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Power law decay of zero group velocity Lamb modes
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Abstract

Elastic plates or cylinders can support guided modes with zero group velocity (ZGV) for nonzero wave numbers. At
these ZGV-points of the dispersion curves the acoustic energy does not propagate in the waveguide, resulting in sharp res-
onance effects. In this paper, using laser-based ultrasonic techniques, we investigate the time-decay of the mechanical dis-
placement for ZGV Lamb modes excited by a pulsed laser in various thin metallic plates. In the first microseconds of the
local plate vibration, we observed a t�1=2 decay due to the second order term in the dispersion relation. This effect is dom-
inant because the first order term, proportional to the group velocity, vanishes for ZGV-modes. After this power law
decay, the mechanical displacement undergoes an exponential decay corresponding to the wave damping. Then, the local
attenuation of the plate material can be estimated at the ZGV-resonance frequency.
� 2008 Published by Elsevier B.V.
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1. Introduction

Some branches of the dispersion curve xðkÞ of modes propagating in homogeneous waveguides present
points where the group velocity vanishes for a nonzero wave number k0. Such modes exhibit unusual proper-
ties such as backward-wave propagation, interferences between backward and forward modes, resonance and
ringing effects.

The so-called ‘‘backward-wave’’ propagation, which occurs in the negative-slope region ðk < k0Þ where
group velocity V g and phase velocity V have opposite signs, has been reported both in elastic and optical wave-
guides [1,2]. In acoustics, this phenomenon was observed in homogeneous elastic plates having free surfaces [3]
or in fluid loaded hollow cylinders [4]. In optics, it was shown recently that such anomalous modes can be
created in waveguides with an arbitrary cross section, provided that the outer surface was coated with a reflec-
tive cladding [5].

Since at frequencies corresponding to zero group velocity (ZGV) points, the energy does not propagate,
sharp resonance peaks and ringing effects was expected early [6] and observed recently [7]. Using laser-based
ultrasonic techniques, these ZGV resonances were observed for the S1-Lamb mode and also for the second
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antisymmetric ðA2Þ mode propagating in a plate [8]. Recently, we have shown that these ZGV modes, excited
by a laser pulse and optically detected in the time domain, can be exploited for measuring locally the mechan-
ical properties of isotropic materials [9,10].

In this paper, we investigate another phenomenon: the power law decay of ZGV Lamb modes due to the
second order term in the dispersion relation.
2. Zero group velocity Lamb mode resonances

The propagation of Lamb waves in an elastic plate is represented by a set of dispersion curves giving the
angular frequency x ¼ 2pf of each symmetric (S) and antisymmetric (A) modes versus the wave number
k ¼ 2p=k [11,12]. In an isotropic solid having a Poisson’s ratio m smaller than 0.45, the first order symmetric
ðS1Þ Lamb mode, exhibits a particular behaviour at frequencies where the group velocity vanishes while the
phase velocity remains finite. Fig. 1 shows the dispersion curves of the S1 and S2 symmetric Lamb modes
for a copper plate of thickness d made of a material having longitudinal and transverse bulk wave velocities
equal to V L ¼ 4:56 km=s and V T ¼ 2:32 km=s, respectively. The group velocity V g ¼ dx

dk of the lower S1-mode
vanishes at the frequency-thickness product f0d ¼ 2:085 MHz mm and for a wavelength k0 ¼ 3:86d. The phase
velocity V ¼ f k of this ZGV-mode is equal to V 0 ¼ 8:05 km=s and the dispersion curve is well approximated
by a parabola in a large range of wave number k about k0 ¼ 2p=k0:
Fig. 1.
equal t
xðkÞ ffi x0 þ Dðk � k0Þ2: ð1Þ
The coefficient D (m2 s�1) is proportional to the transverse wave velocity V T and to the plate thickness d:
D ¼ dðmÞV Td; ð2Þ
where the dimensionless coefficient dðmÞ depends only on Poisson’s ratio. For copper ðm ¼ 0:325Þ, d is equal to
0.30. Like in optics [13], the ZGV phenomenon can be explained by a strong repulsion between the two neigh-
bouring S1 and S2 symmetric modes near the cut-off frequencies.

In our experiments, Lamb waves are generated by a Q-switched Nd:YAG (Yttrium Aluminium Garnet)
laser providing pulses having a 20-ns duration and 4-mJ of energy. The spot diameter of the unfocused beam
is equal to 1 mm. The local vibration of the plate is detected at the same point by a heterodyne interferometer
equipped with a 100-mW frequency doubled Nd:YAG laser [14]. The calibration factor for mechanical dis-
placement normal to the surface (10 nm/V) was constant over the detection bandwidth (50 kHz–40 MHz). Sig-
nals detected by the optical probe were fed into a digital sampling oscilloscope and transferred to a computer.

