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An optically thick cold atomic cloud emits a coherent flash of light in the forward direction when the
phase of an incident probe field is abruptly changed. Because of cooperativity, the duration of this
phenomena can be much shorter than the excited lifetime of a single atom. Repeating periodically the
abrupt phase jump, we generate a train of pulses with short repetition time, high intensity contrast, and high
efficiency. In this regime, the emission is fully governed by cooperativity even if the cloud is dilute.
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The seminal work on superradiance of R. Dicke in 1954
has opened up tremendous interest in studying cooperative
emission of electromagnetic radiation from an ensemble of
radiative dipoles (see [1] for the original proposal, [2,3] for
reviews, and [4–10] for recent related works). In his original
proposal, R. Dicke considered an ensemble of N excited
two-level atoms confined inside a volume smaller than λ3,
where λ is the transition wavelength. In this context, a
macroscopic polarization is built up in the medium upon
incoherent spontaneous emission. This Dicke superradiance
mechanism leads to the coherent emission of an intense
pulsewith a decay time, τD ¼ ðNΓÞ−1, that is shortened by a
factor of N−1 with respect to the atomic excited state
lifetime, Γ−1. For practical implementation in the optical
domain, the Dicke model was extended to media with
volume larger than λ3 [2,11,12]. In those cases, the propa-
gation of the electromagnetic field in the medium and the
spatial mode density must be taken into account. If the
medium is dense, i.e.,ρλ3 ≫ 1, where ρ is the radiator spatial
density, it still exhibits the main feature of the Dicke
superradiance, namely, the emission of a short pulse after
some delay [4,7,13,14]. It was, however, pointed out in [11],
that the superradiant pulse decay time should be corrected as
τ ¼ τD=μ. μ < 1 is a geometrical factor corresponding to the
solid angle subtended by the superradiant emission [2,12].
For a dilute scattering medium, i.e., ρλ3 ≪ 1, the Dicke

superradiancemechanism does not occur [15]. Nevertheless,
an optically thickmedium driven by a coherent incident field
shares interesting similarities with Dicke superradiance;
here, the cooperativity factor Nμ is replaced by the optical
thickness of the medium [18,19]. Once a driving coherent
field is abruptly switched off, like in a free induction decay
(FID) experiment [20–27], a short coherent cooperative flash
of light is emitted in the forward direction. The flash duration
is inversely proportional to the optical thickness and the
bare linewidth of the transition [26]. A similar phenomenon

occurs for the optical precursor, i.e., when the driving
coherent field is abruptly switched on [28].
In a coherently driven medium, the incident probe

frequency can be detuned with respect to the atomic
resonance, leading to a nontrivial phase rotation of the
cooperatively emitted field (see [27] in the optical domain
and [29–31] for γ-ray pulses in Mössbauer spectroscopy
experiments). In this Letter, we report the generation of high
repetition rate and high intensity contrast pulse trains in an
optically thick cold dilute atomic ensemble using the setup
schematically shown in Fig. 1(a). An example of a pulse
train, generated in our experiment by periodically changing
the probe phase, is shown in Fig. 1(b). As a consequence of
cooperative emission, the repetition time TR of the pulse
train can be shorter than the atomic excited state lifetime,
Γ−1. Moreover, we show that at a high repetition rate, the
single atom fluorescence is quenched. This constitutes a
rather counterintuitive result where the emission in free
space is fully governed by cooperativity, in contrast with the
usual situationswhere it is enhanced by a cavity surrounding
the medium [32].
The scattering medium is a cloud of laser-cooled 88Sr

