiver index). The operation is

repeated for the N emitting transducers. The responses hij (t)
form the N � N impulse response matrix H(t). Because of

reciprocity, hij(t) ¼ hji(t) and H(t) is symmetric. A short-

time Fourier analysis of the impulse response matrix H is

performed. The time signals hij(t) are truncated into Dt-long

overlapping windows: kij(T, t) ¼ hij(T � t)WR(t) with

WR(t) ¼ 1 for t [ [�Dt=2, Dt=2], WR(t) ¼ 0 anywhere else.

The value of Dt is chosen so that signals associated with the

same scattering event(s) within the medium arrive in the

same time window.15 Typical values here are Dt � 10 ls.

A Fourier analysis of K (T, t) is achieved by means of a dis-

crete Fourier transform. A response matrix K (T, f) is finally

obtained at each time T and frequency f. The single- and

multiple-scattering contributions can now be discriminated

with the help of a matrix manipulation.

III. THE SIGNATURE OF SINGLE SCATTERING

When studying the array response matrices K(T, f), the

predominance of single scattering manifests itself by the pre-

sence of a long-range deterministic coherence along the anti-

diagonals of the matrix, whatever the distribution of

scatterers.8,12,15 As an example, Fig. 2 shows the real part of

one of the matrices, K, in the case of a synthetic medium

(agar–gelatine gel) which is enough weakly scattering for the

Born approximation to be valid. Even if the inhomogeneities

are randomly distributed, K obviously exhibits some kind of

coherence along its antidiagonals (i.e., for matrix elements

kij such that i þ j ¼ constant). This coherence is a typical sig-

nature of single scattering, and it vanishes when multiple

scattering dominates. This has been thoroughly explained in

Refs. 15, 12, and 15, and we briefly recall the main argument

here.

Generally, the kij(T, f) can be written as the sum of

single- and multiple-scattering contributions:

kijðT; f Þ ¼ kS
ijðT; f Þ þ kM

ij ðT; f Þ: (1)

Under the paraxial approximation, the distance between the

origin (0, 0) and an observer (x, R) located slightly off-axis

(x � R) is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ x2
p

¼ Rþ x2=ð2RÞ. As a result, the phase

shift undergone by a wave traveling from a source with coor-

dinates (0, xi), scattered by a point (Xd, R), and received in

the plane of the source at (0, xj) reads

exp½2jkR� exp jk
xi � Xdð Þ2

2R

" #
exp jk

xj � Xd

� �2

2R

" #
;

FIG. 1. Experimental setup: A 125-element linear array is placed in front of a

random medium at a distance a. The whole setup is immersed in a water tank.

FIG. 2. Real part of matrix K obtained in a gel (5% gelatine, 3% agar–agar)

at time T ¼ 114 ls and frequency f ¼ 3.05 MHz. The source-sample dis-

tance was a ¼ 50 mm.
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with k as the wavenumber. The quadratic phase terms can be

factorized since

ðxi � XdÞ2 þ ðxj � XdÞ2 ¼
ðxi � xjÞ2

2
þ ðxi þ xj � 2XdÞ2

2
:

(2)

Consider an ensemble of scatterers randomly distrib-

uted. As long as only the first and the last scattering of every

scattering path are identical (which is naturally the case, if

only single scattering takes place), the coefficients of the

array response matrix at time T and frequency f will be pro-

portional to

kS
ijðT; f Þ / exp j2kRð Þ

XNd

d¼1

Ad exp jk
xi � Xdð Þ2

2R

" #

� exp jk
xj � Xd

� �2

2R

" #
; (3)

with R ¼ cT=2 and Nd the number of scatterers contained in

the isochronous volume. Ad depends on the reflectivity of the

scatterer. Ad and Xd are random variables, so kS
ij is itself ran-

dom. Interestingly, applying the factorization of Eq. (2) to

Eq. (3), a deterministic relation arises along the antidiago-

nals of KS:

bm ¼
ki�m;iþmðT; f Þ

kiiðT; f Þ ¼ exp jk
mdxð Þ2

R

" #
; (4)

