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2-D and 3-D Reconstruction Algorithms in the
Fourier Domain for Plane-Wave Imaging

in Nondestructive Testing
Lucas Merabet , Sébastien Robert , and Claire Prada

Abstract— Time-domain plane-wave imaging (PWI) has
recently emerged in medical imaging and is now taking to
nondestructive testing (NDT) due to its ability to provide images
of good resolution and contrast with only a few steered plane
waves. Insonifying a medium with plane waves is a particularly
interesting approach in 3-D imaging with matrix arrays because
it allows to tremendously reduce the volume of data to be
stored and processed as well as the acquisition time. However,
even if the data volume is reduced with plane wave emissions,
the image reconstruction in the time domain with a delay-
and-sum algorithm is not sufficient to achieve low computation
times in 3-D due to the number of voxels. Other reconstruction
algorithms take place in the wavenumber–frequency (f-k) domain
and have been shown to accelerate computation times in seismic
imaging and in synthetic aperture radar. In this paper, we start
from time-domain PWI in 2-D and compare it to two algorithms
in the f-k domain, coming from the Stolt migration in seismic
imaging and the Lu theory of limited diffraction beams in
medical imaging. We then extend them to immersion testing
configurations where a linear array is facing a plane water–steel
interface. Finally, the reconstruction algorithms are generalized
to 3-D imaging with matrix arrays. A comparison dwelling on
image quality and algorithmic complexities is provided, as well
as a theoretical analysis of the image amplitudes and the limits
of each method. We show that the reconstruction schemes in the
f-k domain improve the lateral resolution and offer a theoretical
and numerical computation gain of up to 36 in 3-D imaging in
a realistic NDT configuration.

Index Terms— 2-D and 3-D imaging, nondestructive testing
(NDT), transducer arrays, ultrasounds, wavenumber–frequency
(f-k) migration.

I. INTRODUCTION

TWO-DIMENSIONAL real-time imaging with ultrasonic
arrays has arisen about 20 years ago in nondestructive

testing (NDT) and is more and more commonly utilized
for on-site inspections. If real-time imaging has long been
confined to focused B-scan and S-scan, recent more advanced
methods have been implemented in NDT systems [1]. The
most common today is the total focusing method (TFM),
where the elements are excited one by one to record the
inter-element impulse response matrix of the array [2], [3].
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The signals contained in this matrix are then post-processed
in the time domain to focus both in transmit and receive
modes everywhere in the region of interest [4], [5]. Compared
to conventional imaging techniques based on focused emis-
sions, the TFM improves both the image quality and spatial
resolution. More recently, the plane-wave imaging (PWI)
method developed for ultrafast medical imaging [6] has been
generalized to deal with realistic NDT applications such as
multimodal imaging of crack-like defects or imaging under
water/steel interfaces [7], [8]. One of the advantages of plane
wave emissions is that only a few steered angles are sufficient
to obtain an image of good quality, so that frame rates can
be increased compared to the TFM. Today, 2-D imaging
systems are fast enough for most of the real-time NDT
applications where the transducer arrays are composed of up
to 128 elements.

Whereas real-time 3-D imaging is spreading in medical
imaging [9]–[11], it is almost nonexistent in NDT. This is
due to constraints intrinsic to imaging devices, such as their
portability for on-site controls, their reduced cost compared
to medical scanners, and their versatility to deal with differ-
ent inspection configurations. Nonetheless, the need for on-
site 3-D imaging is real to improve the characterization of
defects with complex morphologies, such as stress corrosion
cracks in nuclear plants, or to inspect complex structures with
geometries that cannot be considered as 2.5-D. Another main
asset of 3-D imaging is to replace the use of mechanical
scanners associated with linear arrays when a large volume
of the part has to be controlled. Static 3-D imaging with
manual positioning could significantly reduce inspection times
and costs, but it is crucial that the image computation be fast
and the imaged area much wider than the array aperture.

This paper studies reconstruction algorithms to compute
3-D images as fast as possible without resorting to parallel
processing and multicore technology. Regarding the set of
RF signals to be processed, those contained in the impulse
response matrix are not suited for 3-D imaging with matrix
arrays [12] because the elements are excited individually, and
the large number of transmission/reception sequences consid-
erably reduces volume acquisition rates. In addition, storing
the response matrix represents a huge memory load. For
example, the formation of 3-D images with a 16 × 16 matrix
imposes to record 256 × 256 signals of Nt time samples, and
the overall volume of data, i.e., 256 × 256 × Nt , is not always
recordable by NDT systems due to data transfer limitations.
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In order to overcome this issue, we propose to form 3-D
images with incident plane waves. This technique is widely
known in medical imaging to significantly reduce the number
of transmissions and, thus, improve volume acquisition rates
while decreasing the amount of data to be stored.

Even with plane wave emissions, the post-processing of the
RF signals with a “delay-and-sum” algorithm is not sufficient
to obtain low computation times for images comprising a large
number of voxels, typically between 106 and 108. This is
the reason why, rather than computing the image in the time
domain, we propose to investigate imaging algorithms in the
wavenumber–frequency (f-k) domain, which has been proven
to accelerate the computation times. The so-called f-k methods
are imaging schemes where the image is computed in the
Fourier domain by solving an inverse problem and by remap-
ping the wavenumber and frequencies of the RF signals onto
the image wavenumber grid. This remapping is specific to the
method and usually involves interpolation in the f-k domain.
They have arisen primarily in seismic migration with the pio-
neer works of Stolt et al. [13], [14] in monostatic imaging. The
Stolt formalism describes a passive imaging method where the
reflectors in the medium are considered as exploding primary
sources. This assumption is valid in an equivalent medium,
in the framework of the exploding reflector model (ERM),
where the phase velocity is halved to account for the two-way
travel time in the physical medium between the transducer
array and the reflector. Imaging the reflectors in the region
of interest is thus, equivalent to retrieving the acoustic field
at the moment t = 0 of the explosion, by solving the
Helmholtz equation. The Stolt migration was later generalized
to multilayered media by Skjelvareid et al. [15] to deal with
velocity variations along the central axis of the array. Later,
Garcia et al. [16] adapted the Stolt formalism to 2-D PWI with
a modified ERM involving a spatial transformation between
the physical and virtual media.

The second approach in imaging in the f-k domain is often
referred to as the “wavenumber algorithm.” It was introduced
in the early 1990s in synthetic aperture radar (SAR) with a
monostatic measurement setup [17]–[19], and was adapted to
deal with bistatic SAR by Callow et al. [20]. This method
is based on a forward model writing the RF signals in the
frequency domain as the convolution of the reflector distribu-
tion by the Green’s function of the Helmholtz equation. This
equation can be inverted by expressing the Green’s function
as a sum of plane waves via the Weyl identity and gives a
representation of the reflector distribution in the wavenumber
domain kx −kz [21]. More recently, in NDT, Hunter et al. [22]
followed the same approach as in [20] for the wavenumber
algorithm to be used with the inter-element impulse response
matrix. In their practical case where 2-D images are calcu-
lated with a contact array of 64 elements, they showed that
the spatial resolution was improved compared to the TFM
imaging in the time domain, and that the computational gain
was theoretically of the order of the number of elements.
In medical imaging, Moghimirad et al. [23] showed that virtual
sources can be combined with the wavenumber algorithm
to increase the penetration depth of ultrasounds, and thus
improve the signal-to-noise ratio compared to the conventional

acquisition of the inter-element impulse response matrix. Other
methods based on limited diffraction beams were introduced
by Lu and Cheng [26], plane waves being a particular case of
limited diffraction beams [24], [25].

In this paper, we develop and study 2-D and 3-D recon-
struction algorithms in the f-k domain to image defects in
solids with short computation times. Furthermore, defects are
insonified with plane waves to limit the number of data to be
processed, thus optimizing the computational performances of
the Fourier domain methods. In Section II, we first recall PWI
in the time domain. The Lu imaging equation is then derived
using an alternative formulation to the limited diffraction
beams theory introduced by Lu, following the formalism of
the wavenumber algorithm in SAR. Third, the Stolt method
for plane wave emissions with linear contact arrays is pre-
sented. In Section III, a detailed analysis of the algorithmic
complexities is presented, as well as a comparison of the
theoretical amplitudes of the PWI, Stolt, and Lu images.
The three imaging equations are reformulated with asymptotic
expansions of the Fourier integrals in order to highlight the
differences in image quality. In Section IV, we generalize the
Fourier domain algorithms to immersion testing configurations
by extrapolating the acoustic field from the physical array
to a virtual array located at the water/steel interface. The
quality of 2-D images, the computation times, and the limits
of the algorithms are then exhibited and compared for the
different methods in a realistic inspection configuration where
the region of interest is three times wider than the array
aperture. This allows us to assess the capability of the methods
to image defects remote from the probe and confirm the
theoretical amplitude analysis of Section III, as well as the
trends of computational gains. Next, in Section V, we extend
the f-k algorithms to perform 3-D images with matrix arrays
immersed in water, taking into account a plane water/solid
interface. To this end, we developed the theory of the ERM
underlying the Stolt method for 3-D imaging. The analysis
of the image amplitudes is also performed and helps explain
why f-k methods provide better image quality improvements
in 3-D than in 2-D, compared to time-domain PWI. After-
wards, the three methods are evaluated with a steel specimen
featuring a distribution of spherical air-filled inclusions. Three-
dimensional images of the inclusions are formed in a volume
with a base area identical to the matrix array aperture. Finally,
this paper ends with experimental images of three crack-
type defects with different orientations in a volume five times
wider than the array aperture. In this limit case, the number
of voxels is larger than 107, and we show that the Lu
migration provides high-quality 3-D images while reducing
the algorithmic complexity and the computation time by a
factor of 36.