atoms (see [33] and [27] for the details of the cold atoms
production line). The ellipsoidal shape of the cold cloud has
an axial radius of 240ð10Þ μm and an equatorial radius of
380ð30Þ μm, with peak density around 4.6 × 1011 cm−3 for
a total of 2.5ð5Þ × 108 atoms. λ ¼ 689 nm is the wave-
length associated to the 1S0 → 3P1 intercombination line
(bare linewidth of Γ=2π ¼ 7.5 KHz) used in this experi-
ment. ρλ3 ¼ 0.15, which puts us in the dilute regime. The
temperature of the cold gas is T ¼ 3.3ð2Þ μK. We get
kv̄ ¼ 3.4Γ, indicating a significant Doppler broadening of
the narrow intercombination line. k ¼ 2π=λ is the wave
vector of the transition, and v̄ is the rms velocity of the gas.
The optical thickness depends strongly on the temperature.
We measure 19(2) along the equatorial axis at resonance.
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A 150 μm diameter probe laser beam, tuned around the
intercombination line, is sent through the cold atomic gas
along an equatorial axis. The probe power is 400(40) pW,
corresponding to 0.45ð5ÞIsat (Isat ¼ 3 μW=cm2). We mea-
sure the forward transmitted intensity of the probe using a
photodetector, integrating over the transverse dimensions
of the transmitted beam. We apply a bias 1.4 G magnetic
field along the beam polarization during the probing phase,
making the atom an effective two-level system on the 1S0,
m ¼ 0 → 3P1, m ¼ 0 transition.
The ellipsoidal shape of the cloud is modeled by a slab

geometry, so that the coherent transmitted electric field, in
the frequency domain, is given by

EtðωÞ ¼ E0ðωÞ exp
�
i
nðωÞωL

c

�
: ð1Þ

In the above equation, nðωÞ, E0, c, and L are the complex
effective refractive index, the incident optical field, the
speed of light in vacuum, and the slab thickness along the
laser beam, respectively. For a dilute medium, nðωÞ ¼
1þ ραðωÞ=2 [34], with the two-level atomic polarizability,

αðωÞ ¼ −
3πΓc3

ω3

1ffiffiffiffiffiffi
2π

p
v̄

Z þ∞

−∞
dv

exp ð−v2=2v̄2Þ
δ − kvþ iΓ=2

: ð2Þ

δ ¼ ω − ω0 is the detuning of the probe laser frequency ω
with respect to the bare atomic resonance frequency, ω0.
The effect of Doppler broadening is included in the
polarizability by averaging over the thermal Gaussian
distribution of the atomic velocity v along the beam
propagation direction. The transmitted intensity ItðtÞ is
computed following [27], and by performing an inverse
Fourier transform. We define, for given δ and v̄, the optical
thickness bv̄ðδÞ and the relative phase θv̄ðδÞ between the
transmitted and the incident fields by

bv̄ðδÞ ¼
2ω

c
Im½nðωÞ�L;

θv̄ðδÞ ¼
ω

c
Re½nðωÞ − 1�L: ð3Þ

The transmitted field Et results from the interference
between the incident field E0 and the field scattered in the
forward direction Es,

Et ¼ E0 þ Es: ð4Þ
For effective two-level atoms, we can drop the vectorial
nature of the electric fields and represent them as scalar
quantities. Because of the noninstantaneous response time
of the medium, the coherent scattered field in the forward
direction is a continuous function across the abrupt change
of the incident field. In a FID experiment where the incident
field is abruptly switched off at t ¼ 0, the intensity of the
transmitted field at t ¼ 0þ is a direct measurement of the
forward scattered intensity in the stationary regime. Its
properties are studied in detail in [26,27]. In particular, the
intensity of the forward scattering is bounded by 4 times the
incident intensity (“superflash effect”) [27]. The temporal
evolution of the transmitted field, after the abrupt switch off
of the incident field, is not a simple function having only
one characteristic decay rate [26]. However, we get a clear
physical insight by considering only the initial decay time
(at t ¼ 0þ), which takes a simple analytical expression (see
Supplemental Material [35]):