with dx denoting the array pitch and 2mdx the distance

between two array elements (i � m and i þ m) on the same

antidiagonal. Equation (4) implies that as long as there is

only single scattering, there must be a form of coherence, a

long-range deterministic relation, between the elements of

the array response matrix, whatever the realization of disor-

der. On the contrary, when multiple scattering occurs (except

for recurrent scattering paths,16 but this contribution is negli-

gible in weakly scattering media), the elements kM
ij cannot be

factorized, and there is no such long-range deterministic

coherence.8,12,15

IV. SEPARATION OF SINGLE AND MULTIPLE
SCATTERING

The key to separate single- (KS) and multiple- (KM) scat-

tering contributions is the particular coherence of K
S along

its antidiagonals. In previous works,8,12 KS was extracted

from K by projecting the antidiagonals of K along the vector

[bm] of Eq. (4). But the simple form taken by Eq. (4) results

from a series of assumptions (paraxial approximation, point-

like array elements, and scatterers) all of which do not apply

to our experimental configuration. In order to separate K
S and

KM, the method proposed in this paper is much less restric-

tive. We do not assume that Eq. (4) exactly applies; we only

assume that because of single scattering there must be a deter-

ministic coherence between the antidiagonal elements of KS,

but we do not suppose we know its exact form.

Under these conditions, the separation between KS and

KM will essentially rely on a SVD of the antidiagonals of K.

This separation is a three-step process:

(1) Rotation of each matrix K and construction of two sub-

matrices A1 and A2.

(2) Filtering of matrices Ar (r ¼ 1, 2): Ar is decomposed as

the sum of two matrices: Ar ¼ AS
r þ AM

r , where AS
r and

AM
r contain the single- and multiple-scattering signals,

respectively.

(3) Construction from AS
r and AM

r of the single- and multi-

ple-scattering matrices KS and KM.

The first and third steps (rotation of data) have already

been presented in previous works8,12 and will be briefly

recalled in Secs. IV A and IV C. On the contrary, the second

step (SVD of antidiagonals) constitutes the core of the method

and differs completely from the previous approach.8,12 The

corresponding matrix operations are explained in detail in

Sec. IV B.

A. First step

A rotation of matrix data is achieved as depicted in

Fig. 3. It consists in building two matrices A1 and A2 from

matrix K ¼ [kij]:

A1 ¼ ½a1uv� of dimension ð2M� 1Þ � ð2M� 1Þ;
such that a1½u; v� ¼ k½uþ v� 1; v� uþ 2M� 1�; (5)

A2 ¼ ½a2uv� of dimension ð2M � 2Þ � ð2M � 2Þ;
such that a2½u; v� ¼ k½uþ v; v� uþ 2M � 1�; (6)

where M ¼ (N þ 3)=4. Here, N ¼ 125 and so M ¼ 32 is an

even number. The columns of matrices A1 and A2 correspond

to the antidiagonals of K (see Fig. 3). In Sec. IV B, we will

no longer make the difference between matrices A1 and A2

because they are filtered in the same way. They will be

called A indifferently. L is the dimension of A. For matrix A1,

FIG. 3. Example of a matrix K of dimension N ¼ 17. The black points rep-

resent the elements kij of K. The antidiagonals of K are the columns of mat-

rices A1 and A2. Circles and squares represent the elements of A1 and A2,

respectively. Once single- and multiple-scattering contributions are sepa-

rated, the final matrices KS and KM have (2M � 1) � (2M � 1) elements

(central square).
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L ¼ 2M � 1; for matrix A2, L ¼ 2M � 2. Because of spatial

reciprocity, K is symmetric (kij ¼ kji). Thus, A exhibits also a

symmetry: Each line of its upper part is identical to a line of

its lower part. The symmetry axis is shown as a black line in

Fig. 3 and corresponds to the diagonal of the matrix K. So,

each column of the matrix A contains only M independent

coefficients, even if its dimension L is larger than M.

