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François Bruno, J�erôme Laurent, Paul Jehanno, Daniel Royer, and Claire Pradaa)

Institut Langevin, ESPCI Paris, CNRS (UMR 7587), PSL Research University, 75005 Paris, France

(Received 17 June 2016; revised 15 September 2016; accepted 5 October 2016; published online
20 October 2016)

Optimization of Lamb modes induced by laser can be achieved by adjusting the spatial source dis-

tribution to the mode wavelength (k). The excitability of Zero-Group Velocity (ZGV) resonances in

isotropic plates is investigated both theoretically and experimentally for axially symmetric sources.

Optimal parameters and amplitude gains are derived analytically for spot and annular sources of

either Gaussian or rectangular energy profiles. For a Gaussian spot source, the optimal radius is

found to be kZGV/p. Annular sources increase the amplitude by at least a factor of 3 compared to

the optimal Gaussian source. Rectangular energy profiles provide higher gain than Gaussian ones.

These predictions are confirmed by semi-analytical simulation of the thermoelastic generation of

Lamb waves, including the effect of material attenuation. Experimentally, Gaussian ring sources of

controlled width and radius are produced with an axicon-lens system. Measured optimal geometric

parameters obtained for Gaussian and annular beams are in good agreement with theoretical predic-

tions. A ZGV resonance amplification factor of 2.1 is obtained with the Gaussian ring. Such source

should facilitate the inspection of highly attenuating plates made of low ablation threshold materials

like composites. VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4965291]

[MRH] Pages: 2829–2838

I. INTRODUCTION

Ultrasonic techniques are widespread for the characteri-

zation of mechanical properties of materials. Guided Lamb

modes are often used to determine the elastic properties of

plate-like structures. It is well known that for some Lamb

modes, the group velocity vanishes at finite wavelength.1 It

was demonstrated that these specific Zero-Group Velocity

(ZGV) modes are very well generated and detected in metal-

lic plates by laser-based ultrasonic techniques.2–4 The energy

deposited by either continuous laser source2 or pulsed laser

impact3 remains trapped under the source, resulting in local

and narrow ZGV resonances. The frequencies of these reso-

nances depend on plate thickness and bulk acoustic wave

velocities in such a way that broadband and local measure-

ments of ZGV resonances in an isotropic material provide

Poisson’s ratio.4 ZGV modes also exist in multi-layered

plates where they are useful to characterize the bonding

between the layers.5–7 For these various applications, it is

important to optimize the laser source geometry in order to

increase the ZGV mode amplitude and obtain high signal-to-

noise ratio. In general, the Lamb mode amplitude increases

with the total amount of deposited energy. However, for

most applications, ultrasonic generation has to remain non-

destructive. This constraint limits the deposited energy den-

sity to the ablation threshold, which is, for example, about

10 MW/cm2 in Duralumin.

Different solutions have been considered to overcome

this limitation. Several studies proposed to used multiple

laser sources synchronized with appropriate time delays to

mimic phased array systems and to focus bulk waves.8,9

However, these systems are cumbersome and expensive.

With a single thermoelastic source, it is necessary to shape

the laser beam in order to generate a particular guided mode.

In the past, surface acoustic waves (SAWs) have been

efficiently generated by using laser interference patterns10 or

splitting a laser beam into regularly spaced line sources with

an optical diffraction grating.11 Recently, Grunsteildl et al.
used an intensity modulated laser combined with spatial light

modulator (SLM) to adjust the excitation both spatially and

temporally. With the laser intensity being spread on parallel,

equidistant lines, this technique allows an efficient and selec-

tive generation of a specific mode with low peak power den-

sities on the sample.12

A solution to enhance SAW amplitude at a particular

point is to use an annular beam. This was achieved by Cielo

et al. with an axicon-lens system.13 A pulsed laser beam was

focused to a sharp ring on an aluminium sample to generate

a convergent Rayleigh wave. The wave amplitude at the cen-

ter of convergence was increased by a factor of 20 with

respect to a line-source produced wave with equal surface

heating. Focused bulk ultrasonic waves generated by ring-

shaped laser beam were also applied to flaw detection.14

This solution was explored on thick samples and the mea-

surement of Rayleigh and bulk acoustic waves were com-

pared to numerical results obtained by thermoelastic finite

element modeling.15 Recently, ring laser sources were also

obtained with a SLM.16

Optimization of the laser source to enhance ZGV Lamb

modes was first discussed by Balogun et al. in a study of the

generation of the S1S2-ZGV resonance by an amplitude mod-

ulated laser source.17 Using a semi-analytical model,18 the

S1S2-ZGV resonance amplitude was calculated as a function

of the radius w of the Gaussian beam: f ðrÞ ¼ exp ð�r2=w2Þ.a)Electronic mail: claire.prada-julia@espci.fr
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They showed numerically that, for an aluminium plate, the