τv̄ðδÞ ¼
���� Itðt ¼ 0þÞ − Itðt ¼ ∞Þ

dIt=dtðt ¼ 0þÞ
����

¼ 2

Γb0ð0Þ
1þ expð−bÞ − 2 expð−b=2Þ cosðθÞ

1 − expð−b=2Þ cosðθÞ ; ð5Þ

where b≡ bv̄ðδÞ and θ≡ θv̄ðδÞ. In Eq. (5), b0ð0Þ is
the optical thickness at resonance and zero velocity. It is
linked to bv̄ð0Þ by bv̄ð0Þ ¼ b0ð0Þgðkv̄=ΓÞ, where gðxÞ ¼ffiffiffiffiffiffiffiffi
π=8

p
exp ð1=8x2Þerfcð1= ffiffiffi

8
p

xÞ=x [26].
For small optical thickness, Eq. (5) reduces to τv̄ð0Þ ¼

gðkv̄=ΓÞ=Γ at resonance. It is shorter than τ0ð0Þ ¼ 1=Γ due
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FIG. 1 (color online). (a) Experimental setup: a laser beam is
sent through an acousto-optic modulator (AOM), which may be
used to switch on and off the incident beam, followed by an
electro-optic modulator (EOM), which abruptly changes the
phase of the incident probe field, E0. (b) A pulse train generated
at a repetition time of TR ¼ 0.12Γ−1 by a periodic abrupt phase
change of π. Here, the probe laser is at resonance. (c) Electric
fields just before and just after an abrupt phase jump of π are
represented schematically in the complex plane. Before the phase
jump, the forward scattered field Es destructively interferes with
E0. After the phase jump, they constructively interfere. The
transmitted field is denoted by Et.
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to the dephasing effect from the motion of the atoms. This
has already been observed experimentally [see Fig. 3(b) of
[26] where the transition is Doppler broadened, and Fig. 5
of [24] where Doppler broadening can be ignored]. In our
experiments, gðkv̄=ΓÞ ≈ 0.16; thus, for bv̄ð0Þ ¼ 19ð2Þ, we
get b0ð0Þ ¼ 120ð10Þ. A direct measurement gives a slightly
smaller value, b0ð0Þ ¼ 95ð5Þ (see Supplemental Material
[35]). The expression of τv̄, given by Eq. (5), simplifies to
τv̄ð0Þ ¼ 2½b0ð0ÞΓ�−1 at resonance (b ≫ 1, θ ¼ 0) and to
τv̄ð�∞Þ ¼ 4½b0ð0ÞΓ�−1 far from resonance (b ¼ 0 and
θ ¼ 0). The solid blue curve in Fig. 2 is a plot of τv̄ðδÞ
for kv̄=Γ ¼ 3.4. τv̄ has a weak dependence on δ and v̄; it
depends mainly on b0ð0Þ, which can be much larger than
the optical thickness bv̄ð0Þ seen by a resonant probe at
nonzero temperature. This strongly reduces the lifetime of
the forward scattered field with respect to the atomic
lifetime, Γ−1. Equation (5) has a rather simple physical
interpretation: the second term represents the geometrical
properties of the propagation inside the medium (change in
amplitude and phase shift) while the term 2=Γb0ð0Þ
represents the collective behavior of all excited dipoles.
It does not depend on the atomic velocity, but only on the
atomic density integrated along the laser direction, because
there is no Doppler effect for photons scattered in the
forward direction. Similarly, it does not depend on the
detuning because all dipoles decay with the same rate Γ
independently of the detuning.
The FID experiment is performed using an AOM as a

light switching device [see Fig 1(a)]. The experimental data

points, represented by blue open circles in Fig. 2, are in
reasonable agreement with the theoretical prediction. The
evaluation of dIt=dtðt ¼ 0þÞ is performed on a short
temporal window (∼200 ns) after switching off the incident
probe. While the flash signal has a good signal to noise
ratio [see Fig. 1(b)], the resulting dIt=dtðt ¼ 0þÞ values
from this analysis are noisier. This leads to the large
statistical errors for τv̄. The slight positive systematic error,
also associated to the determination of dIt=dtðt ¼ 0þÞ,
comes from the finite response time of our experimental
scheme, of the order of 40 ns ≈ ð500ΓÞ−1. To check the
latter statement, we use Eqs. (1) and (2) to numerically
compute ItðtÞ. E0ðωÞ in Eq. (1) is determined from the
measured time evolution of the incident intensity. We then
apply, on the numerical signal, the same procedure used
experimentally to extract τv̄, resulting in an excellent
agreement with the experimental data (see Fig. 2).
Instead of a FID experiment, we now consider an abrupt

jump of the phase of the incident field by π [see Fig. 1(c)],
at constant incident intensity. The initial decay time τv̄
becomes (see Supplemental Material [35])