B. Second step

A can be written as a sum of two matrices AS and AM,

which correspond, respectively, to the single- and multiple-

scattering contributions,

A ¼ AS þ AM: (7)

Contrary to previous works,8,12 the technique we propose in

this paper consists in separating single and multiple scatter-

ing by achieving the SVD of the matrix A. The SVD decom-

poses a matrix into two subspaces: A signal subspace (a

matrix characterized by an important correlation between its

lines and/or columns) and a noise subspace (a random matrix

without any correlations between its entries). When the SVD

is applied to the matrix A, the signal subspace (i.e., the larg-

est singular values) corresponds to AS (the single-scattering

contribution characterized by a long-range correlation along

its columns) and the noise subspace (i.e., the smallest singu-

lar values) corresponds to AM (the multiple-scattering

contribution).

The SVD of matrix A is given by

A ¼ UKV† ¼
XL

k¼1

kkUkV
†
k ; (8)

where U and V are square unitary matrices of dimension L.

Their respective columns Uk and Vk correspond to the singu-

lar vectors associated to the singular value kk. K is a square

diagonal matrix of dimension L, containing the real positive

singular values kk in decreasing order ðk1 > k2 > � � � > kLÞ.
Actually, A has only M non-zero singular values since

it contains only M independent lines, and hence Eq. (8)

becomes

A ¼ UKV† ¼
XM

k¼1

kkUkV
†
k : (9)

The issue is to determine which rank of singular value

separates the signal subspace (single scattering) from the

noise subspace (multiple scattering). If Eq. (4) were strictly

true, the single-scattering contribution AS would be of rank 1

and only the first singular space associated to the first singular

value k1 would correspond to the signal subspace. But when

assumptions leading to Eq. (4) do not strictly hold, AS is no

longer of rank 1, and several singular spaces (associated to

the largest singular values) are needed to fully describe the

signal subspace. This happens for instance when scatterers

are not pointlike or when the paraxial approximation does not

hold. We have to define a threshold to discriminate the signal

and noise subspaces, with the help of RMT.13,14

By convention and for the sake of simplicity, the singu-

lar values kk are first normalized by their quadratic mean,

~kk ¼
kkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�1
PM

q¼1 k2
q

q : (10)

For a random matrix of dimension P � Q (with 1� P < Q),

whose entries are complex random variables, independently

and identically distributed, the probability density function

q(k) of the normalized singular values ~kk is given by:14

qðkÞ ¼ 1

pk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

max � k2
� �

k2 � k2
min

� �q
(11)

for kmin < k < kmax and 0 otherwise, with

kmax;min ¼ 16
ffiffiffiffiffiffiffiffiffi
P=Q

p
: (12)

For random matrices of large dimensions, the singular value

spectrum has bounded support. In our case, A is a square ma-

trix of dimension L � L. Yet, as it contains only M independ-

ent lines, it is equivalent to a rectangular M � L matrix. If it

were truly random (which is expected to be the case of the

multiple-scattering contribution), its largest singular value

should not exceed kmax ¼ 1.71. This value is obtained from

Eq. (12), with P ¼ M ¼ 32 and Q ¼ L ¼ 63.

It should be noted that rigorously L and M are not large

enough for the asymptotic law [Eq. (11)] to apply. Actually

the first singular value ~k1 obeys a complicated law, known

as the Tracy–Widom distribution,17 which is of unbounded

support. The probability for ~k1 to be larger than kmax can

be computed: It is found to be �0.08 for P ¼ M ¼ 32 and

Q ¼ L ¼ 63. The presence of correlations between matrix

entries also induces a deviation from Eq. (11), as we will see

later. For the sake of simplicity, we admit for now that

within an acceptable probability of error, the singular values

are upper bounded by kmax.