Since their group velocities vanish, the acoustic energy at the minimum frequencies of Lamb modes is
trapped under the source. Then, the spectrum of the mechanical response of a plate to a sudden and localized
impact is expected to be dominated by sharp peaks at the ZGV frequencies. As an example, Fig. 2(a) shows the
Dispersion curves of the S1 and S2 symmetric Lamb modes propagating in a copper plate of thickness d and bulk wave velocities
o V L ¼ 4:56 km=s and V T ¼ 2:32 km=s. About the ZGV point, the lower branch is well approximated by a parabola (dashed line).



Fig. 2. Mechanical displacement optically generated and detected at the same point on a 0.45-mm thick copper plate. (a) Time signal. (b)
Spectrum: the peak at 4.63 MHz corresponds to the minimum of the S1-Lamb mode dispersion curve.
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mechanical displacement optically measured on a 0.45-mm thick copper plate and generated by the laser pulse.
The signal oscillates during a long time at a frequency f0 ¼ 4:63 MHz corresponding to the sharp peak
observed in the spectrum in Fig. 2(b). This value is very close to the theoretical minimum frequency of the
S1-Lamb mode dispersion curve (Fig. 1):
f0d ¼ 2:08 MHz mm and d ¼ 0:45 mm! f0 ¼ 4:62 MHz:
In the lower frequency range, the spread spectrum of the A0 mode is cut at frequencies less than 1 MHz by a
high-pass filter. The role of this filter is to eliminate the low frequency components due to the heating of the air
by the laser energy absorption. The resulting variations of the optical index at the vicinity of the surface create
a phase shift along the path of the probe beam, which is detected by the optical probe. At a higher frequency
(7.75 MHz), the small peak in Fig. 2b corresponds to the A2-mode ZGV resonance [9].

In the first microseconds after the laser pulse impact the signal in Fig. 2a exhibits a fast decay, which cannot
be explained by the material damping. The mechanical response of a plate to a transient loading has been ana-
lysed by several authors [15,16]. They point out large amplitude spikes or resonant responses near the cutoff
frequencies of the S1 and A2 branches. Since the group velocities of these modes are very small, in far field
experiments theirs contributions is observable only on a long time scale. Conversely, in our experiments where
the plate vibration is detected in the source area, of the millimetre range, Lamb modes with usual group veloc-
ity (2–10 mm/ls) flows out of the source in less than 1 ls. Then, as shown in Fig. 2, the prominent response
comes from the ZGV resonant modes, mainly the S1 one.
3. Analysis and experimental results

In our experiment, the local vibration of the plate is excited in the thermoelastic (linear) regime by the
impact of a short laser pulse q(t). In the case of an axisymmetric source having a laser energy distribution
b(r), the normal component u(r, t) of the mechanical displacement can be expressed as:
uðr; tÞ ¼ 1

2p

Z þ1

0

CthðkÞQðxÞBðkÞJ 0ðkrÞeixtk dk; ð3Þ
where CthðkÞ is the thermoelastic conversion coefficient for a given Lamb mode. QðxÞ is the laser pulse spec-
trum and BðkÞ the spatial Fourier transform of bðrÞ.

For t > 1 ls, the main contribution to the displacement comes from the modes having a slow group veloc-
ity. In the integral (Eq. (3)), the phase uðkÞ ¼ xðkÞt undergoes a minimum at the wave number k0 for which
the group velocity V g ¼ dx

dk vanishes. The contribution of each ZGV mode can be calculated by the stationary
phase method:



Fig. 3.
represe
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uðr; tÞ ¼ Cthðk0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pu00ðk0Þ

p Qðx0ÞBðk0ÞJ 0ðk0rÞk0eiðx0tþp=4Þ; ð4Þ
where x0 ¼ xðk0Þ is the ZGV-resonance frequency. The second derivative of the phase expressed as a function
of the local curvature 2D of the dispersion curve: u00ðk0Þ ¼ 2Dt.

Setting Aðk0Þ ¼ Cthðk0ÞQðx0ÞBðk0Þk0, the displacement of the ZGV mode
uðr; tÞ ¼ Aðk0Þffiffiffiffiffiffiffiffiffiffi
4pDt
p J 0ðk0rÞeiðx0tþp=4Þ ð5Þ
undergoes a t�1=2 decay due to the second order term of the dispersion relation. In a dispersive medium, this
effect makes the wave packet to spread out as it progresses [17]. The group velocity of Lamb modes also van-
ishes at the cut-off frequencies. However, since k0 ¼ 0, their amplitude Aðk0Þ goes to zero.