optimal radius is about 1.3 times the plate thickness and

about 0.3 times the mode’s wavelength kS1S2
. This question

was then addressed by Gr€unsteidl et al. experimentally and

numerically using a time domain finite difference tech-

nique.19 They found, for tungsten, an optimal radius between

1.0 and 1.1 times the plate thickness.

In the present work, the generations of ZGV modes

using different axi-symmetric beam profiles are studied. A

theoretical analysis is proposed to find the optimal parame-

ters of different source shapes. Then, experiments achieved

for Gaussian and annular sources are presented. Quasi-

Gaussian annular beams of controlled width and diameter

are shaped with an axicon-lens system. Unlike previous stud-

ies using thin rings of radii that are large compared to SAW

wavelength,13,14 thick rings with radii on the order of ZGV

mode wavelength are produced.

In Sec. II, the model of thermoelastic generation in a

plate with an axi-symmetric source is recalled. In Sec. III,

the theoretical approach allows us to establish an analytical

formulation of the optimal width and radii versus the mode

wavelength for a Gaussian source, an annular beam of

Gaussian profile, a top-hat beam, and an annular beam of

square profile. The semi-analytical simulation developed by

Balogun et al.17 was adapted to the different source shapes

and used to calculate the displacement amplitudes at ZGV

resonance frequencies as a function of the source geometric

parameters. Numerical results are then compared with the

analytical ones. Finally, in Sec. IV, experimental measure-

ments achieved on a 1-mm thick Duralumin plate are

described and compared with theoretical results. The genera-

tion of S1S2-ZGV Lamb mode is optimized by adjusting the

axicon-lens system.

II. LAMB MODE GENERATION WITH
AN AXI-SYMMETRIC THERMOELASTIC SOURCE

In order to calculate the amplitude of ZGV resonances

excited by an axi-symmetric laser source, we use the semi-

analytical model introduced in Ref. 18 to describe thermo-

elastic conversion and the coupling with Lamb modes as in

Balogun et al.17 It is assumed that the temperature field is

independent of the elastic field. Thus, the heat equation is

solved and the temperature field is considered as a source

term in the elastodynamic equations. Assuming that the opti-

cal penetration depth c is smaller than the plate thickness 2h,

the absorbed power density Pa for a laser source at the sur-

face z¼�h can be written in cylindrical coordinates (r,z),

Pa r; z; tð Þ ¼ Etotf rð Þ e� zþhð Þ=c½ �
c

 !
g tð Þ; (1)

where Etot is the total energy absorbed by the plate, f(r) is

the spatial distribution of the laser intensity normalized to

unity: 2p
Ð1

0
f ðrÞr dr ¼ 1, and g(t) is the normalized laser

pulse profile:
Ð1

0
gðtÞ dt ¼ 1. Then the spatial energy density

distribution on the plate surface is EðrÞ ¼ Etotf ðrÞ. In prac-

tice, in order to avoid ablation phenomena the maximum sur-

face energy density, equal to

I ¼ Etot maxðf ðrÞÞ; (2)

is limited by the ablation threshold of the material Ia.
The temperature rise is linked to the absorbed power

density through the heat equation

r2T � 1

j
@T

@t
¼ �Pa

K
;

where K is the thermal conductivity, j¼K/qC is the thermal

diffusivity, q is the material density, and C is the specific

heat. As the problem is axi-symmetric, it can be solved using

the Fourier–Hankel transforms of the power density

Pa
H0ðk; z;xÞ and the temperature rise �T

H0ðk; z;xÞ, where k
is the wave number and x is the angular frequency. This

transformation leads to the following differential equation:

@2 �T
H0

@z2
� v2 �T

H0 ¼ �
�P

H0

a

K
; with v2 ¼ k2 þ i

x
j
; (3)

where

�P
H0

a k; z;xð Þ ¼ e� zþhð Þ=c½ �
c

 !
EH0 kð Þ�g xð Þ: (4)

