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Performing linear operations using optical devices is a crucial building block in many fields ranging from telecom-
munications to optical analog computation and machine learning. For many of these applications, key requirements
are robustness to fabrication inaccuracies, reconfigurability, and scalability. We propose a way to perform linear
operations using complex optical media such as multimode fibers or scattering media as a computational platform
driven by wavefront shaping. Given a large random transmission matrix representing light propagation in such a
medium, we can extract any desired smaller linear operator by finding suitable input and output projectors. We
demonstrate this concept by finding input wavefronts using a spatial light modulator that cause the complex medium
to act as a desired complex-valued linear operator on the optical field. We experimentally build several 16 × 16 oper-
ators and discuss the fundamental limits of the scalability of our approach. It offers the prospect of reconfigurable,
robust, and easy-to-fabricate linear optical analog computation units. © 2019Optical Society of America under the terms of

the OSA Open Access Publishing Agreement

https://doi.org/10.1364/OPTICA.6.000465

1. INTRODUCTION

The ability to perform linear operations on light with optical
devices is a fundamental ingredient in many areas of optics
and photonics, including signal processing and spatial multiplex-
ing in optical communication, as well as optical analog compu-
tation. For emerging applications to optical artificial neural
networks, the ability to reconfigure these linear photonic process-
ing units is crucial. Moreover, ease of fabrication and robustness
to manufacturing inaccuracies are highly sought-after features.
Similar to electronic devices, photonic devices are traditionally
designed to perform one given operation [1–5]. The conforma-
tion of the device is directly linked to its intended function. As a
consequence, fabrication imperfections and changes of environ-
mental conditions negatively affect its functioning, limiting the
range of operation of the device. Furthermore, such inverse-
design approaches inherently prohibit reconfigurability.

Programmable coherent photonic circuits have the potential to
offer reconfigurability. Initially conceived in free-space optics by
leveraging beamsplitters [6], recent advances in silicon photonics
also enabled the implementation of the concept in integrated
designs [7–12]. Several first experimental demonstrations of this
approach have produced promising results. However, the amount
of phase shifters required in these architectures scales with the
square of the size of the desired transformation, which raises ques-
tions about the overall scalability of the approach. Alternatively,
the idea of controlling mode coupling inside a multimode

waveguide to shape the output wavefront was demonstrated using
silicon-on-insulator planar waveguides whose index profile can be
tuned using femtosecond laser pulses [13]. Another approach
using multiplane modulation was proposed [14] and was
successfully used for few mode manipulations [15]. While small
transformations may suffice for optical communications, the in-
creasing complexity of the physical system may hinder the imple-
mentation of the high rank transformations needed in optical
analog computation. There is currently no solution to perform
optical linear operations involving a high number of channels.

Parallel to the aforementioned developments, since Vellekoop
and Mosk’s landmark paper in 2007 [16] the field of wavefront
shaping in complex media emerged [17,18]. A complex medium
may be defined as a system that mixes the spatial and/or temporal
degrees of freedom, resulting in the complete scrambling of an
incident wavefront [19]. Examples include chaotic cavities, disor-
dered waveguides, or random scattering systems such as paint
layers or biological tissues [16,17,20–25]. The seemingly random
effect of the disorder on the wavefront is deterministic; hence,
such a system can be fully represented by a linear transmission
matrix (TM) [20]. Due to the large number of modes, those ma-
trices have large dimensions. Moreover, the lack of symmetry of
the system contributes to the TM’s high rank. By injecting light
into a well-chosen combination of input modes using a spatial
light modulator (SLM), an optical scattering medium can be used
to perform a wide variety of functions. Initial efforts sought to

2334-2536/19/040465-08 Journal © 2019 Optical Society of America

Research Article Vol. 6, No. 4 / April 2019 / Optica 465

https://orcid.org/0000-0002-4821-3924
https://orcid.org/0000-0002-4821-3924
https://orcid.org/0000-0002-4821-3924
https://orcid.org/0000-0002-7199-9814
https://orcid.org/0000-0002-7199-9814
https://orcid.org/0000-0002-7199-9814
mailto:sebastien.popoff@espci.psl.eu
mailto:sebastien.popoff@espci.psl.eu
mailto:sebastien.popoff@espci.psl.eu
mailto:sebastien.popoff@espci.psl.eu
https://doi.org/10.1364/OA_License_v1
https://doi.org/10.1364/OPTICA.6.000465
https://crossmark.crossref.org/dialog/?doi=10.1364/OPTICA.6.000465&amp;domain=pdf&amp;date_stamp=2019-04-09


overcome the scrambling of the wavefront in space and/or
time through wavefront shaping (e.g., to focus behind or trans-
mit information through a complex medium) [16,20,25–30].
Strikingly, it was possible to beat the Rayleigh limit on focusing
[31,32] and the Nyquist–Shannon sampling theorem [33].