τv̄ðδÞ ¼
4

Γb0ð0Þ
1 − expð−b=2Þ cos θ
2 − expð−b=2Þ cos θ : ð6Þ

We plot this expression as the red dashed line in Fig. 2. If
the π phase jump occurs at t ¼ 0, according to Eq. (4),
we have Etðt ¼ 0þÞ ¼ −E0ðt ¼ 0−Þ þ Esðt ¼ 0−Þ. To
observe the largest possible amplitude of the transient
field, we choose the probe frequency detuning such that
the interference between E0ðt ¼ 0−Þ and Esðt ¼ 0−Þ is
destructive. This condition is necessarily fulfilled when
the incident field is at resonance. If bv̄ð0Þ ≫ 1,
jEsðt ¼ 0−Þj≃ jE0j, so we expect a coherent flash with
a peak intensity, It ¼ 4I0. The destructive interference
condition may also happen at a nonzero detuning if the
phase rotation experienced by Es is large enough, for
example if bv̄ð0Þ ≫ 1. In our experiment, this situation
occurs at jδj ¼ 11.3Γ (i.e., superflash regime [27]). In this
context, jEsðt ¼ 0−Þj≃ 1.8jE0j; thus, the flash has a peak
intensity, It ≃ ð1þ 1.8Þ2I0 ≃ 7.8I0. This value is slightly
below the maximum value 9I0 allowed by energy con-
servation, achievable at larger optical thickness.
The phase jump is performed using an EOM placed on

the probe laser path [see Fig. 1(a)]. The EOM is driven by a
high voltage controller and has a slew rate ∼2.3π rad μs−1.
The two experimental values (red squares), corresponding
to δ ¼ 0 and jδj ¼ 11.3Γ, are shown in Fig. 2. They are
systematically higher than the theoretical prediction for an
abrupt phase shift change because of the response time of
the EOM driver. Similarly to the FID experiment, we use
the experimentally measured EOM driver output to numeri-
cally compute the ItðtÞ signal. The resulting values of the
decay time (red dash-dotted line in Fig. 2) agree with the
experimental ones.

FIG. 2 (color online). Initial decay time of the coherent flash
versus the probe detuning at kv̄=Γ ¼ 3.4. The zero temperature
resonant optical thickness is b0ð0Þ ¼ 120. The blue open circles
and plain curve are, respectively, the experimental data points and
the theoretical curve for an abrupt switch off of the probe. The
two horizontal black dashed lines give the theoretical predictions
at resonance and at large detuning. The red squares and dashed
curve are the experimental data points and theoretical prediction
for an abrupt phase jump of π. The blue dotted line and the red
dash-dotted line are numerical predictions taking into account the
finite response time of the experimental scheme (see text for more
details).
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We now analyze the cooperative emission when a square
periodic π phase jump is applied. We observe a pulse train
with a repetition time TR [see an example in Fig. 1(b)]
limited by the relaxation time of the system. The co-
operative emission in the forward direction dramatically
decreases the repetition time below the atomic excited state
lifetime.
Bringing the probe on resonance, we plot in Fig. 3(a)

(red dots and solid curve) the intensity contrast Ic of the
pulse train. We define Ic ¼ maxfItg − hIti as the differ-
ence between the maximum intensity maxfItg and the
mean intensity, hIti ¼ 1=TR