Considering that in our experiments the laser pulse is very

short (a few nanoseconds) compared with the period of the

studied Lamb modes, we omit the function �gðxÞ in the fol-

lowing. The term EH0ðkÞ expð�h=cÞ is factorized in Eq. (3)

so that the solution can be expressed as

�TH0
¼ T1evzþ T2e�vz� c

1� c2v2

� �
e�z=c

� �
EH0 kð Þ e

�h=c

K
:

(5)

The constants T1 and T2 are determined from boundary con-

ditions. Neglecting heat diffusion into the air, the absence of

any thermal flux on each plate surface z¼6h implies

@T

@z

����
z¼6h

¼ 0() @ �T
H0

@z

����
z¼6h

¼ 0: (6)

Inserting Eq. (5) into Eq. (6) provides the expressions of T1

and T2,

T1;2 ¼
1

v 1� c2v2ð Þ
e� 1=c7vð Þh � e 1=c7vð Þh

e2vh � e�2vh

� �
: (7)

The temperature field is then considered as a source term in

the elastic wave equation. The displacement field u is

derived from scalar / and vector W potentials using

Helmoltz decomposition. As the problem is cylindrical sym-

metric, the potentials / and W¼ (0,0,w) can be used to write

u ¼ r/þr�r�W: (8)

This comes from the fact that in cylindrical coordinates

(r,h,z), the rotational is r�W ¼ ð0;�@w=@r; 0Þ. Then, the
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wave equation results in two uncoupled equations for scalar

and vector potentials

kþ 2lð Þr2/� q
@2/
@t2
¼ aT 3kþ 2lð ÞT;

lr2w� q
@2w
@t2
¼ 0;

8>>><
>>>:

(9)

where k and l are the Lam�e constants, and aT is the coeffi-

cient of linear thermal expansion. Introducing g
¼ aTð3kþ 2lÞ=ðkþ 2lÞ and the bulk elastic velocities cL

and cT, the following system is obtained by Fourier–Hankel

transform

@2 �/
H0

@z2
� p2 �/

H0 ¼ g �T
H0 with p2 ¼ k2 � x2

c2
L

;

@2 �w
H0

@z2
� q2 �w

H0 ¼ 0 with q2 ¼ k2 � x2

c2
T

:

8>>>><
>>>>:

(10)

The potentials �/
H0

and �w
H0

are the sum of a particular solu-

tion and a solution of the homogeneous equation. They can

be written in the form

�/H0
¼ Aepz þ Be�pz þ 1

v2 � p2

� �
T1evz þ T2e�vzð Þ � c2

1� c2p2

 !
c

1� c2v2

� �
e� z=cð Þ

" #
g
K

EH0 kð Þe� h=cð Þ;

�wH0
¼ Ceqz þDe�qz½ � g

K
EH0 kð Þe� h=cð Þ;

8>>><
>>>:

(11)

where the constants A; B; C, and D are determined from

boundary conditions as explained in the Appendix. For each

mode, the displacement components of �uðk; z;xÞ are simply

expressed as a linear combination of the potentials [Eq.

(A2)]. Consequently, the normal displacement at a given

(x0,k0) is proportional to the Hankel transform of the source

spatial distribution EH0ðk0Þ. In particular, a ZGV mode can

be enhanced by optimization of the source Hankel transform

at spatial frequency k0. Furthermore, as explained in the

Appendix [Eq. (A5)], the mechanical displacement u(r,z,x)

can be calculated numerically by inverse Hankel transform.

III. DERIVATION AND SIMULATION OF THE OPTIMAL
BEAM PARAMETERS

We now consider different source geometries and derive

the optimal parameters for the generation of a Lamb mode.

As previously discussed and demonstrated in the Appendix,

the displacement components can be written as

�uH1
r ¼ UrE

H0ðkÞ;
�uH0

z ¼ UzE
H0ðkÞ;

(
(12)

where the functions Ur and Uz are independent of the source

geometry. Considering a spatial distribution depending on a

parameter a, if the amplitude of the mode at fixed (x,k)

undergoes maximum, then

@EH0

@a

����
k

¼ 0: (13)

Additionally, the maximal surface energy I is supposed to

remain below the ablation threshold Ia.