Despite its potential, controlling wave propagation in complex
media to perform linear transformations has received little atten-
tion. The literature contains reports on implementations of two-
port beamsplitters [34,35], with applications to control quantum
interferences in mind [36,37], as well as on spatial mode sorting
[38]. In particular, the possibility to implement large reconfigur-
able linear transformations as required for optical neural networks
has remained unexplored to date. Building on recent work that
demonstrated wave-based analog computation in a chaotic micro-
wave cavity [39], we explore here the possibility to perform large
complex-valued linear operations in optical complex media. We
formulate fundamental upper bounds in terms of the operation
size that can be implemented in a realistic optical system.
Moreover, we experimentally demonstrate the possibility to take
advantage of the large number of degrees of freedom of a disor-
dered optical system (multimode fiber or glass diffuser) of which
we acquire the transmission matrix (TM), to physically perform
different desired linear transformations. We aim to provide an
implementation of reconfigurable optical linear transformations
that meets the necessary criteria for real-life implementations
(i.e., minimal hardware requirements, low stability requirements,
and short reconfiguration times). To that end, we do not rely on
interferometric phase measurements; instead, we leverage phase
retrieval techniques, eliminating the need for high mechanical sta-
bility. We use fast binary modulators that allow above 10 kHz
refresh rates. Moreover, the one-off calibration of the medium’s
TM allows us to reconfigure the implemented linear transforma-
tion without any further experimental measurement.

2. OPERATION PRINCIPLE

A. Principle

Light propagation through a linear disordered system at a given
frequency is fully described by its transmission operator H that
links the output state of light jψouti to the input one jψ ini, so

jψouti � Hjψ ini: (1)

Usually, only a small subset of the input and output modes are
controlled and measured. Then, the transmission matrix has the
statistical properties of an ideal random Gaussian matrix [40,41].
If one controls N input modes and measures M output modes,
H is represented by a M × N matrix and jψ ini (resp jψouti) is
represented by a vector of size N (resp. M ). Suppose we seek to
create a system performing a linear operation represented by the
matrix G of size m × n with m < M and n < N . Once the com-
plex medium’s transmission matrix H is measured, we want to
identify adequate input and output projections to perform the
desired linear operation with the system. These projections are
represented by N × n and M × m input and output matrices,
Pin and Pout, that satisfy

G � PT
outHPin: (2)

B. Input and Output Projectors

We limit ourselves to input projectors Pin that can be created by
modulating the optical field at a given input plane (i.e., using a

SLM). We divide the SLM into n groups of N∕n pixels on which
we control the amplitude and/or the phase of the optical field.
The output projection Pout is realized by measuring m speckle
grains at the output plane.

For illustration purposes, we use n � m � 4. The corresponding
projectors Pin and Pout have the following matrix representations,
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,

Pout �

2
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..
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. ..
.

0 0 0 0

3
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, (3)

where pk,l , �k, l� ∈ �1,N∕4� ⊗ �1, 4� represents the modulation on
the l th pixel of the kth segments of the modulator. For the sake of
simplicity, the output projection is done here by taking the first four
elements of the output basis.

C. Existence of Solution with Ideal Modulation and
Theoretical Limits

We assume the ideal case of H being a Gaussian random matrix
measured with negligible noise and the spatial modulation scheme
being able to control with high fidelity the amplitude and the
phase of the field. The Gaussian matrix approximation is known
to be valid when one controls and measures a fraction of the total
number of modes [40]. Satisfying the equality of Eq. (2) with the
projectors as represented by Eq. (3) consists in solving n systems
of m linear equations, so

Hk⊥

2
6664

p1,k
p2,k
..
.

pN∕n,k

3
7775 � Gk for k ∈ �1, n�, (4)

with Hk⊥ � PT
outHk the m by N∕n subpart of H corresponding

to the transmission matrix that links the pixels of the kth part of
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the SLM to the m selected outputs on the camera. Gk is the kth
column of the target matrix G. If a solution exists, it can be
written as 2

6664

p1,k
p2,k
..
.

pN∕n,k

3
7775 � H�

k⊥Gk , (5)

with H�
k⊥ the Moore–Penrose inverse (pseudo-inverse) of Hk⊥.