According to Eq. (7), A is the sum of a matrix AS of rank

p < M (associated to single scattering) and a matrix A
M of

rank M (associated to multiple scattering). Sengupta and

Mitra14 have shown that the (M � p) smallest singular values

(linked to the noise subspace) exhibit the same distribution as

singular values of a random matrix whose size is (M � p)

� L. Let kðqÞmax denote the upper bound of the singular values

distribution in the case of a random matrix of dimension

(M � q) � L, we have

kðqÞmax ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM � qÞ=L

p
: (13)

From this property, one can propose a way to separate

the signal and noise subspaces of A. We first consider the first

singular value ~k1 upon normalization [Eq. (10)]. If ~k1 is larger

than kð0Þmax [Eq. (13)], it means that the first singular

space k1U1V†
1 is associated with the signal subspace. Then,

we iterate the process and consider the second singular value;

kk is once again renormalized, considering only the singular

values from k ¼ 2:

~k2 ¼
k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM � 1Þ�1PM
k¼2 k2

k

q : (14)
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The threshold value kmax to consider this time is the

one obtained for a random matrix of size (M � 1) � L, i.e.,

kð1Þmax [Eq. (13)]. If ~k2 > kð1Þmax, the second singular space

k2U2V†
2 is also linked to the single-scattering contribution,

and we iterate the process once more until rank p þ 1, for

which ~kpþ1 < kðpÞmax. Finally, we obtain a threshold rank p which

allows to separate the signal (S) and noise (N) subspaces,

S ¼
Xp

k¼1

kkUkV
†
k; N ¼

XM

k¼pþ1

kkUkVk† : (15)

Ideally, S should be devoid of multiple scattering. This is not

strictly true because multiple-scattering signals are not

strictly orthogonal to the single-scattering subspace. Let r2
S

and r2
M be the power of single- and multiple-scattering sig-

nals, respectively. The typical amplitude of the remaining

multiple-scattering contribution in S is rM

ffiffiffiffiffiffiffiffiffiffiffiffi
p=2M

p
(� rS).18

If we neglect this residual term, we have separated single-

and multiple-scattering contributions: AS ^ S and AM ^ N.

The whole separation process is summarized in Fig. 4.

Note that a multiple-scattering rate c can be directly

measured from the singular values, kk, of A. The sum of the

square of all the singular values corresponds to the total in-

tensity backscattered by the medium toward the transducers’

array. Hence, a multiple-scattering rate c can be estimated

from the singular values, kk, of A:

c ¼
PM

k¼pþ1 k2
kPM

k¼1 k2
k

: (16)

Until now, for simplicity we have implicitly assumed

that along the antidiagonals of K
M (or the columns of A

M)

the matrix elements are completely decorrelated. However,

experimentally short-range correlations may exist between

elements, mostly because of mechanical coupling between

neighboring transducers and of the coherence length of the

diffuse wave-field.12,15 Correlations between matrix ele-

ments can be taken into account theoretically.14 Conse-

quently, the actual probability density function q(k) is more

complicated than the simple result of Eq. (11), which modi-

fies the upper bound kðqÞmax.12,15 In practice, kðqÞmax has to be

computed numerically, based on an acceptable probability of

error (typically 1%).18

This technique of separation is based on the fact that the

first singular value exceeds the value kmax, otherwise there is

no separation between single and multiple scattering, and the

whole signal is considered to be associated with multiple

scattering. So, this approach is not well suited for strongly

diffusive media, i.e., random media for which the multiple-

scattering contribution is predominant.8,12

C. Third step

The third step is the reverse of the first one. From AS

and AM, two matrices KS and KM, of dimension (2M � 1)

� (2M � 1), are built (see Fig. 3) with a change of coordi-

nates, back to the original system:

(1) if (i � j)=2 is an integer, then kS;M½i; j� ¼ aS;M
1 ½ði� jÞ=2

þ M; ðiþ jÞ=2�
(2) if (i � j)=2 is not an integer, then kS;M½i; j� ¼ aS;M

2

½ði� j� 1Þ=2þM; ðiþ j� 1Þ=2�.

KS contains the single-scattering contribution (plus a resid-

ual multiple-scattering contribution) and KM contains the

multiple-scattering contribution.

V. CHARACTERIZATION OF A WEAKLY SCATTERING
MEDIUM

The experimental setup has already been described in

Sec. II and is shown in Fig. 1. The experiment takes place in

a water tank. The ultrasonic array has N ¼ 125 elements.

