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Compressed sensing with off-axis
frequency-shifting holography
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This work reveals an experimental microscopy acquisition scheme successfully combining compressed sens-
ing (CS) and digital holography in off-axis and frequency-shifting conditions. CS is a recent data acquisition
theory involving signal reconstruction from randomly undersampled measurements, exploiting the fact that
most images present some compact structure and redundancy. We propose a genuine CS-based imaging
scheme for sparse gradient images, acquiring a diffraction map of the optical field with holographic micros-
copy and recovering the signal from as little as 7% of random measurements. We report experimental results
demonstrating how CS can lead to an elegant and effective way to reconstruct images, opening the door for
new microscopy applications. © 2010 Optical Society of America

OCIS codes: 070.0070, 180.3170.

General high resolution microscopy involves dense
data acquisition. One intense field of research aims
to reduce the amount of data acquisition or sample il-
lumination [1,2]. In [1], the acquisition is restricted
to only those areas where a relevant signal is
present. In [2] a method called controlled light-
exposure microscopy is introduced, supported by a
nonuniform illumination of the field of view. How-
ever, both methods suffer from being image-content
dependent for a successful implementation. Indeed,
these methods need a feedback loop inside the acqui-
sition setup to make decisions about the sampling
rate or the illumination intensity, depending on the
object characteristics. Here, we address the sensing
problem in microscopy by taking an alternative ap-
proach provided by what we believe to be a new the-
oretical framework of compressed sensing (CS). This
method is independent of image-content and does not
need any feedback loop during the acquisition. CS
was previously reported in magnetic resonance imag-
ing acquisition [3], single-pixel imaging [4], or inline
single-shot holography for tridimensional imaging
[5]. The main idea presented here is to combine off-
axis frequency-shifting (for accurate phase-shifting)
digital holography to perform quadrature-resolved
random measurements of an optical field in a diffrac-
tion plane and a sparsity minimization algorithm to
reconstruct the image.

CS is a novel mathematical theory for sampling
and reconstructing signals in an efficient way, intro-
duced in [6-8]. It exploits the fact that most images
are compressible or sparse in some domains owing to
the homogeneity, compactness, and regularity of
structures. Instead of sampling the entire data and
then compressing it to eliminate redundancy, CS per-
forms a compressed data acquisition. Some basic re-
quirements to enable CS are (i) to find a sparsifying
transform able to shrink the data into a small num-
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ber of coefficients, (ii) to acquire random projections
of the signal into orthogonal subspaces such as the
Fourier domain for spatially sparse images, (iii) to
use a sampling scheme that obeys the restricted
isometry property (RIP) [9], and (iv) to use a sam-
pling domain and a sparsifying transform that span
incoherent domains (i.e., domains where the signal is
dense in one case and sparse in the other one) [6].
Complying with these requirements, CS states
that a signal g € RN having a S-sparse representation
(i.e., it can be well represented by a small number S
of coefficients, where S<N) on a basis ¥ can be re-
constructed very accurately from a small number of
projections of g onto randomly chosen subspaces (e.g.,
Fourier measurements for the spatial sparsity). More
precisely, a signal g has a sparse representation if it
can be written as a linear combination of a small set
of vectors taken from some basis V¥, such as g
=3Ne, ¥, with lele,~S, where | [, denotes the ¢,
norm which corresponds to the sum of magnitudes of
all terms of the candidate signal g projected on V. In
general, the ¢, norm is defined as [lc[, :={SN,|c,[P}'7.
As demonstrated in [8], if such a spefrsifying trans-
form V¥ exists in the spatial domain, it is possible to
reconstruct an image g from partial knowledge of its
Fourier spectrum. In our case, g will represent the lo-
cal optical intensity in the object plane. We denote by
feCN the associated complex optical field, satisfying
g=|f?>. The radiation field propagates from the object
to the detector plane in Fresnel diffraction condi-
tions. Thus, the optical field in the object plane [ is
linked to the field F in the detection plane by a
Fresnel transform, expressed in the discrete case as

F=F(p:cN— N,
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where n,pe{l,...,N} denote pixel indices and «
e R* is the parameter of the quadratic phase factor

eian’ describing the curvature in the detection plane
of a wave emitted by a point source in the object
plane. In the CS, the signal reconstruction consists of
solving a convex optimization problem that finds the

candidate g (* denotes an estimator) of minimal com-

plexity satisfying F|r=F|;, where F|CF is a partial
subset of measurements in the set I'.

The experimental setup is sketched in Fig. 1. It
consists of an off-axis frequency-shifting digital ho-
lography scheme [10,11]. The monochromatic optical
field from a diode laser dynamically backscattered by
an intralipid emulsion illuminates a U.S. Air Force
(USAF) resolution target, beats against a separate lo-
cal oscillator field detuned by Aw/(27)=200 Hz, and
creates a time-fluctuating interference pattern mea-
sured with a N=1024 X 1024 array detector. The dif-
fracted object field map in the detector plane, re-
solved in quadrature (in amplitude and phase), F
e CN is calculated from a four-phase measurement
[10]. The frequency detuning Aw enables the rejec-
tion of nonfluctuating light components reflected by
the target as well as speckle reduction through signal
accumulation.