II. THEORETICAL BACKGROUND IN 2-D
PLANE-WAVE IMAGING

This section sets out the theories in 2-D imaging for a simple
case where the array is in contact with a steel block. We first
recall the time-domain PWI, which will serve as a reference in
terms of image quality and computation time in the sequel. We
then present the Lu method, following an SAR approach based
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Fig. 1. Geometry and notations used in 2-D imaging with a contact array.

on the Weyl decomposition of the Green’s function. Finally,
the theory of the Stolt migration as adapted to plane wave
emissions by Garcia et al. [16] is presented.

A. PWI in the Time Domain

As illustrated in Fig. 1, we consider a transducer array A
with N elements in contact with a homogeneous and isotropic
solid medium where longitudinal bulk waves propagate with
the phase velocity c. For a concise formalism, it will be
assumed that only one type of waves propagates in the solid,
with either longitudinal or transverse polarization. The array
transmits a plane wave of incidence θ in the medium and
records a signal sθ (u, t) where u denotes the abscissa of an
element and u2 = (u, 0) is its position vector. β(r, u) is the
backscattering angle from the reflector at r to the receiver at
abscissa u. The medium is assumed to feature a distribution
of pointlike reflectors g(x, z). We let eθ = (sin θ, cos θ)
be the unit normal vector to the plane wavefront, and by
convention, the leftmost element will be chosen as the origin
of the coordinate system. Here, we briefly present the imaging
method in the time domain for NDT systems [8]. Compared to
the medical PWI where the beamforming process is performed
“line by line” with a subset of several adjacent receivers,
images in NDT are formed “point by point” by focusing in
receive mode with the whole aperture. Let us consider a point
r of coordinates (x, z) in the medium. The arrival time of the
plane wavefront at position r is

te(r, θ) = r · eθ

c
+ τe(θ) (1)

where τe(θ) is the emission delay of the leftmost transducer
element. The time of flight of the backscattered wave from r
to the receiver at u is

tr (r, u) = �r − u2�
c

. (2)

Finally, if steered plane waves of angles θ ∈ � are transmit-
ted, a compounded image i(r) can be formed by summing
coherently all the RF signals recorded with the N elements at
arrival times te(r, θ) + tr (r, u):

i(r) =
∣
∣
∣
∣
∣

∑

θ∈�

∑

u∈A
sθ (u, te(r, θ) + tr (r, u))

∣
∣
∣
∣
∣
. (3)

The algorithmic complexity of time-domain PWI, i.e., the
number of operations to form an image, can be deduced from
(3). Q will denote the number of plane waves, N the number

of elements, and Nx Nz the number of pixels. In imaging
systems, delay laws and times of flight are precalculated
and stored in memories, and only the image reconstruction
(4) is done in real time. To do so, each RF signal sθ (u, t)
needs to be linearly interpolated to extract the amplitude
sθ (u, te+tr ), which accounts for four operations (two additions
and two multiplications) per pixel, angle and receiver. Hence,
the algorithmic complexity CP of time-domain PWI is given by

CP = 4QN Nx Nz . (4)

Throughout this paper, the above algorithmic complexity will
serve as a reference to quantify the gains in computation
time. We now go on to the theories of f-k methods.

B. Lu f-k Method

Hereafter, we derive the Lu method for plane wave emis-
sions using a forward model and the formalism described
in [19] for bistatic imaging SAR. It consists in writing a
forward model linking the recorded signal to the distribution
of scatterers in the medium. In the sequel, ku − ω will denote
the wavenumber domain of the RF signals and kx − kz the
frequency domain of the image. Lowercase letter will be
used for space and space–time domain signals, capital letters
otherwise. The following definition is adopted for Fourier
transforms:

sθ (u, t) =
∫∫

Sθ (ku, ω)ei(ku u+ωt)dkudω. (5)

Assuming that there is no attenuation and that the element
radiation patterns are omnidirectional, the forward propagation
model for a single plane wave with incidence angle θ and wave
vector kθ = keθ is [4]

Sθ (u, ω) = A(ω)

∫∫

e−ikθ ·rg(r)H (2)
0 (k�u2 − r�)dxdz (6)

where A(ω) is the emission spectrum and H (2)
0 is the Han-

kel function of the second kind. Equation (6) is valid for
large transducer arrays where edge diffraction effects can be
neglected (otherwise, an apodization function can be used
in transmit mode), and it expresses the back-and-forth wave
propagation in the medium with incident plane waves and
backscattered cylindrical waves. The aim now is to invert this
equation to retrieve g(r). To do so, H (2)

0 is decomposed in
terms of plane waves using the Weyl identity [8]

H (2)
0 (k�u2 − r�) =

∫
eiku (u−x)−iz

√
k2−k2

u

√

k2 − k2
u

dku . (7)

Injecting (7) in (6) allows to write Sθ (u, ω) as

Sθ (u, ω)

= A(ω)

∫
eiku u

√

k2 − k2
u

×
(∫∫

g(r)e−i(ku+k sin θ)x−iz(k cos θ+√
k2−k2

u )dxdz

)

dku

(8)
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and taking the lateral Fourier transform of (8) yields

Sθ (ku, ω) = A(ω)
G
(

ku + k sin θ,
√

k2 − k2
u + k cos θ

)

√

k2 − k2
u

(9)

and finally, the 2-D Fourier transform G(kx , kz) of g(x, z) is

G(kx , kz) =
√

k2 − k2
u

A(ω)
Sθ (ku, ω) (10)

with
⎧

⎨

⎩

ku = kx − k sin θ

k = k2
x + k2

z

2kx sin θ + 2kz cos θ
.

(11)

Equation (10) gives an explicit relationship between the spec-
trum of the reflector distribution G(kx , kz) and the spectrum
of the recorded signal S(ku, ω), and translates the fact that Sθ

needs to be remapped, or in other words resampled, on the grid
(ku(kx , kz), k(kx , kz)). Implementationwise, this step consists
in interpolating the signal on to a new grid through a 2-D
interpolation. Theoretically, with the hypotheses mentioned
above, (10) and (11) provide the same result G for each
transmission angle θ . In practice, due to the limited aperture
and the spatial sampling of the array, each emission gives an
estimation Gθ of G and a high-quality image is obtained by
coherently summing the distributions Gθ , θ ∈ � obtained with
several emissions and taking the inverse Fourier transform of
this sum:

g(x, z) =
∣
∣
∣
∣
∣
F−1

kx ,kz

{
∑

θ∈�

Gθ (kx , kz)

}∣
∣
∣
∣
∣
. (12)

C. Stolt f-k Migration

The Stolt f-k migration was first introduced in 1978 for
pulse-echo seismic imaging. The formalism describes a pas-
sive detection technique where the reflectors in the medium are
considered as primary sources. This assumption can be made
thanks to the so-called ERM: there exists a virtual medium
(ĉ, x̂, ẑ) where all the reflectors explode in concert at t = 0,
acting as primary sources, and the resulting acoustic field at
the array location is the same as that recorded in the physical
medium (c, x, z). The passive imaging method is derived in
Section II-C1, and in the second step, the ERM associated
with plane wave emissions is described.