The emitted signal is a sinusoidal burst of length dt ¼ 2.5 ls

at the central frequency (3 MHz). The sampling frequency is

20 MHz. Each array element is 0.39 mm in size, and the

array pitch dx is 0.417 mm. The source–sample distance is a
¼ 50 mm. The first random medium of interest is a gel com-

posed of 5% of gelatine and 3% of agar. In this kind of me-

dium and frequency range, the single-scattering contribution

is by far predominant.19 The thickness L of the scattering

slab is 100 mm. Once the inter-element matrix H is meas-

ured, the short-time Fourier analysis described in Sec. II

yields a set of response matrices K(T, f). Then, the separa-

tion of single and multiple scattering is achieved as

described in Sec. IV.

Figure 5 shows a typical experimental result, taken at

time T ¼ 114 ls and frequency f ¼ 3.05 MHz. Note that the

separation rank between the signal and noise subspaces is

here p ¼ 2, which confirms that Eq. (4) does not strictly hold.

K
S exhibits the deterministic coherence along the antidiago-

nals [Fig. 5(a)], which is characteristic of single scattering.

Obviously, KS is very close to the raw matrix K (Fig. 2),
FIG. 4. Principle of the separation between the single- and multiple-scattering

contributions.
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since single scattering is predominant. As to KM, it displays a

random feature as expected for the multiple-scattering contri-

bution [Fig. 5(b)]. However, one cannot conclude that it orig-

inates in multiple-scattered waves: It could also correspond

to experimental noise.

In order to establish the multiple-scattering origin of

KM, we calculated the mean backscattered intensity IM as a

function of the source–receiver distance X ¼ xj � xi ¼ mdx
and the arrival time T,

IMðX; TÞ ¼ ~kM
ij ðT; f Þ
��� ���2� �

f ;fði;jÞ jm¼j�ig
: (17)

The symbol h.i denotes an average over the quantities in the

subscript. Here frequency and all source/receiver couples

(i, j) are separated by the same distance X. In Fig. 6, the spa-

tial dependence of IM is compared with the total intensity, at

a given time T. Whereas the total intensity I shows no pre-

ferred direction, IM(X) exhibits a typical signature of multiple

scattering: The coherent backscattering peak clearly arises

around X ¼ 0. This phenomenon has been widely observed

and studied in wave physics (optics,16,20–26 acoustics,27–31

and seismology32–34). It manifests itself as an enhancement,

by a factor 2, in the backscattered intensity at the vicinity of

the source (i.e., X ¼ 0). Its physical origin lies in the con-

structive wave interference between reciprocal paths that

have been scattered at least twice; it can only appear when

multiple scattering occurs and the reciprocity symmetry is

preserved. The intensity profile shown in Fig. 6 is a spectacu-

lar evidence of multiple scattering and shows the efficiency

of our technique for extracting the multiple-scattering waves

among a predominant single-scattering contribution.

Interestingly, though it is weak, the multiple-scattering

contribution can be taken advantage of in order to character-

ize the medium and determine separately the scattering losses

and the absorption losses. When a wave propagates through a

random medium, it loses progressively its coherence: After

traveling over a distance L, only a fraction, exp(�L=lext), of

the initial energy still propagates in coherence with the initial

wave. The parameter lext, called the extinction mean-free

path, characterizes the extinction length of the coherent part

of the wave. It comes from two distinct phenomena (scattering

and intrinsic absorption of the medium) which are associated

to two characteristic lengths: The elastic mean-free path le
and the absorption mean-free path la, such that

exp �L=lextð Þ ¼ exp �L=leð Þ exp �L=lað Þ: (18)