R
TR

ItðtÞdt. We observe an
excellent agreement between the experiment and the
theoretical prediction of Eqs. (1) and (2). At long
repetition time, i.e., TR ≫ Γ−1, the system reaches its
steady state before every phase jump. Hence, we measure
Ic ≃ 4I0 − hIti≃ 4I0. We note that hIti≃ 0 [see the blue
open circles and dashed curve in Fig. 3(a)] and most of
the incident power is scattered out by single atom
fluorescence events. In the τv̄ ≲ TR ≲ Γ−1 intermediate
regime, Ic oscillates and can reach a larger value.
Moreover, the mean intensity hIti rapidly increases to
its maximal value, I0. Here, the incident power is almost

perfectly transferred to the pulse train. This interesting
result can be understood considering cooperativity in
forward scattering. Indeed, its characteristic relaxation
time scales like ½b0ð0ÞΓ�−1. Therefore, for b0ð0Þ ≫ 1,
coherent processes relax much faster than single atom
fluorescence events. The latter are quenched, leading to
the good figure of merit at a repetition time shorter than
Γ−1. In other words, the emission from the atoms is
governed by cooperativity. For TR < τv̄, the repetition rate
is faster than any time scale of the atomic ensemble. Even
though the probe power is fully transmitted, the contrast
Ic tends to zero.
At detuning jδj ¼ 11.3Γ, for long repetition time

(TR ≫ Γ−1), the pulses have a higher contrast, Ic ≃ ð1þ
1.8Þ2I0 − hIti≃ 7.1I0 [see Fig. 3(b)]. The large value of the
mean intensity, namely, hIti≃ 0.7I0, is due to the small
optical thickness, bv̄ðδÞ ¼ 0.4. Hence, most of the trans-
mitted power is in a continuous transmission mode and
not in the pulse train. At the intermediate repetition time
(τv̄ ≲ TR ≲ Γ−1), the pulse contrast and the figure of merit
are not as good as in the resonant case.
To conclude, we generate pulse trains of short repetition

time using cooperative forward emission in an optically
thick scattering medium. We can almost completely trans-
fer the incident power into the high intensity contrast pulse
train, quenching the single atom fluorescence. This means
that, in free space, the cooperativity effect can dominate
emission from a dilute atomic gas. The decay time of the
pulses also weakly depends on the temperature of the gas
and on the probe detuning. An interesting extension of this
study could be to look for quantum signatures in the
cooperative emission.
Finally, we employ the narrow intercombination line of

strontium as a proof of principle, where the time scales are
of the order of microseconds. For future practical applica-
tions, such as a high contrast pulse generator, shorter
repetition times in the picosecond or subpicosecond regime
should be attainable. For this purpose, one has to use
scattering media with higher optical thickness and/or
shorter transition lifetime. The fact that cooperativity is
robust over thermal dephasing means that we can also use a
hot vapor of rubidium [bv̄ð0Þ ≈ 600 at 110 °C [36]]. We can
also use condensed matter systems, e.g., a samarium doped
fiber [bð0Þ ≈ 100 [37]], which allows us to bring this
technique into the 1.55 μm telecommunication band.

The authors thank M. Pramod, F. Leroux, and K. Pandey
for technical support and fruitful discussions. C. C. K.
thanks the CQT and ESPCI institutions for funding his
trip to Paris. This work was supported by CQT/MoE
funding, Grant No. R-710-002-016-271. R. P. acknowl-
edges the support of LABEX WIFI (Laboratory of
Excellence ANR-10-LABX-24) within the French
Program “Investments for the Future” under reference
ANR-10-IDEX-0001-02 PSL*.

(a)

(b)

FIG. 3 (color online). Figures of merit of the generated pulse
train (a) at resonance and (b) at jδj ¼ 11.3Γ. The red solid and
blue dashed curves are the theoretical predictions for the intensity
contrast Ic=I0 and transfer efficiency hIti=I0, respectively. The
red dots and blue open circles are the corresponding experimen-
tally measured values.
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Optical thickness measurement