1) Passive Imaging in the Virtual Medium: We assume here
a medium of celerity ĉ featuring pointlike sources exploding
at t = 0, and we will explain later how we can get back
to a configuration where this assumption can be made. The
explosion generates an acoustic field φ(x, z, t) in the medium,
and an infinite array at the surface of the medium records a
signal s(x, t). Imaging the exploding sources is thus equivalent
to retrieving the wavefield φ(x, z, t = 0) = g(x, z) from the
acquired data φ(x, z = 0, t) = s(x, t). We will consider in
the sequel that only upward waves propagate, which allows to
extrapolate the wavefield from the array to any depth z > 0.
Let us first write φ(x, z, t) as

φ(x, z, t) =
∫∫

�(kx , z, ω)ei(kx x+ωt)dkxdω. (13)

Because φ solves the wave equation, �(kx , z, ω) is
solution of the Helmholtz equation:

∂2�

∂z2 + k2
z � = 0 (14)

with the dispersion equation

k2
z = ω2

ĉ2 − k2
x . (15)

Now, with the assumption that only upward going waves
are propagating, �(kx , z, ω) at an arbitrary depth z can be
calculated from the knowledge of the field at at the array
location z = 0, leading to

�(kx , z, ω) = S(kx , ω)eikz z . (16)

Then, injecting (16) in (13) at t = 0 yields an expression of
the acoustic field at start time

φ(x, z, t = 0) =
∫∫

S(kx , ω)ei(kx x+kz z)dkxdω. (17)

Equation (17) describes a nonuniform Fourier transform.
We can go further and rewrite it as a uniform Fourier transform
by letting

ω(kx , kz) = ĉ sign(kz)
√

k2
x + k2

z . (18)

Finally, φ can be expressed as an inverse uniform Fourier
transform

φ(x, z, 0) =
∫∫

S(kx , ω(kx , kz))e
i(kx x+kz z) ĉkz

√

k2
x + k2

z

dkxdkz

(19)

and the exploding reflector distribution can be expressed in
the (kx , kz) domain as

Ĝ(kx , kz) = ĉkz
√

k2
x + k2

z

S(kx , ω(kx , kz)). (20)

ĝ(x, z) is finally obtained by taking the total inverse Fourier
transform of Ĝ(kx , kz).

2) Equivalence Between the Physical and the Virtual Media:
In this paragraph, the 2-D spatial transformation linking the
virtual and physical media is presented. It is derived from that
of Garcia et al. [16] and will be generalized to matrix arrays in
Section V. Instead of finding a transformation giving an exact
adequation between wave arrival times, the following linear
transformation is considered:

⎧

⎪⎨

⎪⎩

ĉ = αθ c

x̂ = x + γθ z

ẑ = βθ z.

(21)

The spatial transformation in (21) can be expressed as r̂ = rT,
where

T =
(

1 0
γθ βθ

)

. (22)

It should be noted that the array is invariant by T, which is
desired. For each plane wave emission, the ERM definition
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requires to correct the arrival time te(r, θ) + tr (r, u) with
reception delays, that is,

τr(u) = te(r, θ) + tr (r, u) − u sin θ

c
. (23)

The reception delay −u sin θ/c allows for diffraction hyperbo-
lae of two reflectors located at the same depth to be horizon-
tally aligned on the B-scan. This is equivalent to considering
that the field at z = 0 generated by the explosion is

S(u, ω) = Sθ (u, ω)eiku sin θ . (24)

With eθ = (sin θ, cos θ), τr(u) can be rewritten as

τr(u) = 1

c
[(r − u2) · eθ + �r − u2�] . (25)

The corresponding arrival time in the virtual medium is

τ̂r(u) = 1

ĉ
�r̂ − u2� = 1

ĉ
�(r − u2)T� (26)

and finally the arrival-time difference between both media is

Wr(u) = τ̂r(u) − τr(u). (27)

Since most of the acoustic energy is concentrated around the
apex of the diffraction hyperbola, the transformation in (22)
has to satisfy Wr(u) = 0 at the highest order possible around
u = x . Writing the second-order Taylor expansion of Wr(u) at
u = x and imposing the nullity of the derivatives of order up
to two yields a system of three equations and three unknowns
and ensures that Wr(u) = O(x − u)3 around u = x . The
resolution of the system provides the coefficients of the linear
transformation in (22)

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αθ = 1
√

1 + cos θ + sin2 θ

βθ =
√

1 + cos θ

2 − cos θ

γθ = sin θ

2 − cos θ
.

(28)

The principle of the ERM is to fit the depths and excentricities
of the diffraction hyperbolae in both media by adjusting the
above coefficients for every incidence angle θ . This gives a
very good fit near the apex, but the arrival-time errors diverge
when x − u → ±∞. Finally, the image for a steering angle θ
in the physical medium is

g(x, z) = ĝθ (x + γθ z, βθ z) (29)

where ĝθ (x, z) is deduced from the measured signal Sθ with
(20), that is,

g(x, z) = F−1
kx

{

eikx γθ zF−1
kz

[

Ĝθ

(

kx ,
kz

βθ

)]}

. (30)

The final compounded image is formed by summing the
individual images for all the steering angles θ , that is,

g(x, z) = F−1
kx

{
∑

θ∈�

eikx γθ zF−1
kz

[

Ĝθ

(

kx ,
kz

βθ

)]}

. (31)

In (31), an inverse Fourier transform with respect to z is
performed for each steering angle in order to compound the
images formed in the physical medium. It should be noted that

Fig. 2. Steps involved in the implementation of the Lu method: 1) the
signal sθ (u, t) is 2-D Fourier transformed in Sθ (ku , ω); 2) Sθ (ku , ω) is
interpolated on the frequency grid L(kx , kz); and 3) the interpolated signal is
multiplied by (k2 − k2

u)1/2/A(ω). Step 1)–3) are repeated for all angles and
the individual images Gθ (kx , kz) are summed together. Finally, a single 2-D
inverse Fourier transform is performed on G(kx , kz) to obtain the compounded
image g(x, z).

the images formed in the exploding reflector (ER) medium
cannot be coherently summed because the properties of this
medium depend on θ .

III. THEORETICAL ANALYSIS OF THE COMPUTATIONAL

AND GRAPHIC PERFORMANCES

This section first gives the algorithmic complexities of the
three methods to estimate the gains in computation time.
Then the imaging equations are reformulated with asymptotic
expansions of the Fourier integrals to interpret the differences
between the image amplitudes.

A. Algorithmic Complexities of the f-k Methods

The synoptic diagram shown in Fig. 2 describes the steps
involved in the image reconstruction with the Lu method.
In the following, d denotes the array pitch, N the num-
ber of elements, Q the number of steering angles, Nt the
number of time samples, and fs is the sampling rate. Like-
wise, Lx and Lz will denote the width and height of the
image, and Nx and Nz the number of pixels along the
lateral and axial directions. The wavenumber–frequency sam-
ple grid (ku, ω) is defined by ku = (2π/Nd) · [−N/2 +
1, . . . , N/2] and ω = (2π fs/Nt ) · [0, . . . , Nt /2], and the
image wavenumber grid (kx , kz) is defined by kx = (2π/Lx ) ·
[−Nx/2 + 1, . . . , Nx /2] and kz = (2π/Lz) · [0, . . . , Nz/2].
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TABLE I

COMPUTATION STEPS AND ALGORITHMIC COMPLEXITIES IN THE LU AND
STOLT METHODS

Zero padding is applied to the signals in the axial and
lateral directions before performing the fast Fourier trans-
form (FFT) in order to improve the accuracy of the bilin-
ear interoplator used to map Sθ from (ku, ω) to L(kx , kz),
where

L : (kx , kz) �→
(

kx − k sin θ,
k2

x + k2
z

2kx sin θ + 2kz cos θ

)

(32)

denotes the f-k domain resampling mapping. The complexities
of the computational steps are summed up in Table I. We also
considered the fact that a bilinear interpolation requires six
additions and six multiplications for every interpolated point.
This interpolation deals with complex numbers, thus each
interpolated point requires 24 elementary operations. However,
in consideration of the symmetry of the Fourier spectrum,
the interpolation is only performed on half of the signal spec-
trum. Therefore, the global complexity of the Lu algorithm
is

CL ≈ QN Nt log2(N Nt ) + 12QNx Nz + Nx Nz log2(Nx Nz).