Experimentally, lext can be determined by measurements of

the ensemble-averaged field transmitted through a scattering

layer.35–39 However, this kind of experiment does not allow

to distinguish la from le.
We focus on the single- and multiple-scattering inten-

sities obtained at the source: IS(0, T) and IM(0, T). They are

plotted in Fig. 7. Note that the intensity of the multiple-scat-

tering contribution is less than 1% of the single-scattering

contribution. Once IS(0, T) and IM(0, T) have been measured,

we can fit both experimental curves with la and le as inde-

pendent adjustable parameters. To that end, we need a theo-

retical model describing the spatial and temporal evolution

of the mean intensity inside the random medium. In the liter-

ature, the mean intensity is often assumed to obey the diffu-

sion equation.40 The diffusion approximation is simple but

only valid in the long-time limit. Since we deal with a

weakly scattering medium, the elastic mean-free path is

expected to be very large compared to the scattering path

lengths (le � cT). Thus, the diffusion approximation does

not apply to our problem. Instead, we used the radiative

transfer equation (RTE).9 Paasschens41 proposed an exact

solution of the RTE in time-domain and real space for an

infinite two-dimensional (2D) random medium. Based on

this theoretical work, we have computed the exact expres-

sion of the single- and double-scattering intensities, IS(0, T)

and I(2)(0, T), as well as an approximate expression of the

multiple-scattering intensity IM(0, T), considering the me-

dium as semi-infinite and 2D.18

The choice of a 2D model is justified as follows. Experi-

mentally, the transducers are 10 mm in height, which is much

larger than the average wavelength (0.5 mm). Moreover, a

vertical cylindrical acoustic lens ensures that the emitted

beam remains collimated in the (x, z) plane. Similarly, in

reception, only waves propagating in the (x, z) plane are

recorded by the transducers. Thus the single-scattering prob-

lem is clearly 2D. As to multiple scattering, for the same rea-

son the only paths that can generate a signal on the receiving

transducers are those for which the first and last scatterer

FIG. 5. Separation of single- and multiple-scattering contributions at time

T ¼ 114 ls and frequency f ¼ 3.05 MHz. (a) Real part of KS. (b) Real part

of KM.

FIG. 6. The multiple-scattering intensity IM(black dots) and the total inten-

sity I (gray circles) are plotted versus X, at time T ¼ 137 ls. The intensity

profiles have been renormalized with their maximum.
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are in the (x, z) plane. The gel sample being weakly scattering,

IM is mostly dominated by double scattering [see Fig. 7(b)].

Thus even though the wave propagation in the gel sample

is three-dimensional (3D), we have used the 2D solution for

the RTE.

The single-scattering intensity IS(0, T) exhibits a tempo-

ral evolution which only depends on the extinction length

lext.
18 In the case of the gel studied here, the best fit of the

experimental results yields lext ¼ 50 mm [Fig. 7(a)]. Once

lext is known, le and la can be determined by fitting IM(0, T)

with theory [Fig. 7(b)] with only one adjustable parameter

since 1/lext ¼ 1/le þ 1=la. The scattering gel is found to be

much more absorbing than scattering: le � 2000 mm, while

la � 50 mm. Figure 7(b) also displays the theoretical evolu-

tion of the double-scattering contribution I(2)(0, T). For le
� 2000 mm, I(2) and IM are nearly identical, which shows

that the double-scattering contribution clearly dominates the

multiple-scattering intensity in the gel sample. As the theo-

retical expression of I(2) is exact, the measured values of le
and la are reliable.18

In this example, the medium was a weakly scattering

gel, with the ratio IM=IS less than 1%. Yet the separation of

single- and multiple-scattering contributions can also be

achieved in real scattering media for which IM=IS is closer to

unity, as we present in Sec. VI.

VI. APPLICATION TO HUMAN SOFT TISSUES

The same kind of experiment has been performed in a

biological medium for which ultrasound is often used: The

breast. The experimental setup is depicted in Fig. 8(a). We

use an N-element ultrasonic array (N ¼ 125) with a 4.3-MHz

central frequency and a 3.5–5 MHz bandwidth; the array

pitch dx is 0.33 mm. The emitted signal is a 0.7-ls sinusoidal

burst at fc ¼ 4.3 MHz. The sampling frequency is 50 MHz.