We employ three different methods to measure the op-
tical thickness. First, we compute the theoretical trans-
mission spectrum for various bv̄(δ) values and use these
profiles to fit the experimentally obtained transmission
data. This leads to an optical thickness bv̄(0) = 19. Sec-
ond, we perform a shadow imaging experiment on the
1S0 → 1P1 broad transition (λb = 461 nm, linewidth
Γb = 2π × 32 MHz), where Doppler broadening is negli-
gible. A collimated probe beam with a waist larger than
the atomic cloud is sent onto the cloud, and the trans-
mission signal It/I0 is measured using an electron multi-
plying CCD camera (Andor iXon Ultra 897 ). Typically,
the probe frequency is set at a detuning, δb = 53 MHz,
to reduce the systematic error in the transmission mea-
surement due to large optical thickness. The optical
thickness B is computed from the transmission signal,
B = − log(It/I0), and is related to b0(0) of the intercom-
bination line by b0(0) = B

(
1 + 4δ2

b/Γ
2
b

)
λ2/λ2

b . In our ex-
periment, we measure a peak value of b0(0) = 95(5) using
this method and a corresponding value of bv̄(0) = 15(1)
using bv̄(0) = b0(0)g(kv̄/Γ). Third, we carry out shadow
imaging experiment directly on the intercombination line
transition. We vary the detuning in a range of 100 kHz
around the resonance. The value of bv̄(0) is deduced us-
ing

Et(ω) = E0(ω)ei
n(ω)ωL

c , (S1)

and

α(ω) = −3πΓc3

ω3

1√
2πv̄

∫ +∞

−∞
dv

e−v
2/2v̄2

δ − kv + iΓ/2
, (S2)

which are Eqs. (1) and (2) in the main text. We have
bv̄(0) = 19(2), a value slightly larger than the one ob-
tained by the second method.

Initial decay time τv̄

We take t = 0 as the time when the abrupt change
occurs for the incident field E0. To calculate the initial

decay time of the cooperative forward transmitted field,
we first note that we can rewrite Eq. (5) in the main text
as

τv̄(δ) =

∣∣∣∣∣∣1− |Et(t =∞)|2/|Et(t = 0+)|2

2 Re
{

dEt/dt(t=0+)
Et(t=0+)

}
∣∣∣∣∣∣ , (S3)

where Et(t = 0+) = E0(t = 0+) + Es(t = 0−), and
Et(t =∞) is the steady state transmitted field after the
abrupt change in the incident field. For the case of abrupt
extinction, Et(t = 0+) = Es(t = 0−) and Et(t =∞) = 0.
For abrupt ignition, Et(t = 0+) = E0 and |Et(t =∞)| =
|E0|e−b/2. Here, b = bv(δ) and θ = θv(δ), the same as
defined in Eq. (3) of the main text:

bv̄(δ) =
2ω

c
Im[n(ω)]L, θv̄(δ) =

ω

c
Re[n(ω)−1]L. (S4)

For abrupt phase jump by ϕ, we have Et(t = 0+) =
E0eiϕ +Es(t = 0−), ignoring the small propagation time
L/c in the medium, and |Et(t = ∞)| = |E0|e−b/2. The
forward scattered field during the steady state regime,
in both cases of abrupt extinction and phase jump, is
Es(t = 0−) = E0e−b/2+iθ − E0.

In the denominator of Eq. (S3), we need to com-
pute the time derivative of the transmitted field at t =
0+. It can be computed by considering the derivative
d
[
Es(t)e

iωt
]
/dt. The forward scattered field in the time

domain, Es(t), is related to the incident field in the fre-
quency domain, E0(ω′), by the following well-behaved
integral:

Es(t) =

∫
e−iω

′t

[
ei
ω′ρα(ω′)L

2c − 1

]
E0(ω′)dω′. (S5)

The integration ranges of the integrals in this Supple-
mental Material, when not specified, are from −∞ to∞.
E0(ω′) is given for the cases of abrupt ignition, abrupt
extinction and abrupt phase jump of ϕ by:

E0(ω′) =
iξE0

2π
PV

1

ω′ − ω
+
ηE0

2
δ(ω′ − ω). (S6)

where ω is the frequency of the probe. The Fourier vari-
able corresponding to t is denoted as ω′. ξ and η are −1



S2

and 1 respectively for abrupt extinction of the probe, and
eiϕ − 1 and 1 + eiϕ respectively for abrupt phase jump
of the probe field. In the case of abrupt probe ignition,
both ξ and η are equal to 1. We substitute Eq. (S6)
in Eq. (S5), noting that the integral involving the Dirac
delta function goes to zero, to obtain

d

dt

[
Es(t)e

iωt
]

=
ξE0

2π

∞∑
p=1

1

p!