(33)

The complexity CP of time-domain PWI is given in (4), and
the ratio between CP and CL takes the form

CP

CL
≈ 4N

12 + log2(Nx Nz )
Q + N Nt log2(N Nt )

Nx Nz

. (34)

The Stolt algorithm follows the steps presented in Fig. 3. Sθ

is interpolated from the sample grid (ku, ω) to a new grid
S(kx , kz) defined by

S : (kx , kz) �→
⎛

⎝kx , ĉ sign(kz)

√

k2
x +

(
kz

β

)2
⎞

⎠. (35)

Contrary to the Lu algorithm, an inverse Fourier transform in
the z direction is performed for every angle. This accounts
for QNx Nz log2(Nz) operations. In practice Q 	 1, and the
algorithmic complexity of the Stolt migration adds up to

CS ≈ QN Nt log2(N Nt ) + 12QNx Nz + QNx Nz log2(Nz)

(36)

and the computational gain of the Stolt method over PWI when
Nx 	 N is given by the ratio

CP

CS
∼ 4N

12 + log2(Nz)
. (37)

Fig. 3. Steps involved in the implementation of the Stolt migration: 1) the
signal sθ (u, t) is 1-D Fourier transformed in Sθ (u, ω); 2) emission delays
are substracted (aligning the diffraction hyperbolae); 3) Sθ (u, ω) is Fourier
transformed in the x direction, yielding Sθ (ku , ω); 4) Sθ (ku , ω) is interpolated
on the frequency grid S(kx , kz); 5) the interpolated signal is multiplied by
ĉkz/(k2

z + k2
x )1/2; 6) and 7) the signal is inverse Fourier transformed in z and

passed from the coordinates x̂ to x . Steps 1)–7) are repeated for all angles
and the individual images Gθ (kx , kz) are summed. Finally, a single inverse
Fourier transform is performed on G(kx , kz) to obtain the compounded image
g(x, z).

For a 2-D image with Nx Nz ≥ 105 pixels, Nt = 1024, N ≤
128 and Q ≥ 20, Q and log2(Nx Nz) are of the same order
of magnitude, as well as N Nt log2(N Nt ) and Nx Nz . In that
case, it is expected that

CP

CL
∼ N

3
and

CP

CS
∼ 2N

11
(38)



778 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 66, NO. 4, APRIL 2019

B. Physical Interpretation of the Imaging Equations

In Section IV, we will emphasize that the images given
by the three algorithms (time-domain PWI, Stolt and Lu)
differ in quality. In order to better interpret these differences,
the imaging equations are reformulated below as continuous
sums over the receivers and frequencies. This type of analysis
has been carried out in [27] to compare the pulse-echo Stolt
method to the synthetic aperture focus transmit technique,
and in [28] to compare the TFM with the wavenumber
algorithm [22]. On the other hand, for clarity, it is assumed
that the medium is insonified by a single plane wave. Noting
K (r, u, ω) = S(u, ω)eik(r.eθ +�u2−r�), the amplitude of the
PWI image at a point located at r = (x, z) is

gP(r) =
∫∫

K (r, u, ω) dudω. (39)

It is demonstrated in Appendix A that similar expressions can
be found for the f-k methods provided that kz is sufficiently
large for all frequencies in the signal bandwidth. Under this
assumption, the image amplitude at r for the Lu method can
be written as

gL(r)√
2iπ

≈
∫∫

k3/2 cos2 β(r, u)

�r − u2�1/2 K (r, u, ω)dudω (40)

where β(r, u) = arccos(z/�r − u2�) is the backscattering
angle from the point located at r to the receiver of abscissa u
(see Fig. 1). Compared to PWI, K (r, u, ω) is multiplied by a
weighting function acting as a filter in space and frequency.
What can be deduced from (40) is that the Lu method penalizes
defects at high angles with respect to the array, as well as
defects located at large depths. The k3/2 term is a high-pass
filter that shifts up the center frequency of the RF signals and
narrows down the bandwidth, which is expected to improve
the lateral resolution and slightly degrade the axial resolution.
Similarly, for the Stolt method, the amplitude gS(r) can be
expressed as

gS(r)√
2iπ

≈
∫∫

k̂1/2 cos β(r̂, u)

�r̂ − u2�1/2 eiωWr(u)K (r, u, ω)dudω (41)

where Wr(u) is the arrival-time error in the ERM defined
in (27). Compared to the Lu imaging equation, a similar
weighting function is obtained in space, but features r̂ instead
of r, because the Stolt method forms the image in the ERM
medium. It is to be noticed that amplitudes at high angles are
penalized by the cos β(r̂, u) factor instead of cos2 β(r, u) for
the Lu method, and the high-pass filter now is defined by k1/2,
having less effects on the spectral content of the RF signals.
The eiωWr(u) term is close to 1 when u ∼ x and oscillates
rapidly with respect to ω when |x − u| increases. For a point
located outside of the array aperture, the value of |x − u| is
large for all the receivers, and the sum of signals in (41) is not
coherent. As a result, the Stolt method is expected to perform
poorly when forming images much larger than the aperture,
which is often the case in NDT.

IV. GENERALIZATION AND APPLICATION OF THE 2-D
IMAGING METHODS TO IMMERSION ARRAYS

Previously, the theories have been introduced with an
inspection configuration where the transducer array is directly

Fig. 4. Two-dimensional imaging with a linear array immersed in water and
located at a distance h from the steel specimen. The plane wave of incidence
angle θ1 is refracted by the water/steel interface and propagates in the solid
with the angle θ2.

in contact with the specimen. Industrial inspections are rather
carried out in water-filled tanks or by equipping probes
with Plexiglas wedges. The goal is to prevent the array
elements from being damaged on rough surfaces and to inspect
specimens with complex geometries. As an example, the f-k
imaging methods are developed in the sequel for an immersion
probe and a specimen with a planar surface. As described
in Fig. 4, a linear array of N elements is facing a steel block
with a water column height denoted by h. Ultrasonic waves
propagate with the phase velocities c1 in water and c2 in
the specimen (with c2 > c1). A plane wave of angle θ1 is
transmitted in the first medium, then refracted as a plane wave
of angle θ2 = arcsin((c2/c1) sin θ1) in the second medium.
We now propose two extrapolation methods adapted to the
Stolt and Lu methods. To this end, the transmission coefficients
are assumed to be equal to 1, and, as previously, the diffraction
by the array edges is neglected by considering an infinite
aperture.

A. 2-D f-k Migrations Under a Plane Water/Steel Interface

1) Stolt f-k Migration: It follows from (16) that, as long as
the celerity remains constant, the wave field can be extrapo-
lated from depth z to depth z > z. Applying this property in
the first medium, we deduce that the wavefield at the interface
z = h in the ERM medium 1 is given by

�̂(kx , h, ω) = �̂(kx , 0, ω) exp
(

ik1
z h
)

(42)

where

k1
z =

√
(

ω

ĉ1

)2

− k2
x (43)

and ĉ1 = α1 c1 is the phase velocity in the ERM medium 1 for
a single plane wave of incidence angle θ1. Then, getting back
in the physical medium, we obtain the wavefield at z = h

�(kx , h, ω) = �(kx , 0, ω) exp
[

ih
(

β1k1
z + γ1kx

)]

(44)

where β1 and γ1 are the coefficients defining the spatial trans-
formation in (22). Once the wavefield is known at the interface,
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Fig. 5. Inspection testing configuration used for the simulation of echoes:
a linear array is immersed in water over a steel block of 60-mm thickness
featuring a series of seven pairs of side-drilled holes of 1-mm diameter. The
center-to-center distance between two holes is of 2 mm. The region of interest
is four times wider than the array aperture.

it is possible to apply the Stolt algorithm in the second medium
to form the final image.

2) Lu Method: The principle of the Lu method for immer-
sion arrays is to consider a virtual array located at the interface
z = h that transmits a plane wave of angle θ2 into the solid.
The array is assumed infinite and the angular dependency of
the transmission coefficient is neglected, which is possible
provided that the incidence angle θ1 remains small. In that
case, noting Sθ1(kx , ω) the signal recorded by the physical
array, and k1 = ω/c1, the signal Sθ2(kx , ω) recorded by the
virtual array writes

Sθ2(kx , ω) = Sθ1(kx , ω)e
ih
(

k1 cos θ1+
√

k2
1−k2

x

)

. (45)

The eihk1 cos θ1 propagation term accounts for the fact that the
virtual array emits at depth h with regard to the physical array,
while eih(k2

1 −k2
x )1/2

accounts for the downward extrapolation
of the wavefield. The Lu algorithm can then be performed
without modification to image the solid medium by replacing
the measured wavefield at z = 0 by that recorded with the
virtual array at z = h.

It should be noted that the principle of wavefield extrapola-
tion for both Fourier domain algorithms requires a multiplica-
tion of the received signal spectrum by a complex exponential.
The cost of this operation is, therefore, negligible compared
to the other steps and the algorithmic complexities previously
described for contact arrays still hold. As far as time-domain
PWI is concerned, the times of flight tr (r, u) in (2) associated
with backscattered waves are computed using the Fermat
principle and the Newton method to find the points of the
water/steel interface that minimize the propagation times [8].

B. Evaluation of the 2-D Imaging Methods
With Simulated Data

Time-domain PWI, the Stolt migration, and the Lu method
were implemented and optimized in MATLAB (MathWorks,
Natick, MA) and tested on a set of simulated data. The
inspected medium in Fig. 5 is a steel block featuring a
series of seven pairs of side-drilled holes of 1-mm diameter.