Such a solution exists if Hk⊥ has linearly independent rows.
Because Hk⊥ is a Gaussian random matrix with independent
identically distributed elements, it can be eigendecomposed
and its singular value distribution follows the Marchenko–
Pastur law [42]. For large matrices, the probability of having a
zero singular value vanishes for N∕n > m, ensuring that H�

k⊥
exists and that H�

k⊥Gk is a solution. If one can independently
control the amplitude and the phase of the optical field, the com-
plex mask corresponding to Eq. (5) can be implemented. We thus
find that for a full complex field modulation, it is sufficient to
controlM � n × m independent channels of the complex system
to be able to correctly simulate the target matrix G. While other
types of media may allow Eq. (2) to be satisfied, the random
nature of complex media ensures the existence of a trivial solution
regardless of the complexity of the target operator G.

Note that no hypothesis has been made on the operator G. It
demonstrates the universality of the approach to perform any
linear transformation. Experimentally, the passive modulation
of the SLM imposes jpi,jj < 1 ∀�i, j� ∈ �1,N∕n� × �1, n�. It limits
the applications to operators with below unity singular values.
However, for any operator G, the experimental system we present
can simulate the transformation corresponding to the operator
G 0 � αG with α ≤ 1 chosen so that the largest singular value
of G 0 is smaller than 1.

3. EXPERIMENT

A. Optical Setup

To illustrate the versatility of our approach, we report two exper-
imental implementations of our scheme using two very different
complex media as optical processing units: a multimode fiber and
a ground glass diffuser at two different wavelengths (respectively,
1550 nm and 632.8 nm). For both experiments, we modulate the
impinging wavefront with a digital micromirror device (DMD).

The MMF experiment uses a 1 m long segment of a step index
fiber of numerical aperture (NA) 0.22 with a core diameter of
105 μm supporting approximately 2000 guided modes. The light
source is a 1.55 μm telecom narrow-band laser (PS-NLL,
TeraXion). We use a 1920 × 1200 pixel, 16 kHz digital micro-
mirror device (V-9601, ViALUX GmbH) for the modulation.
The output intensity pattern is imaged onto a fast 640 × 512 pixel
InGaAs camera (Cheetah 640CL, Xenics). The fiber is com-
pressed at four different locations to ensure strong mode coupling
[43]. The scattering media setup uses a ground glass diffuser
(DG20-1500, Thorlabs) with a 632.8 nm laser source (1137/P,
JDSU Uniphase) modulated by a 2560 × 1600 pixel, 12 kHz
DMD (V-9001, ViALUX GmbH) and a 2336 × 1752 pixel
CCD camera (Prosilica GT2300, Allied Vision). The MMF setup
is depicted in Fig. 1, and the scattering medium setup is schemati-
cally similar. The number of controlled segments on the DMD is

N � 1568 for the MMF experiment and N � 2304 for the scat-
tering media. Both complex media stay highly correlated during
the time of the experiment: The output intensity patterns show
correlations greater than 98% for about 2 h. (Supplement 1 pro-
vides the details and correlation curves.)

B. Procedure

The steps of the procedure are schematically illustrated in Fig. 2.
A first calibration step consists in learning the TM of the complex
propagation medium, namely a multimode fiber or a scattering
medium. The second step consists in numerically finding the op-
timal projectors Pin and Pout that best satisfy Eq. (2) for a given
operator G knowing the transmission matrix H. Finally, by dis-
playing the corresponding masks onto the SLM and measuring
the field on the designated outputs, the system acts as the target
operator G on the incident field. Those three steps are discussed
in detail in the following sections.

1. Calibration

We first estimate the medium’s complex-valued transmission ma-
trix H. To remove the need for interferometric measurements,
which requires high mechanical stability that limits the versatility
of the approach, and to mitigate the effect of measurement errors,
we use a phase retrieval algorithm. It allows the recovery of the full
TM from intensity-only measurements [44,45]. We divide the
pixel array of the DMD into N groups of pixels or macropixels.
We then send a learning set of 7N random binary vectors (entries
have zero or unity amplitude) and measure the corresponding
output intensity patterns on the camera. These patterns are pro-
jected onto an output basis of macropixels of a size that corre-
sponds to a speckle grain. The obtained data is fed into a phase
retrieval algorithm [45] and the results are further refined using a
gradient descent optimization to better account for the nonline-
arity of the camera response (see Supplement 1).