These two conditions are now applied to different beam

geometries.

A. Optimization of a Gaussian beam

The condition equations (13) and I< Ia are first applied

for a Gaussian source of radius w. The absorbed energy dis-

tribution is written as EðrÞ ¼ I expð�r2=w2Þ. The total

absorbed energy is Etot ¼ pw2I and the resulting Hankel

transform is given by

EH0 kð Þ ¼ Iw2

2
e� w2k2=4ð Þ:

The amplitude of the mode at (x, k) reaches a maximum for

an optimal beam radius equal to

wopt ¼ 2=k ¼ k=p: (14)

This very simple formula shows that the optimal waist only

depends on the mode wavelength, which is proportional to

the plate thickness and function of the elastic parameters.

The wavelength of ZGV modes have been calculated as a

function of the Poisson’s ratio and are displayed in Fig. 1.

For the S1S2-ZGV mode, the wavelength varies from about

three times the plate thickness for hard materials (� � 0) to

four times the plates thickness for usual metals (� � 0.3) and

increases to infinity for the value �¼ 0.451 where the ZGV

point reaches the shear thickness resonance.

To illustrate the result given by Eq. (14), we consider the

case of 1-mm thick Duralumin and fused silica plates. For

Duralumin of bulk velocities cL¼ 6398 m/s and cT¼ 3122 m/s,

the S1S2-ZGV mode wavelength is kS1S2
¼ 3:99 mm, while

for fused silica (cL¼ 5961 m/s, cT¼ 3727 m/s) it is 3.33 mm.

The theoretical optimal waists are then wdural¼ 1.27 mm and

wsilica¼ 1.06 mm. For both plates, the normal surface dis-

placements at the ZGV frequency for r¼ 0 are calculated as

a function of the laser beam radius w (Fig. 2). The maxima

of these curves are in good agreement with theoretical

calculations.
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These results are coherent with the approximation

(w � 0:3kS1S2
) given for an aluminium plate by Balogun

et al.17 Other results were obtained by Gr€unsteidl et al. in a

250 -lm thick tungsten plate19 of Poisson’s ratio �¼ 0.284

and shear velocity cs¼ 2668 m/s. With these parameters, the

wavelength is kS1S2
¼ 3:7� 2h mm, so that the optimal

beam radius to plate thickness ratio is

w

2h
¼ k

2ph
¼ 1:17: (15)

To compare with their simulation D/h � 1.5 and measurement

D/h � 1.4, one has to figure out, despite several inconsisten-

cies in the paper, that D was defined as the beam radius at

1=e2 : D ¼ w
ffiffiffi
2
p

and that h is the plate thickness. With our

notations, these ratio correspond to w=ð2hÞ ¼ 1:06 and 0.99,

respectively, which is in reasonable agreement with Eq. (15).

B. Optimization of an annular beam

We now consider a ring with a Gaussian profile. Such

spatial distribution depends on the radius R and the half-

width w as follows:

EðrÞ ¼ Ie�½ðr�RÞ=w�2 :

In order to derive analytical expressions, E(r) is approxi-

mated by the convolution of a Gaussian function and a circu-

lar Dirac by using the normalized spatial distribution

f rð Þ ¼ 1

pw2
e� r=wð Þ2 1

2pR0

d r � R0ð Þ:

A good approximation of E(r) is obtained when the parame-

ter R0 is given by

R0 ¼ R 1þ w2

4R2

� �

and when the radius is larger than the annular width, i.e., for

R> 2w.

It can be shown that the total absorbed energy is approx-

imatively given by

Etot � 2p3=2wR0I: (16)

The resulting Hankel transform of f(r) is

f H0 kð Þ ¼ 1

2p
e� w2k2=4ð ÞJ0 kR0ð Þ: (17)

This function is separable so that the optimization can be

performed independently on w and R0,

@

@w
Etotf

H0 kð Þ
� 	����

k;R0

¼ 0) w ¼ k= p
ffiffiffi
2
p� 	

;

@

@R0

Etotf
H0 kð Þ

� 	����
k;w

¼ 0) @

@R0

R0J0 kR0ð Þð Þ ¼ 0:

(18)