Fig. 6. Images computed by post-processing simulated signals with (a) time-
domain PWI, (b) the Stolt migration, and (c) the Lu method. For each image,
the reference amplitude (0 dB) corresponds to the pair of holes located on
the vertical central axis of the array.

The center-to-center distance for each pair of holes is 2 mm.
Longitudinal waves propagate in the solid with the phase
velocity c = 5.9 mm · μs−1, while transverse waves are not
considered in the simulation. The linear array is composed
of 64 elements with a pitch of 0.6 mm and is immersed
in water at h = 20 mm above the specimen. Elements are
excited by a Gaussian signal with a center frequency of 5 MHz
and a bandwidth of 80% at −6 dB. Since the region to be
imaged is much wider than the array aperture (i.e., more
than three times wider than the aperture), the number of
plane waves has to be large to produce a high-quality image.
Thus, the series of flaws is insonified by 141 plane waves
propagating from −70◦ to 70◦ with an angular step of 1◦. The
signals were simulated using the CIVA software (CEA-LIST,
Gif-sur-Yvette, France) [29], [30]. The codes were run on an
Intel Xeon 3.30-GHz CPU and 16 GB of RAM. The images
provided by the three reconstruction algorithms are displayed
in Fig. 6. For each of them, the reference amplitude (0 dB)
corresponds to the maximum amplitude of the defect echoes,
i.e., the echoes of the pair of holes at x = 0. It should be
noted that the quality of images could be slightly improved
with apodizations in transmit mode to limit the effects of
side lobes and the diffraction by the array edges. Though, our
images are sufficiently satisfactory to draw clear conclusions
about the three methods. In NDT, since most acquisition
systems do not allow to excite elements in parallel with electric
signals of different amplitudes, an alternative solution that
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Fig. 7. Variation of the maximum amplitude of echoes along the x-direction.

partially addresses this issue consists in apodization factors
in receive mode with the radiation beam patterns of the array
elements [31]. In the present case where a water/steel interface
is considered, the interface transmission coefficients must
also be considered in the imaging equations, which increase
the computation times with no substantial improvement in
the quality of images. In NDT, the weighting factors are
rather useful in imaging with transverse waves and in mul-
timodal imaging to avoid imaging artifacts related to interface
echoes [32], [33].

At a depth of 60 mm, it can be observed that the amplitude
of the back-wall echo decreases with the f-k methods, which
is in agreement with our theoretical analysis of the image
amplitudes in Section III-B. Qualitatively, it is clear that the Lu
method offers an image quality close to that of time-domain
PWI in the absence of noise, whereas the Stolt image is not
fully satisfactory everywhere in the region of interest. For
more quantitative analysis, the three X-echodynamic curves
are superimposed in Fig. 7. Each one represents the varia-
tion of the maximum amplitude of echoes according to the
x-direction, after removing the back-wall echo. As predicted
by the theory, the comparison of the X-echodynamic curves
confirms that the Fourier-domain methods improve the lateral
resolution compared to time-domain PWI provided that the
reflectors are located under the array aperture. Beyond the
aperture, i.e., for |X | > 19.2 mm, higher damping of echoes
is observed at high angles for the Lu method compared
to PWI, which can potentially impair the capability of the
method to detect defects at high angles in the presence of
electronic or structural noise. For instance, for the pair of holes
at x = 45 mm corresponding to the highest angle, we can
notice a significant amplitude difference of 8 dB between the
PWI and Lu images.

Regarding the Stolt image, the defect echoes outside of the
array aperture are either blurry (pairs at x = −45,−30, and
30 mm) or missing (x = 45 mm). This is due to arrival-time
errors in the ERM which amount to summing amplitudes of the
wrong diffraction hyperbolae. This corroborates the theoretical
analysis in Section III-B and confirms that the Stolt method is
unsuitable for imaging defects outside of the array aperture.

Fig. 8. Close-ups around the three rightmost pairs displayed in decibels,
where the reference amplitude is the maximum amplitude of the pair consid-
ered. (a), (d), and (g) PWI. (b), (e), and (h) Stolt. (c), (f), and (i) Lu.

The close-ups in Fig. 8 around the three rightmost pairs of
side-drilled holes highlight that the Lu methods provide a
slightly better lateral resolution than PWI, and a slightly worse
axial resolution. It also shows that the Stolt method is able to
separate the defects under the aperture but the echoes outside
of the aperture are first blurry, then missing.

Finally, the execution times measured using the “tic” and
“toc” MATLAB functions are indicated in Fig. 9, along with
plots of the algorithmic complexities (4), (33), and (36). For
both frequency algorithms, the “tic” function was placed just
before the first direct FFT of the RF signals, and “toc”
immediately after the inverse FFT (cf. Figs. 2 and 3). For
PWI, the computation of propagation times with (1) and (2)
precedes the “tic” and “toc” calls, and only the reconstruction
time was measured. Each curve in Fig. 9 gives the evolution
of the computation times for a number of pixels ranging from
104 to 5.106. When the number of pixels is larger than 106,
the computation times linearly increase for the three methods
[cf. Fig. 9(b)], which is also the case for the algorithmic
complexities [cf. Fig. 9(a)], meaning that the interpolation
step becomes preponderant. For a high number of pixels,
the Stolt migration shows a numerical gain up to 12 compared
to PWI, and the Lu method is up to 24 times faster than PWI.
In comparison, the algorithmic complexities in Section III-A
for N = 64 give theoretical asymptotic gains of 11 and
20 for Stolt and Lu, respectively. The slightly better numerical
gains than expected can be explained by the fact that the
MATLAB implementation is favorable to matrix operations,
and the FFT is optimized. This may give an advantage to
f-k methods. However, even with a low-level implementation,
f-k methods are expected to outperform time-domain PWI
according to the complexity analysis. The images of size
1000 × 1000 presented in Fig. 6 were computed in 2.05 s
with the Lu method, 3.8 s with the Stolt migration, and
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Fig. 9. (a) Algorithmic complexities as defined in (4), (33), and (36).
(b) Computation times plotted according to the number of pixels.

41.4 s with PWI, yielding computational gains of 10.8 for
Stolt and 20.1 for Lu.

V. GENERALIZATION OF THE f-k METHODS TO 3-D
IMAGING AND EVALUATION OF THEIR

PERFOMANCES WITH SIMULATED

AND EXPERIMENTAL DATA

In this section, the Lu and Stolt methods are generalized
to 3-D imaging with matrix arrays. The theory is described
hereafter for a contact array in order to be concise, and then
the imaging algorithms are evaluated with immersion probes.
In 3-D imaging, the extension of the f-k methods to immersion
testing configurations is straightforward and follows the same
principle of extrapolation of the wavefield as in 2-D imaging.
As shown in Fig. 10, the array transmits a plane wave of polar
angle θ and azimuth ϕ in the medium. The unit normal vector
to the wavefront is

eθ,ϕ = (sin θ cos ϕ, sin θ sin ϕ, cos θ). (46)

The position vector of an element will be noted u3 = (u, v, 0),
and β(r, u3) = arccos(z/�r − u3�) is the polar angle under
which r is seen from the receiver at u3. On the other hand,
the Lu formalism extends to 3-D quite directly, one needs to

Fig. 10. Geometry and notations used in 3-D imaging with a matrix array.
eθ,ϕ is the unit vector normal to the incident wavefront, where θ is the polar
angle and ϕ the azymut.

generalize the ERM concept in 3-D for the Stolt method to be
applicable.

A. Stolt Migration for 3-D Imaging

Following the same approach as in 2-D imaging, we derive
here the ERM for the 3-D Stolt migration. The relationship
between the sound velocities is still noted ĉ = αc and the
spatial transformation is given by r̂ = rT, with

T =
⎛

⎝

1 0 0
0 1 0
γ δ β

⎞

⎠. (47)

Note that since the orientation of the x and y axis is arbitrary
in the plane {z = 0}, α and β are independent of ϕ. The
theoretical arrival time of a wave backscattered by a pointlike
reflector at r = (x, y, z) and received at u3 = (u, v, 0) is

τr(u, v) = 1

c
((r − u3).eθ,ϕ + �r − u3�). (48)

The corresponding arrival time in the virtual medium is

τ̂r(u, v) = 1

ĉ
�r̂ − u3�. (49)

As r̂ = rT, the arrival time difference can be expressed as a
function of the coordinates r in the physical medium, that is,

Wr(u, v) = 1

c
[(r − u3).eθ,ϕ + �r − u3�] − 1

ĉ
�(r − u3)T�.