F can be backpropagated numerically to the target
plane with the standard convolution method when all
measurements F e CN are available. In this case, the
complex field in the object plane f is retrieved from a
discrete inverse Fresnel transform of F; f=F"1(F),

1N

)
fp — ]T]E Fne—z(an —27mp/N)- (2)
n=1

Now returning to the CS reconstruction problem, we
want to recover the intensity image of the object g
={|f:f e CN} from a small number of measurements
F|p e (¥, where M <N. Partial measurements in the
detection plane, illustrated by the first step in Fig. 2,
can be written as F|=®f, where the sampling matrix
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Fig. 2. CS reconstruction scheme.

® models a discrete Fresnel transform [Eq. (1)] and a
random undersampling with a flat distribution. To
find the best estimator g, we solve the following con-
vex optimization problem [12]:

g=arg m1n||‘1fg||€ subject to Flp=Fl.. (3)
ge\la

This optimization leads to an iterative image recon-
struction process, illustrated by the loop inside the
dotted frame in Fig. 2. Explicitly, given a partial
knowledge of the Fresnel coefficients F|-, we seek a
solution g with maximum sparsity (i.e., with minimal

norm |[[Wgl,,), and whose Fresnel coefficients Fl
match the subset observed F|r (as illustrated in Fig.
2). Since our test image is piecewise constant with
sharp edges (such as most microscopy images), it can
be sparsely represented computing its gradient. In
image processing, a suitable norm to constrain the
gradient of an image was introduced as the total
variation (TV) which measures the ¢; norm of the
gradient magnitudes over the whole image,
lglrv=[Vgll¢,-The incoherence property holds for the
two bases adopted here, which are the Fresnel spec-
trum and the TV [6]. Moreover, random measure-
ments in the spectral domain satisfy the RIP condi-
tion [9]. Hence for an overwhelming percentage of
Fresnel coefficients sets I' with cardinality obeying
IT|=M=KS log N, for some constant K, g is the
unique solution to the problem,

g=arg m1n||Vg||€ subject to Flr=F|r. (4)
geH

However, holographic measurements are corrupted
with noise, and the observed signal is not exactly



sparse. More appropriately, the observations can be
described by noisy measurements F|-=®f+n, where
neCM is a noise component with bounded energy
[nlle,= €. In this particular case, a better reconstruc-

tion can be achieved by relaxing the constraint F' I
=F|; and allowing an error § at most proportional to
the noise energy € [13,14]. Finally, solving the follow-
ing problem performs the reconstruction of g with ro-
bustness to noise:

4 =arg min||Vg|,, subject to [[F|r-Flp|, =35, (5)
geRN

for some 5= Ce, which depends on the noise energy.
In Fig. 3 we illustrate some CS reconstruction re-
sults. A reconstruction of an off-axis image with the
standard convolution method [Eq. (2)] is illustrated
in Fig. 3(a). The image reconstructed with hologra-
phy uses all available measurements (4 phases
X 10 accumulations X 10242=4.2x 107 pixels).  For
the CS approach, Fresnel coefficients are under-
sampled randomly. Figure 3(b) shows the CS recon-

(a) (b)

(©) (d)

Fig. 3. (a) Standard holography, as described in Eq. (1). (b)
CS reconstruction, using 7% of the Fresnel coefficients. (c)
Gradient of g. (d) Residual from (a) and (b). (e), (f) Magni-
fied views from (a) and (b).
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struction result from only 7% of the pixels used in the
standard approach (4 phasesX 10 accumulations
X 0.07 X 1024%2=2.9 X 10° pixels). Figure 3(c) illus-
trates the gradient of the image Vg (sparsifying do-
main) and Fig. 3(d) illustrates the residual (Euclid-
ean distance |g-g|) from standard holographic [Fig.
3(a)] and CS [Fig. 3(b)] reconstructions. The global
normalized error is [|g-gl|,,=0.005 (¢ and g have unit
norms). This error is essentially due to the relaxation
of the constraint for a perfect match between mea-
sures and estimations in the CS scheme, leading to
some denoising effect, confirmed by the visual aspect
of the residual image in Fig. 3(d) showing essentially
unstructured noise. Finally, Figs. 3(e) and 3(f) display
magnified views from central regions of images in
Figs. 3(a) and 3(b), illustrating the quality of the re-
construction.

In conclusion, we have presented a novel micros-
copy imaging framework successfully employing CS
principles. It combines an iterative image reconstruc-
tion and digital holography to perform quadrature-
resolved random measurements of an optical field in
a diffraction plane. The CS approach enables an op-
timal image reconstruction while being robust to
high noise levels. The proposed technique is expected
to greatly improve many microscopy applications, al-
lowing the acquisition of high dimensional data with
reduced acquisition times increasing imaging
throughput and opening the door to sample-friendly
acquisition protocols.
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