The experimental procedure is the same as in Sec. II. The

separation of single- and multiple-scattering contributions

can be performed as in Sec. IV, but an adjustment has to be

made. Indeed, in our experimental configuration, the array of

transducers is placed in the near-field of the scattering

medium (a ¼ 0). Consequently, the entries of matrix K are

not identically distributed: The variance (i.e., the mean in-

tensity I) of kij decreases significantly with the distance X
¼ xj � xi between the source and the receiver, as shown by

Fig. 9. This implies a different variance for each line of

matrix A, hence modifying its theoretical distribution of

FIG. 7. (a) Single-scattered intensity IS(X ¼ 0, T) versus time. Experimental

measurements (black circles) are fitted with the theoretical curve (continuous

black line) considering an extinction length lext ¼ 50 mm. (b) Multiple-

scattered intensity IM(X ¼ 0, T) versus time. Experimental measurements

(white squares) are compared with theoretical results for IM(X ¼ 0, T)

(continuous black lines) and I(2)(X ¼ 0, T) (dashed black lines) for different

values of the mean-free path, while keeping lext ¼ 50 mm. All intensities

have been normalized by the maximum of the single-scattered intensity

IS(X ¼ 0, T) over time.

FIG. 8. (a) Experimental setup used for the investigation of multiple scatter-

ing in breast tissues. (b) Echographic image of the breast. The gray scale is

in decibels. (c) Multiple-scattering rate c as a function of time.
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singular values. The upper bound kð0Þmax can be computed

numerically taking into account this non-uniform distribu-

tion of matrix elements.18 However, this is only possible at

the first iteration (q ¼ 1). Indeed, whereas the variance of A

can be estimated, the variance distribution of the subspaces

of A is unknown a priori. Unless we do the (strong) approxi-

mation that this variance is uniform, in which case Eq. (13)

could be applied, we cannot follow the procedure described

in Sec. IV. Here, since A clearly has a non-uniform variance,

by precaution we choose a different strategy: The same

upper bound kð0Þmax is considered at each iteration q of the sin-

gle- or multiple-scattering separation process (see Sec. IV).

Since kðqÞmax < kð0Þmax, this precaution tends to overestimate the

threshold and decrease the probability of error.

Figure 9 compares the multiple-scattering, single–

scattering, and total intensity profiles, at a given time T. Con-

trary to the previous experiment in the gel sample (see Fig. 6),

the spatial intensity profiles, I(X) and IS(X), are not flat due to

the near-field configuration of the experiment. Once again,

IM(X) exhibits a coherent backscattering peak on top of a flat

incoherent intensity with an enhancement factor close to 2.

Interestingly, this indicates that KM is not a noise contribution

but does originate from multiple wave scattering in the breast

tissue, even though we operate at a frequency (4.3 MHz) for

which human soft tissues are usually treated as single

scattering.

An ultrasound image of the breast has also been obtained

with the same array, using 63-element subapertures [Fig. 8(b)].

As usual in ultrasound imaging, focusing in emission and

reception is achieved by applying a set of 63 time delays to the

signals transmitted/received by the array. The time delays are

computed in order to focus at the desired region of interest,

centered at coordinates zF and xF, assuming that the velocity of

sound in soft tissues is known. In the case of breast, as

for most soft biological tissues, it is close to that of water

(c ¼ 1500 m/s). Here, 2666 focal planes (zF ¼ 8–48 mm) and

63 values of x(xF ¼ � 31dx to xF ¼ �31dx with dx the array

pitch) have been used. At each depth zF, a new set of time

delays is calculated; this is more demanding than classical

ultrasound imaging techniques, which generally use the same

set of time delays as long as zF is within the depth of field.