In order to take into account the material damping, x0 is replaced by the complex angular frequency
x0 þ ia. Then, the mechanical displacement undergoes a supplementary exponential decay:
uðr; tÞ ¼ Aðk0Þffiffiffiffiffiffiffiffiffi
4pD
p J 0ðk0rÞt�1=2e�ateiðx0tþp=4Þ: ð6Þ
The temporal behaviour of the signal in Fig. 2a is analysed by a short-time Fourier transform at the ZGV-
resonance frequency. As shown in Fig. 3, for t < 10 ls, the amplitude of the displacement decreases like t�1=2,
whereas for t > 30 ls, an exponential decay corresponding to a viscoelastic mechanism can be observed. With
a time-decay constant s ¼ 1=a equal to 60 ls, the signal multiplied by t1=2et=s is in average approximately flat.

The same t�1=2 power law, responsible of the early decay of the signal, was observed with a 12-mm long
narrow line source and for other materials. It proves that diffraction effects can be neglected and that the
geometry (1-D or 2-D) of the source does not affect the time-decay law. Fig. 4 shows, in logarithmic scales,
the variations of the ZGV-displacements for Duralumin, steel and copper plates having thicknesses in the
range 0.45–0.49 mm. For t < 10 ls, the average slopes of the curves are close to �0.5, in agreement with
the power law decay.

Measuring the time decay of the ZGV-resonance allows for a local estimation of the intrinsic attenuation of
the material. Provided that the time-decay constant s was estimated after the diffusion regime, the attenuation
coefficient of the material a can be calculated from the formula
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Time decay of the signal in Fig. 2a analysed by a short-time Fourier transform at the S1-mode ZGV frequency. The grey curve
nts the product of the signal by the function t1=2et=s with s ¼ 60 ls.



Fig. 4. Experimental time variations, in logarithmic scales, of the ZGV-displacements for Duralumin, steel and copper plates compared to
the t�1=2 law.
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a ¼ 1

V 0s
: ð7Þ
V 0 is the phase velocity at the ZGV point, i.e. a combination of bulk wave velocities. Then, a cannot be simply
related to longitudinal or shear wave attenuation. For the copper plate, with the measured time-decay con-
stant s ¼ 60 ls, the value found at the resonance frequency f0 ¼ 4:63 MHz is:
a ffi 2:1 Np=m ¼ 18 dB=m:
The same procedure was applied to steel and Duralumin plates. Results are given in Table 1.
In the case of a low loss material such as Duralumin ðs ¼ 800 lsÞ, the major part of the acoustic energy

leaks outside the source area during the first regime. Then, the damping process is more difficult to observe.
From the time decay of the diffuse ultrasonic field in different aluminum-alloy samples, damping factors as
small as 2.2 dB/ms have been measured at 6 MHz by Haberer et al. [18]. Assuming that the diffuse field is dom-
inated by the shear modes [19] propagating at the velocity V T ¼ 3:10 km=s, the value found for the attenuation
coefficient (0.7 dB/m) is close to our result (0.9 dB/m). The difference may be ascribed to the scattering from S1

to other propagating branches at the same frequency.

4. Conclusion

After a local and transient loading of a plate, the acoustic energy decay in the source area can be explained
by three mechanisms: the energy transport phenomenon at the Lamb wave group velocity, the material damp-
ing and the second order dispersive effect. Generally, the first mechanism dominates the other two. Since at the
minimum frequency of the dispersion curve the group velocity vanishes, no energy transport occurs, and the
slower other two phenomena can be observed. Using laser-based ultrasonic techniques, we have shown that
the mechanical response of thin metallic plates to a laser pulse impact was dominated by the resonance at
the zero group velocity point of the S1-Lamb mode dispersion curve. In the first microseconds, we observed
a fast decay of the local vibration amplitude, which cannot be explained by the material damping. We
1
ation coefficient a of metallic plates estimated (with ±20% error) by the ZGV-resonance method

al d (mm) f0 (MHz) V 0 (km/s) s ðlsÞ a (dB/m)

r 0.45 4.63 8.05 60 18
0.45 6.14 10.5 400 2.1

min 0.49 5.86 11.2 800 0.9

e plate thickness, f0 the resonance frequency, V 0 the S1-ZGV phase velocity and s the time-decay constant.
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demonstrated that this effect is ascribed to the second order term in the dispersion relation. This phenomenon,
always present, is highlighted in our experimental conditions because the first order term, i.e. the group veloc-
ity, is equal to zero. Furthermore, we show that the local attenuation of the material can be measured without
any mechanical contact.
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