∫ (
iω′ρα(ω′)L

2c

)p
e−i(ω

′−ω)tdω′. (S7)

We work in the regime where δ,Γ, kv̄ � ω0. For p = 1,
the integral can be evaluated to be

ξE0

2π

∫
iω′ρα(ω′)L

2c
e−i(ω

′−ω)tdω′

=
ξE0

2πi

b0(0)

2

Γ

2

1√
2πv̄

∫∫
dv dω′

e−i(ω
′−ω)te−v

2/2v̄2

ω′ − ω0 − kv + iΓ/2

= −ξE0
b0(0)Γ

4
eiδte−Γt/2 1√

2πv̄

∫
dv e−ikvte−v

2/2v̄2

= −ξE0
b0(0)Γ

4
eiδte−Γt/2e−k

2v̄2t2/2, (S8)

for t > 0. In Eq. (S8), b0(0) = 6πρc2L/ω2
0 . The p > 1

terms, in general, are difficult to evaluate for the general
time dependence. Nevertheless, at t = 0+, they vanish.
We take the example of the term p = 2, where essentially
we have to deal with the following triple integral.∫∫∫

e−i(ω−ω
′)te−v

2/(2v̄2)e−v
′2/(2v̄2) dω′dv dv′

(ω′ − ω0 − kv + iΓ/2)(ω′ − ω0 − kv′ + iΓ/2)
.

(S9)
We rewrite for v 6= v′,

e−i(ω−ω
′)t

(ω′ − ω0 − kv + iΓ/2)(ω′ − ω0 − kv′ + iΓ/2)

=
1

k(v − v′)
e−i(ω−ω

′)t

ω′ − ω0 − kv + iΓ/2

− 1

k(v − v′)
e−i(ω−ω

′)t

ω′ − ω0 − kv′ + iΓ/2
. (S10)

The integration over ω′ of the above expression can be
carried out easily, which results in 0 at t = 0+. When
v = v′, we have an integral over a multiple pole of order
2, which also goes to 0 at t = 0+. Therefore, the term
with p = 2 is zero at t = 0+. Similar argument can be
extended to all orders p > 1, showing that all p > 1 terms
vanish at t = 0+. Finally, we have

d

dt

[
Es(t)e

iωt
]

(t = 0+) = −ξE0
b0(0)Γ

4
. (S11)

We then use the fact that Es(t = 0+) = Et(t = 0+) −
E0(t = 0+) to obtain

dEt
dt

(t = 0+) = −ξE0
b0(0)Γ

4
− iωEt(t = 0+). (S12)

Using the above expression, we deduce the initial decay
time for the case of abrupt probe extinction,

τv̄(δ) =
2

Γb0(0)

1 + exp(−b)− 2 exp(−b/2) cos(θ)

1− exp(−b/2) cos(θ)
,

(S13)
which is Eq. (5) of the main text. For the case of abrupt
phase change, we find the initial decay time to be

τv̄(δ) =
4

Γb0(0)

1− exp(−b/2) cos θ

2− exp(−b/2) cos θ
. (S14)

This is Eq. (6) of the main text. The initial decay time
of the flash in the case of abrupt ignition is found to be

τv̄(δ) =
2

Γb0(0)

[
1− e−b

]
. (S15)

We observe again the appearance of the factor 2/Γb0(0)
which arises from the cooperativity among the atomic
dipoles.

In the case of an abrupt phase jump, we can further
choose in the experiment, for ϕ to be equal to the phase of
Es(t = 0−) relative to E0(t = 0−). This choice ensures
a constructive interference after the phase jump. The
decay time can be simplified to

τv̄(δ) =
4

Γb0(0)

|Es(t = 0+)|
E0 + |Es(t = 0+)|

. (S16)