A line of the resulting image represents, in gray level, the

amplitude of the total echographic signal at the focal time T
¼ 2zF=c, once focused beamforming has been applied to the

63 received signals. The resulting image displays the reflectiv-

ity of the medium under investigation. Ultrasound images of

human tissues usually reveal the interfaces of inner organs and

often exhibit a speckled appearance due do random scattering

by subwavelength inhomogeneities (cells, fibers, tissues,

etc.).42 Here the scanned area is particularly echogene between

30 and 40 ls, corresponding to the depth range from 22.5 to

30 mm. The typical ultrasound image of a human organ (here,

the breast) is representative of the amplitude of backscatter at

a given time which hopefully (under the single-scattering

assumption) corresponds to a given depth, but it does not allow

us to distinguish single- and multiple-scattering contributions.

However, once the matrix K has been recorded, not only

can we build an echographic image, but we can also isolate

the multiple-scattering contribution and estimate the multiple-

scattering rate c [Eq. (16)]. c has been averaged over the

whole frequency spectrum and is displayed in Fig. 8(c) as a

function of time. Figure 8(c) complements the information

brought by the echographic image. A relevant observation

is that multiple scattering becomes predominant from T
¼ 46 ls, i.e., to say beyond a depth of 34.5 mm. It means

that the single-scattering assumption, upon which the imag-

ing process is based, is incorrect. It does not mean however

that the image is totally wrong; a rate c of 50% means that

half of the intensity received by one individual array element

comes from multiple scattering. In classical array imaging,

each line of the picture is constructed by focused beamform-

ing in emission and reception. This procedure reduces the im-

portance of multiple scattering in the final image because the

single-scattered contributions coming from a target in the

focal zone add up coherently whereas the contributions from

multiple scattering can be expected to be uncorrelated. With

c ¼ 0.5 and assuming N0 ¼ 63 uncorrelated array elements,

the multiple-scattering rate becomes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=ð1� cÞ

p
=N0 � 1=63

after beamforming. This is probably an underestimation since

multiple-scattering signals cannot be fully uncorrelated.12,15

As a result, the proportion of multiple scattering in the final

image around T ¼ 50 ls is of the order of a few percents,

which is still weak. Also note that at larger times, the tech-

nique we presented here would fail: After T ¼ 50 ls, the rate

of multiple scattering becomes too large for the SVD to

extract the single-scattering contribution (p ¼ 0), at least

for some frequencies of the spectrum. As the results are aver-

aged over the whole frequency spectrum (3.5–5 MHz), the

multiple-scattering rates that are presented here are still

meaningful, until T ¼ 60 ls. Beyond that time, the method

we presented here would be inadequate to separate single and

multiple scattering.

VII. CONCLUSION

The approach we developed here can separate single-

and multiple-scattered waves in randomly heterogeneous

media. It requires an array of transmitters/receivers and takes

FIG. 9. The multiple-scattering intensity IM(X) (black dots), the single-

scattering intensity IS(X) (gray circles), and the total intensity I(X) (black

squares) are plotted versus X, at time T ¼ 35.6 ls. The intensity profiles

have been renormalized with the maximum of the total intensity.

232 J. Acoust. Soc. Am., Vol. 129, No. 1, January 2011 A. Aubry and A. Derode: Multiple scattering in inhomogeneous media

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



advantage of the persistence of a deterministic coherence of

single-scattering signals along the antidiagonals of the inter-

element matrix. Once a SVD is applied, the single-scattering

contribution (signal subspace) is separated from the multi-

ple-scattering contribution (noise subspace) by using a crite-

rion based on RMT. Unlike previous works,8,12 this

technique is particularly well suited for weakly scattering

media, for which single scattering dominates. In such media,

the technique we presented here is not intended to enhance

the quality of the ultrasound image but rather to complement

it in two ways. First, the experimental results indicate that

this approach can be applied for characterization purposes:

The separation of single and multiple scattering provides a

way to measure the scattering and absorption mean-free

paths independently. This idea was tested on a synthetic gel.

Second, the technique was also applied in vivo to the case of

breast imaging with ultrasonic waves around 4.3 MHz. The

occurrence of multiple scattering has been established, and

its contribution to the backscattered wave-field is shown to

be far from negligible. By measuring the relative amount of

multiple scattering, the method serves as an experimental

test for the first Born approximation (single scattering),

which is usually made in such tissues.
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