As R0> 2w, the asymptotic expansion of J0ðkR0Þ valid for

kR0 ¼
ffiffiffi
2
p

R0=w > 1=4 can be used,

R
nð Þ

0 ¼ k
4nþ 1ð Þ

16
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 43

4nþ 1ð Þ2p2

s0
@

1
A; (19)

where n� 1 is the order of the ring. Finally, taking into account

Eq. (18), the previous assumption R
ðnÞ
0 > 2w is always fulfilled

for all orders n. In a 1-mm thick Duralumin plate of Poisson’s

ratio 0.344, the wavelength is kS1S2
¼ 3:99 mm. For the first

ring, n¼ 1, the optimized parameters are w¼ 0.90 mm, and

R0¼ 2.57 mm. The result of simulations, shown (Fig. 3), pro-

vide optimal parameters that are in good agreement with the

theoretical parameters.

The amplitude gain G is defined as the ratio between the

normal displacement �uH0
z obtained with the nth annular

source [Eq. (12)] and that obtained with the optimized

Gaussian beam

G ¼ jEH0

ring=EH0

Gaussianj � ðe=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4nþ 1
p

: (20)

It turns out that the amplification factor expected for the

first-order optimized ring (n¼ 1) is about 3. The use of opti-

mized ring of greater order will raise the amplification factor

proportionally to the square root of the ring order. This is

reasonable as the Bessel function J0ðkrÞ decreases as
ffiffi
r
p

,

while the total of deposited energy increases proportionally

to the ring radius as shown in Eq. (16).

FIG. 2. (Color online) Amplitude of the normal surface displacement as a

function of the radius at 1/e of a Gaussian beam for 1-mm thick Duralumin

(solid line) and fused silica (dashed line) plates. Theoretical optimal radii wdural

¼ 1.27 mm and wSilica¼ 1.06 mm are in good agreement with the curves.

FIG. 1. (Color online) ZGV modes wavelength versus the Poisson’s ratio.
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C. Optimization of a top-hat source and a rectangular
annular source

The profile distribution for a top-hat source and the

resulting Hankel transform are

E rð Þ ¼ P
r

w

� �
I ) EH0 kð Þ ¼ Iw

k
J1 wkð Þ; (21)

where P(r) is the top-hat function defined as

PðrÞ ¼
1 if r � 1;

0 elsewhere:



(22)

The optimal w is such that

dEH0

dw

����
k

¼ w

k
J0 wkð Þ ¼ 0: (23)

It appears that for a rectangular profile, the amplitude max-

ima occur for several radii w,

w nð Þ � k
2

nþ 3

4

� �
; (24)

and the corresponding amplification factors compared to the

optimized Gaussian spot are approximated as

G ¼ jEH0

P =EH0

Gaussianj � ðe=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ ð3=4Þ

p
: (25)

For n¼ 0, this amplification factor is about 1.7. It is remark-

able that, unlike the Gaussian beam, the amplitude maxima

increase with the spot radius.

The intensity profile for a rectangular ring is written

E rð Þ ¼ I P
r

R0 þ w

� �
�P

r

R0 � w

� �� �
:

The associated total energy is Etot ¼ 4pwR0I and the result-

ing Hankel transform of E(r) is equal to

EH0 kð Þ ¼ I

k2
R0 þ wð ÞkJ1 R0 þ wð Þk½ �ð

� R0 � wð ÞkJ1 R0 � wð Þk½ �Þ: (26)

The derivative with respect to w vanishes for

R0 � w ¼ k
2

nþ 3

4

� �
; n 2N�;

R0 þ w ¼ k
2

mþ 3

4

� �
; m > n 2N�:

8>>><
>>>:

TABLE I. Theoretical optimized geometric parameters w and R
ð1Þ
0 , total

absorbed energy normalized to the Gaussian case ( ~E tot), and gain G calcu-

lated for the S1S2-ZGV mode in a 1-mm thick Duralumin plate and different

source shapes.

Source shape w (mm) R
ð1Þ
0 (mm) ~E tot G

Gaussian beam 1.27 — 1 1

Top-hat 1.50 — 1.39 1.66

Gaussian ring 0.90 2.57 5.08 3.27

Rectangular ring 1.00 2.49 6.17 4.21

FIG. 3. (Color online) Amplitude of the normal displacement as a function

of radius R0 and width w of a Gaussian ring in a 1-mm thick Duralumin plate

at constant peak energy. The maximum is reached for w¼ 0.88 mm and

R0¼ 2.57 mm, which is in good agreement with the predicted values.