(50)

Because the backscattered acoustic energy is concentrated
around the apex of the diffraction hyperboloid, ĉ and T must
be such that the Taylor expansion of Wr(u, v) is zero at
the highest order possible around (u, v) = (x, y), regarding
Wr(u, v) as a function of two variables. To do so, we first
start by canceling the terms of orders 0 and 1, which writes

⎧

⎪⎨

⎪⎩

Wr(x, y) = 0

∂u Wr(x, y) = 0

∂v Wr(x, y) = 0.

(51)

Equation (51) imposes the following values of β, γ , and δ in
function of α:

⎧

⎪⎨

⎪⎩

β = α(1 + cos θ)
√

1 − α2 sin θ2

γ = α2(1 + cos θ) sin θ cos ϕ

δ = α2(1 + cos θ) sin θ sin ϕ.

(52)



782 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 66, NO. 4, APRIL 2019

The second-order Taylor expansion of Wr(u, v) around
(u, v) = (x, y) now only features order 2 terms and can be
written using the Hessian d2Wr(x, y) as

Wr(u, v) ∼ 1

2
(u − x, v − y)d2Wr(x, y)(u − x, v − y)t. (53)

Since α does not depend on ϕ, we can now consider ϕ = 0,
and the Hessian takes the diagonal form
⎡

⎢
⎢
⎣

α2(1 + cos θ) − 1

cz(1 + cos θ)α2 0

0
α2(1 + cos θ + sin2 θ) − 1

cz(1 + cos θ)α2

⎤

⎥
⎥
⎦

=
[

μ1 0
0 μ2

]

(54)

where μ2 − μ1 is independent of α. Then, minimizing
|Wr(u, v)| is equivalent to minimizing max(|μ1|, |μ2|). To do
so, α must be chosen so that μ2 = −μ1, giving

|Wr(u, v)| ∼
u→x
v→y

sin2 θ

4cz(1 + cos θ)
�(x − u, y − v)�2. (55)

In the general case where ϕ �= 0, the coefficients of the ERM
solving (52) and (55) are thus

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α = 1
√

1 + cos θ + 1
2 sin2 θ

β = 2

√

1 + cos θ − 1
2 sin2 θ

3 − cos θ

γ = 2 sin θ cos ϕ

3 − cos θ

δ = 2 sin θ sin ϕ

3 − cos θ
.

(56)

It can be observed that α and β remain unchanged compared
to the 2-D case when θ = 0. Now that the virtual medium is
fully defined with ĉ and T, the Stolt method can be performed
similar to the 2-D case. The reflector distribution Ĝ in the
virtual medium is given by

Ĝ(kx , ky, kz) = ĉkz
√

k2
x + k2

y + k2
z

S(kx , kyω) (57)

where ω satisfies the 3-D dispersion equation

ω = ĉ sign(kz)
√

k2
x + k2

y + k2
z . (58)

Finally, to get back in the physical medium, one only has to
calculate ĝ(x + γ z, y + δz, z) from the inverse total Fourier
transform of (57).

From the implementation point of view, the Stolt mapping
requires a trilinear interpolation that involves 28 additions and
multiplications. Still by the symmetry of the Fourier spectrum,
the interpolation is applied to half of the signal spectrum. For
time-domain PWI, the linear interpolation of the signals is
unchanged as far as the number of operations is concerned.
Therefore, assuming Nx , Ny 	 N , the ratio of the algorithmic
complexities between the PWI algorithm and the Stolt method
writes

CP

CS
≈ 4N

28 + log2(Nz)
. (59)

For example, if the number of voxels in the z-direction
satisfies log2(Nz) ≈ 10, and N = 256, the above ratio is
close to 27.

B. Lu Method for 3-D Imaging

In order to derive the imaging equation of Lu, the forward
model in (6) is extended to 3-D. In this case, the 3-D free
space Green’s function of the Helmholtz equation is used for
the propagation of spherical waves back to the array

S(u, v, ω)= A(ω)

∫∫∫

e−ikθ,ϕ .rg(r)
e−ik�r−u3�

�r − u3� dxdydz. (60)

Once again, the Weyl identity allows rewriting the Green
function as a sum of plane waves, that is,

e−ik�r−u3�

�r − u3� =
∫∫

eiK·(u3−r)
√

k2 − k2
u − k2

v

dkudkv (61)

with

K = (

ku, kv ,
√

k2 − k2
u − k2

v

)

. (62)

Next, following the same play on Fourier transforms as in the
2-D case, one gets

G(kx , ky, kz) =
√

k2 − k2
u − k2

v

A(ω)
S(ku, kv , ω) (63)

with
⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ku = kx − k sin θ cos ϕ

kv = ky − k sin θ sin ϕ

k = k2
x + k2

y + k2
z

2kx cos ϕ sin θ + 2ky sin ϕ sin θ + 2kz cos θ
.

(64)

As for the Stolt method in 3-D, assuming Nx Ny 	 N ,
the ratio between the algorithmic complexities of PWI and
the Lu method writes

CP

CL
≈ 4N

28 + log2(Nx Ny Nz )
Q

. (65)

For Q ≥ 20 and N = 256, this ratio is close to 36.

C. Results in 3-D Imaging With Immersion Matrix Arrays

In this section, we present results in 3-D imaging with
immersion matrix arrays. In the first application, a lattice
of spherical inclusions in a steel block is imaged by post-
processing signals simulated with the CIVA software. All
inclusions are below the matrix array aperture where the Stolt
method remains valid and can then be compared with time-
domain PWI and the Lu method. In the second application,
images are performed with experimental data and the goal is to
image simultaneously several crack-type defects with different
orientations in a Dural specimen. All the defects are outside
of the matrix aperture, and this experiment demonstrates the
ability of the Lu method to produce very large volumes with
low computations times.
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Fig. 11. Geometry of the lattice of inclusions. (a) Side view. (b) Bottom
view.

Fig. 12. Isosurface representations of the reconstructed volumes. (a) PWI.
(b) Stolt. (c) Lu.

1) Imaging of Inclusions in a Volume of Base Area D × D:
To assess the performances of f-k domain methods in 3-D,
we first studied a simulation case. As shown in Fig. 11, a fer-
ritic steel block featuring a 3-D lattice of spherical inclusions
is insonified by a 16 × 16 element matrix array immersed in
water and positioned at 10 mm from the water/steel interface.
The thickness of the specimen is 12 mm and longitudinal
waves propagate with the phase velocity c = 5.9 mm · μs−1.
The 2-D array operates around 5 MHz, and the pitch is
identical in the x- and z-directions, i.e., d = 0.6 mm. The
27 inclusions are arranged in a 3-D lattice of period 4d in the
three directions, and their diameter is d . The distance between
the array and the horizontal plane of the 9 topmost inclusions
is z = 14 mm, and z = 18.8 mm for the deepest ones. The RF
signals were simulated in the CIVA software with 25 incident
plane waves. They propagate inside the block according to the
directions defined by the following polar and azimuthal angles
(in degrees)

(θk, ϕl) =
{

(0, 0), if k = 0

(10k, 45l), otherwise
(66)

with k ∈ {0, . . . , 3} and l ∈ {0, . . . , 7}.
Time-domain PWI and both f-k migration methods were

implemented in MATLAB, and the codes were run with the
same computer as in the 2-D case. The 3-D images are
displayed in Fig. 12 in the form of isosurfaces, each one
corresponding to a percentage of the maximum amplitude
in the whole volume. This percentage is 40% for the PWI
image, and 30% for the Solt and Lu images. The base area
of the each volume is D × D with D = 16d , and the number
of voxels is Nx × Ny × Nz = 100 × 100 × 490. For the
three images, the deepest inclusions at z = 18.8 mm appear
smaller due to the amplitude decrease in depth, which can be
corrected in practice with a time compensation gain. As in 2-D
imaging, a greater amplitude damping with respect to the

distance z is observed for the images computed in the Fourier
domain. Similar to Section III, this can be interpreted by
means of asymptotic expansions of the 3-D imaging equations,
the calculation of which is detailed in Appendix B. For
PWI, if we write K (r, u, v, ω) = S(u, v, ω)eik(r.eθ,ϕ +�u3−r�),
the spectrum of the delayed signal received by an element
of coordinates u3 = (u, v, 0), the image amplitude at r =
(x, y, z) for a single plane is given by

gP(r) =
∫

R3
K (r, u, v, ω)dudvdω. (67)

Under the assumption that z 	 λ for all frequencies in the
transducer bandwidth, it is demonstrated in Appendix B that
the imaging equations of Stolt and Lu can be rewritten in the
following forms:

gL(r)

2π
√

i
≈
∫

R3

k2 cos2 β(r, u3)

�r − u3� K (r, u, v, ω)dudvdω (68)

gS(r)

2π
√

i
≈
∫

R3

k̂ cos β(r̂, u3)

�r̂ − u3� eiωWr(u,v)K (r, u, v, ω)dudvdω

(69)

where Wr(u, v) is the arrival-time error defined in (50). In
3-D, the weighting functions of f-k methods feature �r − u3�
and �r̂ − u3� at the denominator instead of �r − u2�1/2 and
�r̂ − u2�1/2 in 2-D, which means that the image amplitude
decreases more rapidly with respect to the distance from the
array when the Stolt and Lu images are calculated in 3-D.
In other terms, the amplitude differences between PWI and
the f-k methods are always more significant in 3-D compared
to those found in 2-D.