We reconstruct matrices of size 100 × 1568 for the MMF
setup and 100 × 2304 for the scattering medium. The computa-
tion is accelerated through parallelization with a graphical process-
ing unit (GPU) (GeForce GTX 1050 Ti, NVIDIA) and is
completed in under 2 min. We evaluate the quality of the recon-
structed TM using test input wavefronts that have not been used

Fig. 1. Schematic representation of the setup. An expended laser beam
is modulated after reflection off a DMD and injected into a complex
medium (CM: ground glass diffuser or multimode fiber). One polariza-
tion of the outgoing light is recorded by a digital camera. A reference arm
is used only for the final estimation of the fidelity to measure the complex
optical field for the MMF experiment. FC: fiber coupler; Ci (with
i ∈ �1…4�): fiber collimator; Li (with i ∈ �1…4�): planoconvex lens;
PBS: polarization beamsplitter; and P1 and P2: polarizers.
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for the learning procedure by calculating the root mean square
error (RMSE) for each element of the output basis, giving
RMSEmean∼7% (std�RMSEmean� ∼ 6% and RMSEmedian < 5%)
for the MMF setup, and RMSEmean ∼ 11.6% (std�RMSEmean� ∼
7.3% and RMSEmedian < 7.9%) for the visible setup.

2. Projection Calculation

The output projection Pout is realized by selecting m output
speckle grains. The optical fields in these areas correspond to
the output of our operator. We choose the output points that give
the lowest reconstruction error during the calibration step. We
then obtain the output projection as represented in Eq. (3), where
rows are ordered from the lowest to the highest error.

We demonstrated that for a full amplitude and phase modu-
lation, the input masks corresponding to the optimal input pro-
jectors Pin can readily be calculated from the TM using the
relation 5. Using binary amplitude modulators, we achieve a
few-level modulation of the optical phase using Lee holograms
(see Supplement 1). The modulated beam is then projected onto
the complex medium. We collect the output intensity pattern for
a single polarization using a digital camera. Identifying an input
mask on the DMD that approximates the equality in Eq. (2) for
a given target matrix G is an ill-posed problem since we do not
have full control over the complex wavefront. Finding an input
projector Pin that minimizes kG − PT

outHPink2 with the con-
straint of looking for solutions with discrete phase values is a con-
vex problem. We use a mixed-integer convex solver [46,47] to
find an approximate solution that satisfies the experimental re-
strictions of the few-level wavefront modulation of the DMD

(see Supplement 1). The computation of the input projector
Pin takes less than 20 min for 16 × 16 operators and under
5 min for 8 × 8 operators on a computer with an Intel
i7-7700 CPU with 32 GB or RAM running on Windows 10.

3. Optical Analog Computation

Once the appropriate input projector mask is calculated and dis-
played on the DMD, the system is ready to act like the desired
linear operator G. The operation is performed on a desired input
vector by encoding its components X � �x1, x2,…, xn�T into as
many light beams directed toward the SLM and collecting the
output vector Y on the detection device such that

Y � GX � PT
outHPinX: (6)

In principle, the input information is encoded into the optical
field values impinging on the different segments of the DMD.
To limit the complexity of the experimental setup, input vectors
are directly encoded using the DMD. To do so, each subpart of
the input projection is modulated by the value of the correspond-
ing component of the incoming input vector X. This allows us to
work with a single incoming light beam, but limits the modula-
tion to only a few levels (see Supplement 1).

4. RESULTS

We illustrate the reconfigurability of the presented scheme by
experimentally implementing two linear transformations very
common in computer and physical science; namely, the discrete
Fourier transform and the Hadamard matrix. Their general
expressions read

Fig. 2. Overview of the experimental procedure for performing a DFT operation of size 4 (n � m � 4 and G � DFT4). Step 1: System calibration.
Acquisition of the complex TM by measuring a set of input patterns and output intensity speckles and using a phase retrieval algorithm. Step 2: Optimal
input projection calculation. We illustrate the procedure by showing how to find one subpart of the input mask. The computation is done independently
for each subpart of the SLM using a convex optimization solver and using the TM and the corresponding column of the target matrix G as inputs. Step 3:
Analog computation. The proposed optical processing unit is composed of a spatial light modulator (SLM) and a complex medium. The SLM and the
output detection take the role of the projectors Pin and Pout, converting the given transmission matrix H of the complex medium into a desired linear
transformation G [see Eq. (2)].
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DFTn �
1ffiffiffi
n