FIG. 4. (Color online) Displacement amplitude at S1S2-ZGV frequency in a

1-mm thick Duralumin plate for top-hat profile as a function of w, and for

Gaussian and rectangular rings as a function of the radius R0 for a fixed opti-

mal width w. Curves are normalized to the displacement obtained with the

optimal Gaussian beam.

FIG. 5. (Color online) Displacement amplitude for Gaussian ring sources of width

w¼ 0.88 mm as a function of R0 calculated for different damping parameters.
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Consecutive solutions with m¼ nþ 1 lead to

R
nð Þ

0 ¼
k
8

4nþ 1ð Þ; n 2N�;

w ¼ k=4:

8<
: (27)

The amplitude gain obtained with the nth rectangular ring

compared to the optimal Gaussian spot is provided by

G ¼ jEH0

rect ring=EH0

Gaussianj

� e
ffiffiffiffiffiffiffiffi
n=2

p
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3=ð4nÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=ð4nÞ

p
Þ: (28)

For the first-order optimized ring (n¼ 1), the amplification

factor is about 4.2, which is significantly higher than the

Gaussian ring. The optimal parameters, associated with total

deposited energies and the amplitudes for the different

source shapes (n¼ 1 for the rings) are gathered in Table I. It

appears that the amplitude gain G for top-hat beam is higher

than the gain in the total energy given by ~Etot. Similar obser-

vation arises from the comparison of Gaussian and rectangu-

lar rings. This can be ascribed to the strong temperature

gradients that induce high in-plane constrains at the beam

edge and reinforces the idea that it would be advantageous to

use rectangular energy profiles.

From Eq. (28), it appears that the factor G is propor-

tional to the square root of the ring order. The amplitude cal-

culated with the semi-analytical simulation as a function of

the ring radius R0 is plotted in Fig. 4. These theoretical

FIG. 6. (Color online) (a) Experimental setup. (b) Total energy measured on the camera as a function of the laser beam energy. (c) Typical measured normal

displacement and (d) associated spectrum.
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results suggest that high order annular beam should be used

to obtain maximal amplitude. However, they are correct

only for low attenuating material. In general, the larger is the

ring, the more important is the effect of attenuation. This can

been observed on the displacement amplitude, simulated for

Gaussian rings of optimal width and different damping

parameters (Fig. 5). A damping factor of 6� 10–4 dB/ls

corresponds to a lossless material, the second one to weakly

attenuating materials like Duralumin, the third one to steel

or copper and the value 6� 10�1 dB/ls to highly attenuating

materials like composite plates. For a damping factor of

6� 10�2 dB/ls, attenuation cannot be neglected, the gain

between the Gaussian beam and the first ring is around three

but it increases slowly for higher orders rings. Whatever the

attenuation, the first annular ring provides a significant gain.

IV. EXPERIMENTAL RESULTS

The experimental setup is shown in Fig. 6(a). The excita-

tion is achieved with a Nd:YAG laser at 1064 nm (Centurion,

Quantel, pulse duration 8 ns and fire rate 100 Hz) and an opti-

cal system. Normal surface displacements are measured with

a heterodyne interferometer (BMI probe, SH-140, calibration

factor 120 mV/nm).20 The signals detected by the optical

probe were fed into a digital sampling board (PicoScope,

Picotech, 6404D) with 5 ns resolution and then stored in a

computer for further analysis. Two kinds of optical systems

are used to produce either a Gaussian or a ring-shaped source.

The first one consists in a beam expander with a 100-mm con-

vergent lens. The beam radius is controlled by varying the dis-

tance from the lens to the sample. The second system is

composed of a beam expander, an axicon (i.e., a conical lens)

of apex angle h¼ 160	, and a 35-mm convergent lens. Radius

and width of the annular source are controlled by varying the

distances z1, z2 between the axicon, the lens, and the sample.

As shown in Fig. 6(a), the laser source is characterized

with a camera (uEye, IDS, UI-3370CP, with 2048� 2048 pix-

els of size 5.5 lm2). A neutral density filter is placed just

before the camera in order to avoid saturation on the comple-

mentary metal-oxide semiconductor (CMOS) sensor.