As for the spatial resolution, the difference between the PWI
image and those calculated in the Fourier domain lies in the
weighting coefficients k2 and k, respectively, in (68) and (69),
that filter the low-frequency content of the RF signals. The
comparison of these coefficients with those highlighted in 2-D
imaging [see (40) and (41)] shows that the f-k methods
provide a better spatial resolution when they are implemented
in 3-D, but this is generally counterbalanced by the smaller
apertures of the matrix arrays compared to the linear probes.
The second observation is that the Lu f-k migration is the
best of the three methods in terms of spatial resolution since
k2 is a second-order high-pass filter (against a first-order
filter for Stolt and no filter for PWI), which is confirmed
by the xy cross sections in Fig. 13 displayed at different
depths. For the Lu image, the spatial resolution is almost
constant according to z, while it is more difficult to separate
the echoes of the deepest inclusions with the Stolt method,
and especially with time-domain PWI. In order to quantify
the resolution improvement, Table II showcases the widths at
−6 dB of the echoes located along the vertical central axis of
the array. A1, A2, and A3 denote the corresponding inclusions
respectively located at z1 = 14 mm (A1), z2 = 16.4 mm (A2),
and z3 = 18.8 mm (A3). For instance, for the deepest inclusion
A3, the Lu f-k migration improves the spatial resolution of
nearly 17% compared to PWI, which is not negligible in 3-D
imaging to compensate the loss of resolution due to the limited
apertures of the matrix arrays.
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TABLE II

WIDTHS AT −6 dB OF THE ECHOES OF THE CENTRAL INLCUSIONS AT
z1 = 14 mm ( A1), z2 = 16.4 mm ( A2), AND z3 = 18.8 mm ( A3)

Fig. 13. xy cross sections of the 3-D images at z1 = 14 mm, z2 = 16.4 mm,
and z3 = 18.8 mm. (a) PWI. (b) Stolt. (c) Lu.

Finally, regarding the computational performances in
MATLAB, the reconstruction times and the algorithmic com-
plexities are reported in Fig. 14. For a volume comprising
100×100×490 voxels, the reconstruction times with 25 plane
planes are 129.6 s for Lu, 136.8 s for Stolt, and 1h18 for PWI.
Thus, in addition to providing images of better quality when
noise is negligible, the f-k methods reduce the computation
times by factors of 36 and 34. The gain for the Lu method
coincides with the theoretical gain. For the Stolt migration,
the reconstruction time seems to not be affected by the extra
inverse FFT along the z-direction, which may explain why
the computation times for both f-k methods are closer than
expected.

The superiority of the Stolt method over PWI has to be
tempered because it gives excellent results provided that all
the reflectors are located under the matrix array. In the sequel,
we are interested in the detection of crack-like defects that are
beyond the aperture, requiring the formation of very wide 3-D
images. As the Stolt method fails in such a situation, we will
only compare the performances of time-domain PWI and the
Lu method.

2) Imaging of Notches in a Volume of Base Area 5D ×5D:
In this second NDT application involving a matrix array
immersed in water, time-domain PWI and the Lu migration are

Fig. 14. (a) Algorithmic complexities and (b) computation times plotted
according to the number of voxels.

Fig. 15. Top view describing the experimental setup with an undersam-
pled 16 × 16-element array and three breaking notches outside the array
aperture.

applied to experimental data to form extended 3-D images with
a base area 5D×5D, where D× D is the matrix aperture. The
sample is a Dural block (cL = 6.3 mm · μs−1) featuring three
identical backwall-breaking notches with a height of 5 mm
and a length of 25 mm. As indicated in Fig. 15, the vertical
notches have different skew orientations with respect to the
z-axis; they are contained in three vertical planes describing
an equilateral triangle. The experiment was carried out with
a matrix array of 16 × 16 elements that operates around the
central frequency fc = 5 MHz (probe designed and distributed
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by Imasonic, Voray-sur-L’Ognon, France). The array pitch
is d = 1.1 mm in the x- and y-directions, and the active
surface of the square elements is 1 mm2. Signals were recorded
with a multichannel MultiX++ system (M2M, Les Ulis,
France). The water column height was set to 18 mm, and
27 steered planes waves with angles (in degrees)

{

θ ∈ {35, 38, 45}
ϕ ∈ {−70,−60,−50, 50, 60, 70, 170, 180, 190} (70)

were transmitted to insonify the notches, as well as a horizon-
tal plane wave to image the backwall. In order to avoid the
presence of saturated signals related to the strong backwall
echo, the preamplification gain was reduced by 20 dB for
the horizontal plane wave compared to those transmitted at
oblique incidence. Note that according to the spatial Nyquist
criterion, d must satisfy the inequality

d ≤ λ

2
= 0.63 mm (71)

where λ = c/ fc. This inequality is not verified here since
d = 0.873λ. This causes imaging artifacts around the notches
due to secondary grating lobes that propagate toward the
backwall when the defects are insonified with steered plane
waves. In order to overcome the undersampling of the probe,
zero traces were inserted in between real traces, which is
equivalent to considering an array of 32 × 32 elements with a
pitch of d/2 where only 256 elements are active in transmit
and receive modes [34]. This procedure is not useful for time-
domain PWI because inserting zero traces is equivalent to
summing zero amplitudes. Due to the large size of arrays to
be handled in the Lu method, both codes were run on an Intel
Xeon 3.40-GHz CPU and 32 GB of RAM. The dimensions
of the reconstructed zone are 87.5 × 87.5 × 10 mm3, and
the number of voxels is 200 × 200 × 630 = 2.52 × 107.
The compounded image of Lu was computed in 12 min and the
reconstruction with PWI took 38 times longer, in agreement
with the theoretical value 36 found in Section V-B.

In addition to reducing the computations times, the iso-
surface representations in Fig. 16 show that the Lu method
gives an image quality equivalent to that provided by PWI.
For both volumes, the same amplitude threshold correspond-
ing to 40% of the maximum amplitude was used, and the
presence of the strong backwall echo does not mask the
defect echoes since the preamplification gain was lowered to
record the signals associated with the horizontal plane wave.
The 2-D representations in Fig. 17 are known in NDT as
xy-echodynamic views and correspond to the projections of
the maximum amplitude along the z-direction onto the xy
plane. More clearly than the isosurface representations, they
show that the 3-D imaging algorithms are able to characterize
the orientations of several cracklike defects distributed in a
large volume with an excellent contrast. It is to be noticed
that the length of the echoes measured at −6 dB is roughly
half the real length of the notches, i.e., 25 mm. This is due
to the dimensions of the matrix array (17.6 × 17.6 mm2) that
are not large enough to fully image such long notches. For
a better characterization of the defects, it would be necessary
to perform reconstructions with a matrix of 32 × 32 elements,

Fig. 16. Experimental 3-D images represented in the form of isosurfaces.
(a) PWI and (b) Lu images.

Fig. 17. Two-dimensional images in the xy plane corresponding to the
maximum amplitude along the z-direction. (a) Lu and (b) PWI images.

which could be better managed with the method of Lu in terms
of computation times.