p �ωjk
n �j,k�0…n−1 with ωn � e−2πi∕n, (7)

and

Han �
1ffiffiffi
n

p
�
Han−1 Han−1
Han−1 −Han−1

�
with Ha1 � � 1 � (8)

with n the size of the operator. We quantify the quality of the op-
eration by estimating the operator’s fidelity Fc � Tr�jG̃:G†j2� � n
[8], with G̃ the response matrix of our physical system after pro-
jection andG the target matrix (DFTn orHan). To characterize the
implemented operator G̃, we sequentially send vectors from an
input basis and measure the corresponding outputs fields.

To measure the complex output field, we carry out off-axis
holography measurements [48]. It uses a reference arm originat-
ing from a 90/10 fiber splitter at the output of the laser. The
reference beam and the output of the MMF are recombined using
a polarizing beam splitter and a polarizer. The recorded images are
post-processed to retrieve the phase information from the inter-
ference pattern. Note that the reference arm was not part of the
procedure of implementing the linear operator; it is solely used to
monitor the effective complex-valued operator G̃ afterward.
(Supplement 1 provides details about the complex field measure-
ments.) Moreover, as a single image allows measuring the complex
value output of the operator, interferometric stability over times
longer than the integration time of the camera is not required.

We experimentally perform all optical operations according to
the presented principle. A large range of input signals is prepared
and sent to the setup (see Supplement 1). The quality of our re-
sults is assessed by the Pearson correlation coefficient between the
absolute values of the experimental and the ideal output vectors C
and also by the experimental fidelity Fc.

In Figs. 3(a) and 3(c), we compare the measured amplitude
values obtained for two random input vectors with the expected
ones for both operators. The results show good agreement, as
emphasized by the correlation coefficients exhibiting values over
95% for these realizations. In Figs. 3(b) and 3(d), we show the
real and imaginary parts of the estimated experimental operators
G̃ after normalization and the real and imaginary parts of the
target operator G. The results presented were obtained without
averaging. A summary of the measured quality estimators for
the MMF experiment is presented in Table 1 with and without
averaging for operator sizes of n � m � 8 and n � m � 16.

A good agreement between the experimental data and the ideal
operations outputs is observed for the different sizes tested, even
without averaging. It demonstrates the possibility of performing
one shot operations through a multimode fiber. To further illus-
trate the possibility to create any desired operator, in Fig. S5
(Supplement 1) we show an experimental implementation of a
matrix with no physical meaning displaying the name of the

Table 1. Summary of the Efficiency Results for the MMF
Experimenta

Size Averaging C Fc
n � m � 8 1 0.977	 0.009 0.973	 0.014
n � m � 8 10 >0.99 0.996
n � m � 16 1 0.912	 0.027 0.792	 0.027
n � m � 16 10 >0.99 0.968

aC stands for correlation between results and predicted values, and Fc stands for
the experimental fidelity.

(a)

(b)

(c)

(d)

Fig. 3. Comparison of experimentally implemented operators and tar-
get operators. We use as target matrix G, a 16 × 16 Hadamard matrix
[(a) and (b)], and a 16 × 16 discrete Fourier transform [(c) and (d)].
Absolute values of experimental (red dots) and theoretical (cyan dia-
monds) results of the linear transformations for two different random
input vectors drawn from f−1, 0, 1g for G � Ha16 (a) and G �
DFT16 (c). The correlation between the two signals is shown in the
insert. Comparison between experimental and target operators for
G � Ha16, Fc � 0.785 (b) and G � DFT16, Fc � 0.818 (d). The re-
sults are obtained without averaging.
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authors’ host institution by encoding information independently
in the real and imaginary part of its elements.

Because the ground glass diffuser experiment is more prone to
errors in the operator reconstruction, we only present results for
n � m � 8. In Fig. 4 we show the raw amplitude of four different
outputs for the DFT8 operator. We measure C � 0.948	
0.018. We estimate that the sources of the errors are the lower
laser stability and the nonlinear response of the CCD camera.
While negatively affecting the results, we obtain qualitatively sim-
ilar results, demonstrating the capacity of the approach to work
with relatively cheap devices, namely a HeNe laser and a standard
CCD camera. Results further illustrating the versatility of our
method are displayed in Supplement 1.