Integration time is about 47 ms and pulse rate is 100 Hz. Sixty-

four images are consecutively recorded and averaged. Under

these conditions, the number of photo-electrons (counts) mea-

sured is proportional to the pulse energy of the laser source

[Fig. 6(b)]. The normal displacement generated with an annu-

lar beam and the associated spectrum, displayed in Figs. 6(c)

and 6(d), show that the S1S2 resonance is favourably excited.

Examples of raw images are shown in Fig. 7(a) for a

Gaussian beam and in Fig. 7(c) for an annular source. These

images display linear fringes that are attributed to a glass plate in

FIG. 7. (Color online) Snapshots of sources. (a) Gaussian beam raw image

and (b) after spatial filtering. (c) Gaussian ring raw image and (d) after spa-

tial filtering.

FIG. 8. (Color online) Typical experimental profiles of the (a) Gaussian and

(b) annular beams, and comparison with fitted profiles.

FIG. 9. (Color online) Gaussian beam: Amplitude of S1S2-ZGV mode gener-

ated in the 1-mm thick Duralumin plate against the beam radius.

Comparison between experiments (dots) and simulation (solid line).
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front of the CMOS sensor. In order to compare with theory, these

interferences are suppressed by low pass filtering [Figs. 7(b) and

7(d)]. The energy distribution is not exactly circular because of

the imperfections of the laser source. Mean profiles are calculated

by averaging 16 profiles, then they are fitted by functions e�r2=w2

for the Gaussian beam and e�ðr�RÞ2=w2

for the annular beam

(Fig. 8). Once geometrical source parameters estimated, the max-

imum surface energy density I is deduced from the normalized

function f(r) and measured total energy Etot by using Eq. (2).

Gaussian beam. In order to validate the simulation and

the experimental procedure, a first optimization is performed

on a Gaussian laser source. All measurements are performed

on a 1-mm thick Duralumin plate. The beam radius is varied

from 0.3 mm to 2.5 mm, and is measured systematically with

the camera. The amplitude of the displacement at the S1S2-

ZGV frequency f¼ 2.87 MHz is normalized by the estimated

maximum surface energy density. It is represented against the

beam radius in Fig. 9. The agreement with the simulated dis-

placement is noticeable. The relative root-mean-square error

was found to be 6% and the optimal radius coincides perfectly

with the predicted value wopt¼ k/p¼ 1.27 mm.

Annular beam. In practice, the width and the radius of the

annular source cannot be changed independently. Axicon to

lens distance is held constant while the lens to sample distance

is incremented by 1-mm steps. Simultaneously, the geometric

parameters of the source are measured and the displacement at

the S1S2-ZGV resonance frequency is recorded. This procedure

was repeated for a dozen axicon-lens distances covering the

range from 2.0 to 2.9 mm for R0 and from 0.65 to 1.20 mm for

w. These ranges are centered around the predicted optimal

parameters given in Table I. Displacement amplitudes normal-

ized by the estimated maximum surface energy density are

plotted in Fig. 10. Experimental values are compared with sim-

ulations in Fig. 11. In Fig. 11(a), R0 varies from 2.1 to 2.9 mm

for ring width limited to 60.05 mm around the optimal value

0.90 mm. Similarly in Fig. 11(b), w varies from 0.65 to

1.20 mm while the ring radius is limited to 60.05 mm around

the optimal value 2.57 mm. A reasonable agreement between

the whole experimental data set and the simulation is observed

with a relative root-mean-square error equal to 5%.

Gaussian beam versus Gaussian ring. Displacements mea-

sured experimentally are compared between the two sources in

Fig. 12. The observed amplification factor (2.1) is significantly

lower than the predicted one (3.27, Table I). This can be

ascribed to various defaults: (i) the spatial distribution of the

Gaussian laser is not axially symmetric, (ii) the energy profile of

the annular source is not exactly Gaussian, (iii) the estimation of

the geometric parameters of the annular source is difficult.

V. CONCLUSION

We have presented a theoretical study on Lamb modes

generated by axi-symmetrical laser source. The objective was

to improve the excitation of ZGV resonances in an isotropic

plate by adjusting the geometric parameters of a Gaussian

beam or an annular source. The first and simple result is that

the optimal radius of a Gaussian beam is directly proportional

to the ZGV wavelength and equal to kZGV/p. Analytical

FIG. 11. (Color online) Gaussian ring: Experimental ZGV amplitudes (dots) and simulation (solid line). (a) Simulation is performed at fixed width wopt, while

experimental dots are chosen so that jw� woptj < 0:05 mm. (b) Simulation is performed at fixed radius R0opt
, while experimental dots are chosen so that

jR0 � R0opt
j < 0:05 mm.