VI. CONCLUSION

In this paper, we first recalled the imaging methods of Lu
and Stolt for plane-wave emissions with contact arrays in 2-D.
We gave a detailed rundown of the algorithms, leading to
the derivation of the algorithmic complexities. In this simple
case, it was shown that the Lu and Stolt methods were
expected to operate N/3 and 2N/11 times faster than PWI,
respectively, where N is the number of elements of the array.
Then, the 2-D algorithms were extended to deal with plane
water/steel interfaces using similar wavefield extrapolation
schemes, the computational cost of which being negligible
compared to the remaining operations needed to form an
image. This was confirmed by an analysis of the algorithm run-
times, which showed that the numerical gains were close, yet
slightly higher, than the complexity gains. More specifically,
the proposed MATLAB implementation of the Lu method
operated up to 24 times faster than PWI with a 64-element
array. A theoretical study of the image amplitudes then lead
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us to predict the graphic performances of the algorithms. These
previsions were confirmed by comparing images of side-drilled
hole pairs in an area three times as wide as the array aperture.
We showed that the Lu method improves the lateral resolution
and that it is equivalent to applying a space–frequency filter
in the PWI algorithm. Applying this filter to PWI could, thus,
improve the image resolution, but it would be at the cost
of computation efficiency, since signals would need to be
Fourier transformed before being summed. More importantly,
we exhibited a limit of the Stolt migration. Due to significant
propagation time errors intrinsic to the definition of the ERM,
the Stolt method is not fit to image defects beyond the array
aperture. PWI and the methods of Stolt and Lu were then
generalized to 3-D imaging with matrix arrays immersed in
water. Carrying out a similar analysis as in the 2-D case,
we proved that the Stolt and Lu methods were expected to be
27 and 36 times faster than PWI in 3-D with a matrix array
of 16 × 16 elements. A first series of results obtained from
simulated echoes aimed at comparing the performances of
the imaging methods when pointlike defects are located under
the matrix array aperture. It was shown in this configuration
that the Stolt and Lu methods were asymptotically 34 and
36 times faster than PWI, respectively. Then, experiments
were carried out with a specimen featuring several cracklike
defects in a large volume, the base area of which is 25 times
larger than the matrix array surface. The 3-D images calculated
with PWI and the Lu method are almost identical (the Stolt
method is invalid because defects must be detected at high
angles), but the second one offers the advantage of reducing
the computation times by a factor of 38, as predicted.

The computational study dwelled on the number of oper-
ations and algorithmic complexities. However, the amount of
memory space required to operate the methods also has to
be taken into account. It turns out that f-k migrations are
less memory-efficient than PWI since they operate on large
arrays of numbers for the interpolation and FFT steps. When
running these algorithms on a system with insufficient RAM,
the memory may get saturated, in which case the whole
reconstruction significantly slows down.

The computation times stated in this paper in 3-D imaging
are still far from real time. Parallelization seems to be a reason-
able way to further accelerate image reconstruction. Delay and
sum methods, such as PWI, would be trivially parallelizable,
by assigning a processor to each element for instance. Even if
such a simple parallelization would not suit a Fourier method
implementation, the FFT is parallelizable on multiple graphics
processing units [36], [37] and the interpolation step can be
parallelized by segmenting the kx − ky − kz spectrum into
subdomains. The parallelization of f − k methods will be
investigated in the near future.

Finally, what comes out of the comparison between Fourier
domain algorithms and time-domain PWI is that f-k methods
are especially performant under the array, in which case the
lateral resolution is improved and the reconstruction times
tremendously reduced. Future works will involve imaging with
half-skip modes to improve the sizing of crack-like defects,
such as in TFM or PWI [8], and additional experimental
studies of the f-k methods in the presence of strong noise.

APPENDIX A
DERIVATION OF THE ASYMPTOTIC IMAGE

AMPLITUDES FOR 2-D f-k METHODS

In the proof that follows, the three imaging equations
from Section II are rewritten in the form of integrals over
the receivers and frequencies. The aim is to emphasize the
relationships between the image amplitudes for a single plane
wave. Using (9), the image amplitude for the Lu method at a
point r = (x, z) can be written as

gL(r) =
∫∫∫ √

k2 − k2
xdudkxdω

×S(u, ω)ei
(

k cos θ+√
k2−k2

x

)

z+ikx (x−u)+ikx sin θ (72)

and the image obtained with time-domain PWI can be written
in the frequency domain as well

gP(r) =
∫∫

S(u, ω)eik(z cos θ+x sin θ+
√

(x−u)2+z2)dudω. (73)

To compare these two equations, we need to calculate

I (u, ω) =
∫ √

k2 − k2
x

×ei
(

k cos θ+√
k2−k2

x

)

z+ikx (x−u)+ikx sin θdkx . (74)

Integrals of the form

Jα =
∫

f (s)eiαh(s)ds (75)

where f (s) and h(s) are functions of a single variable s and
α → ∞ can be expressed using the method of stationary phase
through the asymptotic formula [35]

Jα ∼
√

2π

α|h(s0)| f (s0)e
iαh(s0)+iμ π

4 (76)

where s0 is a stationary point of h(s), i.e., satisfying
h(s0) = 0, and μ = sign(h(s0)). Here, we let α = kz
because z 	 λ for points sufficiently far away from the array
located at z = 0. Moreover, with the notation �x = x −u and
R = (�x2 + z2)1/2, (80) can be rearranged in the form

I (u, ω) =
∫

e
ikz

[(

cos θ+
√

1−
(

kx
k

)2
)

+ kx �x+kx sin θ
kz

]

dkx . (77)

Comparing (77) with (75), we get α = kz, f (kx) =
(k2 − k2

x)
1/2 and define

h(kx) = cos θ +
√

1 −
(

kx

k

)2

+ kx�x + kx sin θ

kz
. (78)

The stationary frequency kx0 of h is

kx0 = k�x

R
. (79)

Provided kz 	 1, (75) can be applied to I (u, ω), yielding

I (u, ω) ≈
√

2iπkz2

R5/2
eik(x sin θ+z cos θ+

√
(x−u)2+z2). (80)
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Noting K (r, u, ω) = S(u, ω)eik(z cos θ+x sin θ+(x−u)2+z21/2
),

we obtain the following amplitudes for the PWI image and
for that calculated with the Lu migration, respectively,

gP(r) =
∫∫

K (r, u, ω)dudω (81)

and

gL(r) ≈
∫∫ √

2iπk3/2z2

�r − u2�5/2
K (r, u, ω)dudω. (82)

Proceeding similarly with the Stolt method, i.e., starting from
(18), the distribution of reflectors in an ER medium of celerity
ĉ can be written as

ĝS(r) ∼
∫∫

√

2iπ k̂z

�r − u2�3/2 Ŝ(u, ω)eik̂�r−u2�dudω (83)

where Ŝ(u, ω) is the wavefield at z = 0 generated by the
explosion. Using the fact that Ŝ(u, ω) = S(u, ω)eiku sin θ and

gS(r) = ĝS(r̂) (84)

we obtain

gS(r) ∼
∫∫

√

2iπ k̂ẑ

�r̂ − u2�3/2 S(u, ω)eik̂�r̂−u2�+iku sin θdudω. (85)

Now, according to the theory in Section II-C2, α, β, and δ are
such that

�r̂ − u2�
ĉ

= (x − u) sin θ+z cos θ+�r − u2�
c

+Wr(u). (86)

Finally, with the notations introduced earlier

gS(r) ∼
∫∫

√

2iπ k̂ ẑ

�r̂ − u2�3/2 eiωWr(u)K (u, ω)dudω. (87)

Note that Wr(u) is only equal to 0 when u = x , therefore,
arrival time errors in the ERM affect every pixel of the image,
especially for pixels located away from the array aperture.

APPENDIX B
DERIVATION OF THE ASYMPTOTIC IMAGE

AMPLITUDES FOR 3-D f-k METHODS

Using (69), the amplitude gL(r) of the Lu image at a point
r is given by

gL(r) =
∫∫∫

I (u, v, ω)S(u, v, ω)dudvdω. (88)

Proceeding as above in the 2-D case, we define

I (u, v, ω)

=
∫∫ √

k2 − k2
x − k2

ye
i
(

k cos θ+
√

k2−k2
x −k2

y

)

z

×ei(kx (x−u)+kx sin θ cos φ)+i(ky (y−v)+ky sin θ sin φ)dkudkv . (89)

Integrals of the form

Jα =
∫

f (s, t)eiαh(s,t)dsdt (90)

where f (s, t) and h(s, t) are function of 2 variables and α →
∞ can be expressed using the method of stationary phase
through the asymptotic formula [38], that is,

Jα ∼ 2π

α
√

det|H (s0, t0)| f (s0, t0)e
iαh(s0,t0)+iμ π

4 (91)

where (s0, t0) is a stationary point of h(s, t), i.e., satisfying
∇h(s0, t0) = 0 and H is the Hessian matrix of h. We thus
define f (ku, kv ) = (k2 − k2

x − k2
y)

1/2 and

h(ku, kv ) = cos θ +
√

1 −
(

kx

k

)2

−
(

ky

k

)2

+kx(x − u) + kx sin θ cos ϕ

kz

+ky(y − v) + ky sin θ sin ϕ

kz
(92)

and apply (91) to I (u, v, ω), yielding

gL(r) ≈
∫∫∫

2
√

iπk2z2

�r − u3�3 K (r, u, v, ω)dudvdω. (93)

In a similar fashion, we derive

gS(r) ≈
∫∫∫

2
√

iπ k̂ ẑ

�r̂ − u3�2 eiωWr(u,v)K (r, u, v, ω)dudvdω.

(94)
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