5. DISCUSSION

We demonstrated the possibility of using cheap and common me-
dia as optical processing units to perform linear operations using
wavefront shaping. The attractiveness of such an approach is
linked to its ability to be scaled up for larger operations. While
we report the implementations of 16 × 16 operators, much larger
operations can be performed, provided there is an increased con-
trol over the input field and a reduced noise level. Noticeably,
Eq. (2) was only satisfied approximately because of the binary
nature of the DMD modulation; the search for such approxima-
tion requires computation efforts. While averaging over realiza-
tions mitigates the error, a single shot operation is usually
desirable. For an ideal amplitude and phase modulation, Eq. (2)
can be satisfied exactly with a simple matrix pseudo-inversion.
A complete independent amplitude and phase modulation can
for example be obtained using two liquid crystal SLMs. Another
approach is, after characterization of the medium, to print phase
plates to fix the input mask. While limiting the reconfigurability
of the system, it reduces the final cost of the processing unit.

For a square target matrix G, the largest size for which one can
find a solution for a fixed number M of controlled modes is
n � m � ffiffiffiffiffi

M
p

. Using a multimode fiber as a complex medium,
the limiting factor is the number of modes supported by the
fiber; for a typical large core step index fiber (550 μm core,

NA � 0.22), M ≈ 60,000, corresponding to maximal operator
dimensions n � m ≈ 250. In contrast, in scattering layers such
as glass diffusers, the number of degrees of freedom available given
by the number of propagating modes is quasi unlimited. Thus,
the number of independently controlled modes is limited by the
number of pixels on the modulator, typically on the order of one
million. Note that this remains true in the multiple scattering
regime as long as the number of transmission channels is large
compared to the number of input pixels (i.e., far away from
the localization regime). Hence, this would allow creating linear
operators of size n � m ≈ 1000. These operator sizes match the
order of magnitude of the size needed for optical neural networks.

It is important to note that our approach, due to intrinsic
losses and the absence of gain in the system, can perform any
linear operation only up to a constant multiplier. In particular,
it cannot perform operations with above unity singular values.
Such a restriction can be detrimental to quantum optics applica-
tions where losses can modify the optical state of light. Our ap-
paratus based on DMDs causes more than 50% of the light to be
lost upon modulation. However, using a phase-only SLM based
on deformable mirrors or a phase plate together with a careful
injection into a multimode fiber, close to unitary operations
can be achieved. Multimode fibers have the potential to outper-
form integrated-photonics-based platforms in terms of losses,
with insertion losses on the order of 0.3 dB and propagation losses
below 1 dB/km, compared to values above 1 dB and 0.1 dB/cm,
respectively, for photonic integrated circuits [49].

The presented method requires computational efforts during
its calibration; however, once the TM is retrieved and the projec-
tors are calculated, the operations are performed in a single shot
(O�1� operations) on a passive system. No further calibration is
needed as long as the system is stable. Multimode fibers up to
100 m are stable enough to be used as accurate optical instru-
ments [50]. Stability over multiple days can be obtained by
ensuring a controlled environment and good laser stability. Thin
diffusers are only limited by the pointing stability. The proposal
offers the possibility to implement large optical linear transforma-
tions without elaborate fabrication techniques as well as to
reconfigure the desired operator without further measurements.
Moreover, it opens the opportunity to drastically reduce the
energy consumption compared to classical electronic components
while increasing the computation speed [11,39]. These character-
istics may enable the presented technique to play a key role in the
advent of optical analog computation and machine learning.

Funding. Agence Nationale de la Recherche (ANR) (ANR-16-
CE25-0008-01 MOLOTOF); Labex WIFI (ANR-10-LABX-24,
ANR-10-IDEX-0001-02 PSL*); Ministère de la Défense,
Direction Générale de l’Armement (DGA).

Acknowledgment. We thank Yaron Bromberg and Arthur
Goetschy for fruitful discussions. We acknowledge Christopher
Metzler and Laurent Daudet for sharing phase retrieval codes
and providing helpful advice. The datasets generated during
the current study are available from the corresponding author
upon reasonable request. Interface codes for controlling the
DMD are made available at [51], and detailed tutorials to set
up DMD experiments are available at [52].

See Supplement 1 for supporting content.

Fig. 4. Amplitude of four different random output vectors for operator
G � DFT8 obtained using a ground glass diffuser as a complex medium.
Cyan diamonds correspond to the theoretical outputs and red dots to the
experimental data. Inserts in the top left corners give the correlation
between the experimental and the predicted transforms.
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