FIG. 10. (Color online) Gaussian ring: Amplitude of the S1S2-ZGV mode

generated in the 1-mm thick Duralumin plate against the ring width w and

radius R0. The crosses represent the set of (w,R0) geometric parameters.
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formulas giving optimal parameters have also been estab-

lished for Gaussian and rectangular rings. These theoretical

results were confirmed by semi-analytical simulations.

Annular Gaussian beams of controlled width and radii were

achieved with an axicon-lens system. Amplitude of the S1S2

ZGV mode, measured for Gaussian spot and ring source in a

Duralumin plates are in good agreement with theoretical pre-

dictions. These results obtained for ZGV modes, are also valid

for the generation of any Lamb mode in a cylindrical geome-

try. Further works will consider the use of SLMs to shape

optimal beams with a great flexibility. For non-destructive

testing applications, tunable acoustic gradient (TAG) index

lens could be a cheap and efficient alternative.
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APPENDIX: DETERMINATION OF THE ELASTIC
POTENTIAL AND MECHANICAL DISPLACEMENTS

Stress free surface conditions are applied in order to deter-

mine the constants A; B; C, and D of the potentials in Eq. (11).

Using u ¼ r/þr�r� w the displacement components are

ur ¼
@/
@r
þ @2w
@r@z

;

uz ¼
@/
@z
þ @

2w
@z2
� 1

c2
T

@2w
@t2

;

8>>><
>>>:

(A1)

and the elastic stress components can be written as
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From Eq. (A1), the Hankel transforms of the displacement

components can be expressed in terms of the potentials �/
H0

and �w
H0

as

�uH1
r ¼ �k�/

H0 � k
@�w

H0

@z
;

�uH0
z ¼

@�/
H0

@z
þ k2 �w

H0 ;

8>>><
>>>:

(A2)

where “H1 ” denotes the Hankel transform of the first order.

Then using the potential equations (10) the stress compo-

nents can be written as

�rH1
rz ¼ �lk

2@�/
H0

@z
þ k2 þ q2
� 	

�w
H0

 !
;

�rH0
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:
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The elastic boundary conditions result from the absence of

normal stress on both surfaces z¼6h

rrzjz¼6h ¼ 0

rzzjz¼6h ¼ 0
()

�rH1
rz jz¼6h ¼ 0;

�rH0
zz jz¼6h ¼ 0:

((

Inserting potential solutions [Eq. (11)] into these equations

provides the following linear equation for the constants

A; B; C, and D:

M

A
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C
D

0
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1
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FIG. 12. (Color online) Comparison of the displacement amplitude mea-

sured with Gaussian ring (blue dot) and Gaussian beam (green diamond).
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where the constants T1 and T2 are given by Eq. (7) and

M¼

�2pe�2ph 2p �ðk2 þ q2Þe�ðpþqÞh �ðk2 þ q2Þe�ðp�qÞh

�2p 2pe�2ph �ðk2 þ q2Þe�ðp�qÞh �ðk2 þ q2Þe�ðpþqÞh

ðk2 þ q2Þe�2ph ðk2 þ q2Þ 2k2qe�ðpþqÞh �2k2qe�ðp�qÞh

ðk2 þ q2Þ ðk2 þ q2Þe�2ph 2k2qe�ðp�qÞh �2k2qe�ðpþqÞh

0
BBB@

1
CCCA: (A4)

The determinant of the matrixM vanishes for Lamb waves,

leading to singularities. To avoid this problem, a small

damping factor is added to the angular frequency x. When

not specified, it is taken equal to 6� 10�4 dB/ls. Once the

constants determined, the displacement amplitude at fre-

quency x is recovered by inverse Hankel transform equation

(A2),

�urðr; z;xÞ ¼
ð1

0

�uH1
r ðk; z;xÞJ1ðkrÞk dk;

�uzðr; z;xÞ ¼
ð1

0

�uH0
z ðk; z;xÞJ0ðkrÞk dk:

8>><
>>: (A5)
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